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Abstract
Coastal environments are highly dynamic, making the monitoring of suspended sediment
concentration (SSC) both challenging and essential. SSC serves as a critical indicator of coastal
processes, storm impacts, water quality, and ecosystem service delivery. However, direct
measurement of SSC is often prohibitively expensive, logistically difficult, and spatially limited,
hindering routine monitoring by public agencies. While remote sensing offers a promising
alternative by estimating SSC from surface reflectance, it typically requires extensive calibration
and is often constrained by site-specific applicability.

This study presents a machine learning based framework for national-scale SSC estimation
using Landsat-8 and Sentinel-2 satellite imagery, calibrated with 147 in situ SSC samples
collected within one day of satellite overpass. We evaluate several models, including Random
Forest, XGBoost, and deep learning approaches, with XGBoost yielding the best performance
(R2 = 0.72, RMSE = 17 mg/L, Bias = -1.8%). Model interpretability was supported using
SHAP values (SHapley Additive exPlanations), which identified visible and infrared spectral
bands, along with geographic features, especially longitude, as key predictors. This reflects the
importance of coastal typology in shaping the SSC–reflectance relationship.

The model’s practical value is demonstrated through a spatio-temporal analysis of SSC in
Wexford Harbour using the modelled SSC from 10 years of satellite data. Seasonal patterns
showed higher estuarine mixing during winter months compared to summer. High SSC
events were associated with elevated daily rainfall and strong winds, indicating responsiveness
to meteorological drivers at a local level.

These findings highlight the potential of integrating remote sensing and machine learning
for scalable, interpretable, and cost-effective SSC monitoring, supporting data-driven research
in dynamic coastal environments.

Impact Statement1

Climate change and land use change are threatening the functioning and quality of coastal2

environments in Ireland as elsewhere across the globe. Suspended sediment concentration3

in coastal waters acts as an indicator of coastal dynamics, storm impact, water quality,4

and ecosystem service delivery. Its measurement is thus of extreme importance to coastal5

management and land-use planning, and capturing temporal and spatial fluctuations in6

suspended sediment concentrations is critical for informed environmental management and7

decision-making. Measuring SSC is also notoriously difficult as direct sampling of coastal8

waters is at best costly and at worst impossible, compromising the ability of governments9

and public agencies to monitor SSC. Remote sensing from aircraft or satellites allows10

us to estimate SSC remotely but this has other challenges, such as cloud cover or the11

complex way in which many constituents of coastal water (e.g. algae) reflect sunlight and12

complicate the SSC ‘signal’. We offer a methodology for estimating SSC in the coastal13

waters of Ireland using machine learning. As there are some direct measurements within14

Irish coastal areas (from water samples largely collected to meet Ireland’s obligations15

as part of the EU’s Water Framework Directive’s), we were able to compare measured16

with remotely estimated SSC using a combination of NASA’s Landsat-8 and Copernicus17

Sentinel-2 satellite imagery. As the relationship between actual and satellite estimated SSC18

is heavily affected by the type of coast, we see an influence of geographic location on the19

model developed. The resultant machine learning tool has the advantage that it can be20

continuously improved as more satellite imagery is acquired, with minimal field sampling21

effort. If adopted by governments and public agencies as a tool to monitor SSC, spatially22

explicit coastal management and planning will improve markedly.23
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Introduction24

Suspended sediment concentration is an important parameter25

to monitor at the coast. Changes in SSC can reflect coastal26

erosion and affect the formation of coastal landforms, as well27

as impacting how coastal landforms persist and continue to28

provide coastal flood protection. Coastal wetland areas are29

particularly sensitive to changes in SSC. Within shallow es-30

tuarine settings allochthonous (externally-derived and tidally31

imported) sediment has been shown to be a critical deter-32

minant of an individual coastal wetland’s ability to accrete33

upwards (French et al. 1995). Once compaction and shallow34

subsidence has been taken into account (see e.g. Allen (2000)),35

such accumulation determines the wetland’s elevation relative36

to sea level rise. Under conditions of low wave energy, sus-37

pended sediment can also deposit on tidal flats and influence38

the time to maturity of salt marshes or mangroves, which pro-39

vide many important ecosystem services (Currin, Davis, and40

Malhotra 2017; Lovelock 2008). Thus in addition to requiring41

sufficient accommodation space (for example landwards migra-42

tion), whether intertidal wetlands can persist in the face of a43

rise in sea level is critically determined by suspended sediment44

concentrations (see also Saintilan et al. (2022) and Kirwan45

and Megonigal (2013)). Sediment in tidal waters also plays46

an important role in impacting water quality and primary47

production, both of which are key controls on the shallow48

water marine food web (Bilotta and Brazier 2008). Spatial49

patterns and temporal changes in SSC are thus important in50

affecting recreational and commercial marine fisheries.51

Importantly, recent global climatic and regional and local52

land use changes have led to changes in many of the controls53

on sediment delivery and distribution in shallow coastal seas.54

While land use changes such as dam construction, river dredg-55

ing and flood defences have significantly altered the release of56

sediment from river catchments (Syvitski et al. 2005; Heritage57

and Entwistle 2020),there has also been an increasing inten-58

sity of meteorologically induced storm surges (Debernard,59

Sætra, and Røed 2002; Michaels, Knappenberger, and Davis60

2005), and changes in the behaviour of sediment (e.g. the61

flocculation of clay particles which is dependent on salinity62

and flow velocities (Mietta et al. 2009)) in the coastal ocean.63

The spatial distribution of SSC is thus of particular interest64

in areas that have coastlines vulnerable to flooding or erosion65

and dependent on the deposition and configuration of the shal-66

low intertidal zone. In Ireland, such areas include Wexford67

Harbour. In such locations, better monitoring of SSC can aid68

in planning of adjacent land use and coastal flood risk man-69

agement. Current modelling of SSC, however, is often based70

on point measurements at specific locations for water quality71

assessment, at long and irregular time-intervals. Knowledge72

on the spatio-temporal patterns of SSC is thus limited by the73

spatial distribution of the sampling sites, which does not allow74

for sufficient frequency of observations over larger (≥ km2)75

areas and time periods (≥ decades).76

Remote sensing of SSC77

Remote sensing has become a powerful tool for monitoring78

inland and coastal water bodies. Earth observation satellites,79

such as those in the Landsat, Sentinel, and MODIS missions,80

acquire imagery across a range of spectral bands, from visible to81

near-infrared and shortwave infrared, allowing for consistent,82

large-scale observations of surface conditions. These sensors83

measure top-of-atmosphere radiance, which is processed to84

yield surface reflectance: the proportion of incoming solar85

radiation reflected by the Earth’s surface back toward the sensor86

at different wavelengths(Wang et al. 2020).87

In aquatic environments, surface reflectance is influenced88

by the optical properties of the water column, which are, in89

turn, affected by various constituents, including suspended90

sediments, coloured dissolved organic matter (CDOM), phy-91

toplankton (quantified via chlorophyll-a), and dissolved sub-92

stances (Gholizadeh, Melesse, and Reddi 2016). Suspended sed-93

iment concentration (SSC), in particular, plays a dominant role94

in modulating water-leaving reflectance, primarily through95

the scattering and absorption of light . Because suspended par-96

ticles alter the reflectance signature in specific spectral regions97

it is possible to relate satellite-derived surface reflectance to98

SSC using a range of modelling approaches.99

Analytical and semi-analytical methods require detailed100

information about the water column, including depth, sed-101

iment characteristics (e.g., mass, rock type, and grain size),102

and the relative proportions of CDOM and SSC (Wang et103

al. 2020). Montanher and Souza Filho (2015) found that differ-104

ent spectral bands were needed for modelling SSC depending105

on whether the water was dominated by inorganic particles or106

a combination of inorganic and phytoplankton. The turbidity107

of the water also affects the best spectral bands for modelling108

(Gholizadeh, Melesse, and Reddi 2016). These methods neces-109

sitate comprehensive local water studies, making the resulting110

models highly location-specific. Empirical methods, by con-111

trast, rely primarily on SSC samples collected near the time112

of satellite image capture. These samples are used to establish113

a statistical relationship between surface reflectance and SSC114

(Wang et al. 2020). Several challenges arise when using these115

methods. Firstly, they often remain location-specific, as the116

relationship between reflectance and SSC is influenced by the117

particular particulate matter present, as well as water depth.118

Secondly, these methods require a substantial number of SSC119

samples collected concurrently with satellite overpasses under120

cloud-free conditions, particularly for dynamic areas.121

Research on coastal SSC modelling has primarily focused122

on location-specific empirical models, often achieving good123

results in non-turbid waters (< 100 mg/L) using multiple spec-124

tral bands. However, in turbid waters, model performance125

frequently deteriorates, likely due to reflectance saturation126

in visible bands around 100 mg/L and in non-visible bands127

between 500 and 1000 mg/L (Luo et al. 2018). As a result, re-128

mote sensing based solely on surface reflectance becomes less129

effective for detailed SSC modelling in highly turbid waters130

(Shahzad et al. 2018).131

Given the prevalence of local-specific models, most studies132
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either target highly turbid waters, such as rivers, or waters133

with low turbidity (Marinho et al. 2021). One of the major134

challenges in applying remote sensing to SSC modelling is135

obtaining a sufficiently large and representative dataset of in136

situ SSC samples for calibration. This is particularly critical137

in coastal regions, which often experience high spatial and138

temporal variability in SSC and are vulnerable to processes on139

instantaneous time-scales, such as localised erosion, that can140

have a high but potentially short-lived impact on sediment in141

the water column. Identifying and quantifying these changes142

is essential for effective management and mitigation strategies.143

Machine Learning models144

Traditional approaches for SSC modelling in the literature145

often rely on regression models using one or more spectral146

bands (Knaeps et al. 2015). These models have used various147

regression forms, including linear, log-linear, and polynomial148

equations, to relate surface reflectance to SSC. While relatively149

simple and interpretable, such models are typically limited in150

their ability to capture complex, non-linear relationships and151

often require location-specific calibration. To address these152

limitations, more recent studies have explored machine learn-153

ing (ML) techniques, including Random Forests and gradient154

boosting methods, which offer enhanced predictive capabil-155

ities. For instance, Hu et al. (2023) combined spectral bands156

with weather and river flow data to estimate monthly SSC157

using a gradient boosting model in the lower Yellow River in158

China. Machine learning models have become increasingly159

popular in the study of coastal sediment transport (Goldstein,160

Coco, and Plant 2019), driven by the growing availability of161

remote sensing and environmental data.162

However, ML models also present significant challenges.163

Chief among these is their reliance on large, high-quality164

training datasets. Without sufficient data, especially labelled165

SSC samples, models are prone to overfitting and poor gener-166

alisation (Goldstein, Coco, and Plant 2019; Brigato and Iocchi167

2021). This leads to overconfidence in the model and low per-168

formance outside of the training dataset. Deep learning models,169

such as neural networks, are particularly data-intensive and170

have seen limited application due to the high cost and logistical171

complexity of acquiring adequate in situ samples.172

Interpretability remains a key concern when applying ML173

in environmental sciences. SHAP (SHapley Additive exPlana-174

tions) has emerged as a widely used method for interpreting175

complex models. Rooted in game theory (Shapley et al. 1953),176

SHAP treats each feature as a player in a cooperative game and177

allocates the model’s output to features based on their marginal178

contributions. It provides local explanations that show how179

individual input features influence model predictions. SHAP180

is especially effective for explaining ensemble models like Ran-181

dom Forests and XGBoost, which otherwise would be a black182

box, by looking at the importance of the features across the183

ensemble, making it more stable for ensemble methods than184

sensitivity analysis. It has been successfully applied in environ-185

mental modelling for feature selection, model transparency,186

and diagnostics (Tang et al. 2022; Lundberg and Lee 2017).187

The primary goal of this study was to develop a model188

capable of capturing spatio-temporal patterns of SSC to gain189

insights into the dynamic nature of SSC in coastal waters,190

taking advantage of the spatio-temporal coverage of satellite-191

based remotes sensing. Information on such patterns and their192

dynamics over time is needed both for furthering our marine193

and coastal ecological and geomorphological knowledge base194

but also for tailoring land and coastal management practices in195

a way that allows adaptation to climatic change and mitigation196

of climate change impacts. The advantages of the model’s197

ability to accurately detect patterns and changes in SSC, its198

sensitivity to variations, thus outweighs the fact that its ability199

to exactly predict SSC at any given point in place and time is200

necessarily limited.201

Materials andmethods202

Data203

Satellite Imagery204

This study used imagery from the Harmonized Landsat and205

Sentinel-2 (HLS) dataset, developed by NASA to provide con-206

sistent surface reflectance products from Landsat-8/9 (OLI)207

and Sentinel-2A/B (MSI) satellites (Claverie et al. 2018). By208

harmonising bandpass differences, spatial resolution (30m), and209

applying bidirectional reflectance distribution function nor-210

malisation, the dataset enables high temporal resolution (2–3211

days) through combined satellite observations. The satellite im-212

ages were obtained and processed using Google Earth Engine213

(Gorelick et al. 2017).214

Suspended Sediment Concentration data215

In-situ SSC samples were obtained from the EPA and EdenIre-216

land, covering the period 1992 to 2024, collected as part of217

the Water Framework Directives monitoring of Transitional218

and Coastal Waters (Environmental Protection Agency 2024).219

Only surface and grab samples were included, because the220

spectral signal weakens with depth (Curran and Novo 1988).221

Each sample was taken at a Monitoring Station, which had a222

unique set of co-ordinates.223

Combined dataset224

In order to use remote sensing imagery as input to a suspended225

sediment concentration model, calibration to the study area is226

needed. This requires a set of samples matched with satellite227

images within a short time period, or overpass. The number228

of days between sample measurement and satellite image cap-229

ture, and the timing of the sample is particularly important230

in coastal areas where there is a high amount of change on a231

short scale, where the time scale and degree of such change is232

itself time-dependent (e.g. seasonally variable). It is thus to be233

expected that the accuracy of any model is improved where234

samples are collected as close as possible in time to the time235

of satellite overpass. Unfortunately, this is particularly tricky236

in areas that receive a lot of clouds and precipitation, such as237

coastal regions of Ireland, and can limit the amount of available238

data. This study uses a strict overpass of ≤ 1 day, which allows239

for a suitable range of SSC to be used for calibration, with240
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151 samples available in total. Similar studies such as Yepez241

et al. (2018), which modelled SSC in the range of 18-203242

mg/L used an overpass of 1 day, while Dethier, Renshaw, and243

Magilligan (2020) tested an overpass of between 0 and 8 days244

and found that 2 days best balanced accuracy with uncertainty245

for their study area. The location of each monitoring station,246

with the number of samples available is shown in Figure 1A,247

and histogram of the suspended sediment concentration in the248

log scale is shown in Figure 1B. There were 147 in-situ sam-249

ples that were matched with satellite images, from 78 unique250

monitoring stations, from July 2013 to October 2024. 97 of251

the images were from Landsat-8, and 50 were from Sentinel-2.252

A

B

Figure 1. Location and distribution of the sampled SSC. The locations of the
monitoring stations, and the number of samples from each station is shown
in A, with the distribution (in the log scale) shown in B.

Methods253

This study involved data pre-processing, data aggregation, and254

comparing modelling methods for prediction and validation of255

SSC. The code used to produce the results in the paper is pub-256

licly available to download on the authors GitHub repository:257

https://github.com/igoea20/Remote_Sensing_SSC_Ireland.258

Data pre-processing259

Remotely sensed spectral data requires a high-amount of pre-260

processing to ensure its accuracy, particularly in areas where261

there is a high amount of cloud cover, such as the Irish coast.262

Cloud and shadow masking was performed using the Fmask263

quality bands, masking cirrus, cloud, cloud shadow, and cloud-264

adjacent pixels based on the approach described by Qiu, Zhu,265

and He (2019). Known limitations of the S30 cloud detec-266

tion are addressed using a time series outlier filtering method267

adapted from Chen and Guestrin (2016), which applies a Ham-268

pel filter and temporal consistency analysis using the modified269

Normalised Difference Water Index (mNDWI), which is a ra-270

tio of the green (0.53 - 0.59 µm) and Shortwave Infrared (1.57271

- 1.65 µm) bands (Claverie et al. 2018; Vermote, Justice, and272

Bréon 2008). Cloud-contaminated or physically implausible273

values (e.g., negative reflectance) were removed. Water pixels274

were identified using the mNDWI (Xu 2006).275

For the in situ samples of SSC, some data points had to be276

removed due to their unsuitability to remote sensing. Measure-277

ments from water shallower than 1m were excluded to reduce278

errors from sediment bed backscattering. Only samples from279

depths ≤ 5m were used to ensure that the satellite-derived sig-280

nal corresponded to the upper water column, as the penetration281

reduces with turbidity (Curran and Novo 1988).282

Random Forest283

Random Forest regression, an ensemble method based on de-284

cision trees, was implemented using Scikit-learn (Pedregosa285

et al. 2011). It uses bootstrap samples to train individual trees,286

with predictions averaged to improve accuracy and reduce287

overfitting. To use RF models it is necessary to adjust the288

model’s hyperparameters to suit the data and problem in ques-289

tion. RandomizedSearchCV was used to randomly search a290

grid of hyperparameters, choosing the optimal hyperparam-291

eters that minimised RMSE. The optimal hyperparameters292

found were: number estimators of 50, min samples in a split of293

2, min samples in a leaf of 1, max features of 1, and max depth294

of 7.295

Extreme Gradient Boosting296

XGBoost (Chen and Guestrin 2016), a gradient boosting297

framework, builds sequential models where each minimises298

the errors of its predecessor, with the model consisting of299

many weak learners (small regression models), and the final300

predictions being the weighted sum of the predictions from301

the weak learners. It has improved control against overfitting302

compared to Random Forest through regularisation. The XG-303

Boost library (version 2.1.2) was used (Chen et al. 2016), with304

hyperparameters tuned using RandomizedSearchCV. The op-305

timal hyperparameters found were: number of trees of 100,306

tree depth of 4, learning rate of 0.03, subsample of 0.7. To307

improve the model interpretability, SHapley Additive exPla-308

nations (SHAP) values were computed for the final XGBoost309

model, allowing insight into feature contributions and reduc-310

ing its "black box" nature.311
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Multi-Layer-Perceptron (MLP)312

MLP is a simple form of feedforward artificial neural network,313

and was implemented using Scikit-learn (Pedregosa et al. 2011).314

Due to the limited number of samples available for training,315

it was configured with one hidden layer. Hyperparameters316

such as the number of neurons in the hidden layer, learning317

rate, and regularisation strength were optimised using Ran-318

domizedSearchCV. The optimal hyperparameters found were:319

solver = ’adam’, initial learning rate = 0.03, hidden layer size =320

10, alpha = 0.01, activation = ’relu’.321

Input Variables322

Input features to the model included the spectral bands, band323

ratios, and spatial coordinates. The coordinates were included324

to account for regional environmental gradients and poten-325

tial spatial autocorrelation. The input vector was as follows:326

[’Blue’, ’Red’, ’Green’, ’NIR Narrow’, ’Blue/Red’, ’Blue/Green’,327

’Red/Green’, ’SWIR 1’, ’Latitude’, ’Longitude’], where Blue328

(0.45-0.51 µm), Red (0.64 – 0.67 µm), Green (0.53-0.59 µm)329

are the visible bands, NIR Narrow (0.85 – 0.88 µm) is the Near-330

Infrared band, and SWIR 1(1.57 – 1.65 µm) is the Shortwave331

Infrared band.332

Model Evaluation333

Model performance was evaluated using Leave One Out Cross334

Validation (LOOCV) (Hastie et al. 2005). In this approach, the335

dataset of size N is split into N iterations, each using N – 1336

samples for training and the remaining one for testing. This337

method ensures each data point is tested once, providing an338

unbiased estimate of model generalisation, and ensuring the339

performance is reflective of the whole dataset. Model per-340

formance was evaluated using the root mean squared error341

(RMSE, Equation 1), the coefficient of determination (R2,342

Equation 2), and the relative percentage bias (Equation 3),343

where SSCi is the true in-situ value of SSC for observation i,344

ˆSSCi is the predicted value of SSC for observation i, SSC is345

the mean value of observed SSC, and n is the total number of346

observations.347

RMSE =

√∑
(SSCi – ˆSSCi)2

n
(1)

R2 = 1 –
∑

(SSCi – ˆSSCi)2∑
(SSCi – SSC)

(2)

Rel. Bias = 100 ×
1
n
∑

( ˆSSCi – SSCi)
SSC)

(3)

Results348

Model Performance349

The results for all three modelling approaches are shown in350

Table 1. The XGBoost method demonstrated the highest351

model performance with R2 = 0.72, RMSE = 17 mg/L, Rel352

Bias = -1.8%. The scatter plot in Figure 2A) shows the results353

from the LOOCV predictions, compared to the in situ samples.354

Overall the model was able to learn the distribution, but there355

was a lot of scatter around the y = x line.356

Table 1. Results from LOOCV of the machine learning models.

Model RMSE [mg/L] R2 Rel. Bias (%)

Random Forest 19 0.65 -0.68

MLP 23 0.47 2.77

XGBoost 17 0.72 -1.8

Feature Importance357

Figure 2B) shows the SHAP summary plot of the XGBoost358

model, indicating the impact of each feature on the SSC output.359

The x-axis shows the SHAP value of each feature, with a value360

>0 indicating that the feature pushed the prediction higher,361

and a value <0 means the feature lowered the predicted SSC.362

The colour of each point indicates whether the feature value363

was high or low. Each point indicates a training point in364

the model. Longitude is shown to have the largest overall365

impact on model predictions, with higher values (the east of the366

country), tending to increase SSC. This suggests that regional367

differences, such as contrasting geology, sedimentology, and368

glacial history, as well as exposure to the predominant westerly369

airflow, strongly influence SSC, and we can see that there is a370

non-linear relationship, as expected (Devoy et al. 2021). The371

red and blue bands both have significant influence on SSC,372

with lower red or blue values tending to decrease SSC. Latitude373

is less important, but we can see that there is an indication374

of north-south differences, with higher latitude tending to375

decrease SSC. The other bands (non-visible NIR Narrow and376

SWIR 1, and band ratios) have less of an impact on SSC, and377

they tend to show complex relationships with SSC, due to the378

relationship being non-linear. We see that a high Blue/Green379

is associated with lower SSC (lower turbidity). A combination380

of short and long wavelengths takes advantage of deeper water381

penetration and sensitivity to high values of SSC (Curran and382

Novo 1988).383

Several monitoring stations had consistently high predic-384

tion error (>20 mg/L), some of these locations are shown in385

Figure 3. The error in the monitoring stations can be ex-386

plained as follows: In A there is wave breaking and diffraction387

around a man made structure, in B there is shallow water388

wave shoaling, in C it is a shallow subtidal area with surface389

reflectance of the bed changing between low and high tide390

(spring tidal range of 1.5m, neap of 0.9m (Hartnett and Nash391

2004)), in D there is an artificial surface above the waterbody,392

in E and F there are tidal inner estuary channels.393

Seasonal and event-based patterns in SSC394

The developed model facilitates investigation of both seasonal395

variations and event-driven anomalies in SSC. Figure 4 illus-396

trates the seasonal distribution of SSC within Wexford Har-397

bour, comparing the winter period (December 2022 to Febru-398

ary 2023) with the summer period (June 2023 to August 2023).399
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B

A

Figure 2. A) The modelled SSC, using the XGBoost model, is shown in blue.
Each point is from a LOOCV iteration. The green line shows a linear regression
between observed and predicted SSC. B) The SHAP analysis of the input
features is shown, with the x-axis showing whether the feature increased or
decreased SSC. The colorbar indicates whether the sample had a high or low
value for that feature.

A B

C D

E F

Figure 3. Six monitoring stations were identified that could not be accurately
predicted using the model.

A B

C D

Figure 4. The seasonal median SSC is shown for Wexford Harbour. A) shows
the SSC from December 2022 to February 2023. B) Shows the SSC from June
2023 to August 2023. The distribution of SSC for A) is shown in C), and the
distribution of B) is shown in D).
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Figure 5 provides additional insight into potential envi-400

ronmental drivers of extreme SSC events. Figure 5A) displays401

the monthly distribution of daily total rainfall and average402

windspeed measured at Johnstown Castle in Wexford over the403

period 2014–2024. Superimposed red lines indicate years in404

which SSC exceeded 140 mg/L, highlighting the temporal405

alignment between extreme SSC values and weather extremes.406

Between 2014 and 2025, eight SSC measurements exceeded407

140 mg/L, spanning five unique dates: 03/10/2019, 19/10/2022,408

08/07/2023, 27/09/2023, and 13/06/2024. These events were409

cross-examined against concurrent meteorological conditions.410

Notably, the SSC peak in June 2024 coincided with anoma-411

lously high daily rainfall for that month, as seen in Figure 5B).412

Similarly, high-rainfall conditions were also observed during413

the SSC peaks in September 2023 and October 2022, Figure414

5C) shows that the SSC events on 27/09/2023 and 03/10/2019415

corresponded to days with unusually high windspeed for those416

months.417

A

B

C

Figure 5. A) The monthly distribution of daily total rainfall measured at
Johnstown Castle in Wexford. The red lines mark the years that had SSC
values over 140 mg/L in that month. B) The monthly distribution of daily
average windspeed measured at Johnstown Castle in Wexford. The red lines
mark the years that had SSC values over 140 mg/L in that month.

Discussion418

The XGBoost model had the highest R2 value and lowest419

RMSE, and was chosen as the best of the machine learning420

models tested for remotely-sensed SSC in coastal Ireland. Fea-421

ture attribution using SHAP (SHapley Additive exPlanations)422

analysis provided additional insights into the model’s behav-423

ior. Among the input features, longitude was more influential424

than latitude, indicating a pronounced east–west spatial gradi-425

ent in the SSC–spectral reflectance relationship. This spatial426

dependency is likely due to differences in coastal geomorphol-427

ogy, hydrodynamics, and sediment characteristics between the428

Irish Sea and Atlantic-facing coasts, and exposure to the pre-429

dominant westerly airflow (Gallagher, Tiron, and Dias 2014),430

(Devoy 2008). SHAP analysis also confirmed that the visible431

bands, particularly blue, green, and red, were among the most432

important spectral features.433

Interpreting trends in SSC434

In Figure 4 a clear seasonal signal is evident, with more mixing435

in the winter months. Although the median SSC for the436

whole estuary is similar (32 mg/L for winter and 31 mg/L for437

summer), the spatial distribution of SSC is different as seen in438

Figure 4 C and D. In summer 70% of the pixels are less than439

30 mg/L, compared to 60% in winter. The maximum SSC in440

winter is 209 mg/L in winter and 179 mg/L in summer. This441

pattern of elevated SSC in a wider spatial area may be attributed442

to increased hydrodynamic activity, including higher river443

discharge and wind-driven resuspension during the winter444

season. Bowers, Boudjelas, and Harker (1998) identified strong445

seasonal variations in suspended sediment in the Irish Sea.446

The model also facilitates the identification and analysis447

of extreme suspended SSC events, as illustrated in Figure 5.448

When examined alongside concurrent meteorological data,449

including daily total rainfall and average windspeed, these450

high-SSC episodes frequently coincide with periods of in-451

tense weather activity. In the Wexford Harbour case study,452

six remote-sensing detected SSC peaks were investigated. Of453

these, three were associated with anomalously high monthly454

rainfall, while four corresponded with elevated wind speeds.455

These observations are consistent with previous findings sug-456

gesting that both runoff and wind-driven resuspension signifi-457

cantly influence episodic increases in SSC (Drewry, Newham,458

and Croke 2009; Kalnejais et al. 2007). Fluvial input, in par-459

ticular, emerges as a likely contributor to such events, while460

windspeed appears to play an additional role in mobilising and461

resuspending sediments, further elevating SSC levels. Fur-462

ther research, with additional data for a greater set of extreme463

events could allow for a better understanding of the drivers of464

SSC and whether it is from runoff or wind-driven resuspen-465

sion. To understand this relationship from a causal standpoint466

we suggest further development of methodology.467

Meteorological records also indicate the occurrence of468

named storms in close temporal proximity to several of the469

identified SSC events. Notably, Storm Agnes occurred on470

27 September 2023, coinciding with one of the highest SSC471

values observed during the study period. Similarly, Storm472
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Lorenzo impacted the region on 4 October 2019, shortly af-473

ter an SSC spike recorded on 3 October 2019 (Met Éireann474

2025). These temporal alignments reinforce the hypothesis475

that extreme weather events can act as significant triggers for476

abrupt increases in coastal SSC (Miller 1999; Suursaar, Jaagus,477

and Tõnisson 2015).478

Collectively, these findings highlight the model’s capabil-479

ity to capture both spatial and temporal variability in SSC. In480

addition to identifying high-SSC zones and seasonal trends, it481

proves effective in detecting episodic events linked to environ-482

mental drivers such as rainfall anomalies, storm activity, and483

wind-induced resuspension.484

Study limitations and next steps485

A key limitation of the model lies in its reduced accuracy at486

higher SSC (>75 mg/L) levels. This issue is evident in Fig-487

ure 2 and is consistent with previous findings on reflectance488

saturation at elevated SSCs (Curran and Novo 1988; Shahzad489

et al. 2018; Markert et al. 2018). Reflectance becomes less sensi-490

tive to additional suspended material beyond certain thresholds,491

particularly due to the optical saturation of visible and near-492

infrared bands (Luo et al. 2018; Bowers, Boudjelas, and Harker493

1998; Doxaran et al. 2002). Moreover, machine learning mod-494

els such as XGBoost and Random Forest are inherently non-495

extrapolative, meaning their predictions are restricted to the496

range observed in the training data (Chen and Guestrin 2016).497

Therefore, caution is needed when interpreting model outputs498

in high-turbidity regimes, and they should not be treated as ab-499

solute estimates outside the validated range. A major contribut-500

ing factor to this limitation is the under-representation of high-501

SSC samples in the training dataset. Expanding the calibration502

dataset to better capture high-turbidity conditions would be503

a logical next step. Targeted field sampling in known high-504

turbidity areas, coordinated with satellite overpasses, could505

enhance the model’s predictive power and ability to model506

extreme sediment conditions.507

Figure 3 highlights several monitoring stations where SSC508

predictions were problematic. These cases emphasise the im-509

portance of quality control in calibration data and the need for510

manual inspection and filtering to ensure representativeness.511

Remote sensing models must also be applied cautiously, par-512

ticularly in tidal areas where water depth fluctuates and may513

push pixels in and out of the valid range for SSC estimation514

(Dethier, Renshaw, and Magilligan 2020; Pahlevan et al. 2017).515

The lack of high-resolution, up-to-date bathymetry data516

for Ireland’s coastal waters presents an additional constraint517

(O’Toole et al. 2022). Without accurate bathymetric infor-518

mation, the reliability of reflectance-based SSC estimates di-519

minishes in shallow or variable-depth regions. Addressing520

this will require improved tidal prediction tools and detailed521

bathymetric surveys to support broader operational use.522

This study also raises broader questions around the com-523

plexity and interpretability of machine learning models in envi-524

ronmental science. While achieving high predictive accuracy525

is important, it must not come at the expense of transparency526

and rigorous validation. This includes using cross-validation,527

multiple performance metrics, and interpretability tools such528

as SHAP values. However, it’s important to note that SHAP,529

while useful, only provides correlational insight. Moreover,530

model performance is constrained by the quality and size of531

the training data, requiring thoughtful choices around regu-532

larisation, architecture, and parameter tuning—especially in533

deep learning models such as neural networks (Zhu, Yang, and534

Ren 2023; Karpatne et al. 2018).535

Although results were visualised using downsampled out-536

puts for clarity, the model retains its full 30m spatial resolution,537

enabling fine-scale environmental monitoring in regions as538

small as 5 km2. This makes the method particularly well-539

suited for event-based studies (e.g., storms or floods), multi-540

year trend assessments, and local-scale management decisions.541

For example, it can help evaluate post-construction sediment542

changes around coastal infrastructure (e.g., breakwaters or543

tidal barrages) by comparing recent SSC patterns to historical544

baselines. It also holds promise for the long-term monitoring545

of sediment-sensitive ecosystems such as estuaries, saltmarshes,546

and wetlands.547

In addition to expanding the dataset and improving bathymetry,548

future research could explore the use of causal inference meth-549

ods to go beyond correlational models and gain a mechanistic550

understanding of the drivers of SSC variability. This could551

yield more actionable insights for environmental planning552

and policy, especially in coastal zones prone to rapid sediment553

changes.554

Conclusions555

In this study, we developed and validated a machine learning556

approach for modelling SSC in coastal areas using remote sens-557

ing data, incorporating geographic information to improve558

predictive accuracy. Our model, based on XGBoost, inte-559

grated visible and infrared spectral bands from Landsat and560

Sentinel satellites with spatially explicit geographic data, and561

was rigorously evaluated using leave-one-out cross-validation.562

The model effectively captured key spatio-temporal pat-563

terns of relative SSC in shallow coastal waters, demonstrating564

strong performance across multiple scales. At the regional565

level, it successfully identified SSC dynamics across thousands566

of kilometres surrounding the island of Ireland. At the local567

scale, its application to multi-temporal imagery of Wexford,568

Ireland, revealed seasonal and event-driven sediment patterns569

that were consistent with known meteorological, hydrody-570

namic, and fluvial processes at that site. Wexford estuary is a571

drowned valley estuary with a barrier, with flood-tidal dom-572

inance. Sediment supply forming the sediment deposits is573

heavily impacted by seasonal tides and flooding, with a large574

internal fetch distance meaning that waves are generated that575

can resuspend SSC and modify the shoreline (Cooper 2006).576

Given the complexity and variability of Ireland’s coastal577

zones, shaped by a range of environmental drivers, our findings578

are encouraging. They indicate that this modelling framework579

can accommodate location-specific dynamics within a unified580

and scalable SSC monitoring approach. While further refine-581

ment is warranted, particularly through more sophisticated582
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integration of geographic information, such as geographic re-583

gression techniques or spatial clustering of regions, our results584

highlight the potential of remote sensing–based SSC monitor-585

ing. Such methods can support local and national agencies in586

tracking sediment dynamics across seasonal to multi-annual587

timeframes and spatial scales ranging from tens of meters to the588

national level. Ultimately, this approach can inform adaptive589

land and coastal management strategies that promote ecologi-590

cal resilience, geomorphological stability, and climate adapta-591

tion in dynamic coastal environments.592
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