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Summary. Mohanty (1) and (3) considered the absolute summability of
conjugate series and Fourier series by Borel's integral method by proving
the following theorems.

k °°
Theorem A. If ^(t)\og- is of bounded variation in (0, TC), then Y Bn(Q)

t n = I

is summable \ B'\.
oo

Theorem B. If g(t) is of bounded variation in (0,7i), then the series £ An{6)
n = 1

is summable \ B' |.

The present author considered the absolute summability of derived Fourier
series and its conjugate series by Borel's integral method. Theorems proved
by the present author are

Theorem 1.

(i) iK+0) =

and

(») r <-*1
Jo

<

If
0

#(0|<«;0<*<..

»
then the series £ nBn(d) is summable \B'\.

Theorem 2.

(i) 0(+O) =
and

1

If
•• 0(1)

ri
(ii) r2\d<f>(t)\<cx>;

Jo

then the series £ nAJfi) is summable \ B' |.
I
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1. Definition
00

A series 2, an is said to be summable (B') to sum A if
o

Jo o "! x-ooj0 o n\
00

If the above integral is absolutely convergent, we say that the series £ an is
o

absolutely summable by Borel's integral method (2) or summable \ B' \.

2. Let/(r) be Lebesgue integrable in (—n, n) and periodic with period 2n
and let

/(O~i«o + E (a. cos «f+ &„ sin n/) = \ao+ £ 4,(0- (2.1)

The allied series of (2.1) at t = 0 is

£ (bn cos n9-an sin nff) = £ *.(&)
i i

and the derived Fourier series is
CO

I «B.(fl). (2.2)
The conjugate series of (2.2) is

00

tnA^)- (2-3)
i

We write
0} (2.4)
0} (2.5)

and

0(0 =*(0 logy. (2.6)

Mohanty (1) and (3) proved

lc ro

Theorem A. If i//(t) log - is of bounded variation in (0, n), then T Bn(6)
t n= 1

is summable \ B' \.
OO

Theorem B. If g(t) is of bounded variation in (0, n) then the series £ An{6)
n = 1

is summable \ B' \.

3. The object of the present paper is to prove the following two theorems.

Theorem 1. If (i) tK + O) = 0

t~2 I dMi)\<co; 0<<5<l,

CO

f/ien f//e series £ «^n(9) ij summable \Bf \.
n = 1
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Theorem 2. If(i) <£(+0) = 0(1)

and (ii) t~2 \d<j)(t)\<ao; 0<8<l
Jo

00

then the series £ "4,(0) is summable \ B' |.
n = 1

4. In order to simplify the proof we require the following estimates for
the function

9i(x,t)= exCO3U.sin (u+x sin u)du; 0<t<5<l,x>0.

(4.1)

= O(x-iexcosl) (4.2)

= O(x~V) (4.3)

, 0 = exccsu.cos(u+xsinu)du; 0<t<5<l, x>0.

= O(ex) (4.4)

= 0(x-VC0S() (4.5)

= O(x"V) (4.6)

Proof. Let 0<t<5< 1, x>0 and e1; e2 be either 0 or 1. Define

Ph(x, t) = ex cos". sin (u ̂ -i^Ex) sin (x sin u +i7re2)duj

using the second mean value theorem for integrals twice

h(x, t) = e
xcos' sin (u+inSi) sin (x sin u+ine2)du; (t<s<5)

— x ~1. e"cos' x cos u sin (x sin u + ins2) sec u sin (u + ^ite^du

= x .excos'[£1+(l—et) tan s] x cos w sin (x sin u+%ne2)du

= 0(x-1excost)
from which properties (4.2), (4.3), (4.5) and (4.6) follow at once.

5. Proof of Theorem 1
00

nBn(Q) is summable I B' I if
n = 1

/ = I e~*

E.M.S.—T
Jo ?:
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Now
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= 2 T T 1

Jo

r \ji{t) sin nt

Y (n-1)!
xndt dx

(»-D!
dx

"* f" • sin 0+x sin dx

^2n~l V* xe~A \* \li{t)e*mit .sin (t+x sin t)dt dx

'.MI - exco". sin (f+x sin t)dt dx;

^ /j +/2 , say

We have
Too fit

:g 2n * xe xdx I | i^(t)| • e*
Jo Ja

g27i-x x e - ' . e * 0 0 3 ^ 11
Jo Js

f _Y.-2asinHn=o f

" , » +2 sin id Jo J(

\m\dt

Now

^ i^" 1 cosec4-J5. I ^(f)| dt<co.
Jo

inu)d«T + P d f̂(t) f

(5.1)

(5.2)

^ '"" .s inCu+xsinu)^

i(x, 0,

by condition (i) of the theorem. Therefore

71=27T1 f" xe"* I f'#(0flli(x, 0

^In"1 f ' | #W| f" *«"* I ffi(x. 0|
Jo Jo

g27i"1 f*|#(O|.J, say
Jo

ex cos". sin (u +x sin u)du

(5.3)

dx

(5.4)
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Now

J=\ xe-*\gl(x,t)\dx + xe-'\g1{x,t)\dx+\ xe~x \ g^x, t)\ dx
Jo J l Jr-i

= J1+J2+Js, say
By (4.1) we have

By (4.3) we have

By (4.2) we have

Jo

= 0(1)

0{eTjdx

=J2= xe-x.0(x~iex)dx

foo
=J , = | xe-x.0(x-lexcos')dx

There is therefore an A with

Thus the theorem is proved

6. Proof of Theorem 2

I"' r21 #(o|
Jo

<00.

nAn{&) is summable | B' | if

Now

= I e
)o

f
Jo

t n\

<j)(t) COS

Jo

^ 2n~l xe~x\ Mtyml.t
Jo I Jo

-i f" -,| f"
Jo ^ \}a

dx<co.

dx

dx

(5.5)

(5.6)

(5.7)

(5.8)

(6.1)
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say, where 0 <5 < 1 and

J i g 2 B " 1 f°° xe-x.excosSdx f* | K0| A; (<5<C<7r)<oo (6.2)
Jo Jt

Now

I 4>(i)ex cos'. cos (*+x sin t)dt = 0(1) + [' dtft)g2(x, t)
Jo Jo

by condition (i) of the theorem. Therefore

*e-x.\g2{x, t)\dx+Ag27i-1 f'
Jo

g 2K-1 j
J

o

| d0(O|. J' -+A, say (6.3)
o

Proceeding as in the proof of Theorem 1 and using (4.4), (4.5) and (4.6) we
have

J' = 0(t"2) (6.4)

Therefore

Thus the theorem is proved.

I am much indebted to Dr. B. D. Singh, Head of the Mathematics Depart-
ment of the University of Saugar and to the referee for valuable suggestions.
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