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coastal waters . . . . .. .
Coastal environments are highly dynamic, making the monitoring of suspended sediment

concentration (SSC) both challenging and essential. SSC serves as a critical indicator of coastal
processes, storm impacts, water quality, and ecosystem service delivery. However, direct
measurement of SSC is often prohibitively expensive, logistically difficult, and spatially limited,
*Author for correspondence. Email: hindering routine monitoring by public agencies. While remote sensing offers a promising
igoea@tcd.ie alternative by estimating SSC from surface reflectance, it typically requires extensive calibration
and is often constrained by site-specific applicability.

This study presents a machine learning based framework for national-scale SSC estimation
using Landsat-8 and Sentinel-2 satellite imagery, calibrated with 147 in situ SSC samples
collected within one day of satellite overpass. We evaluate several models, including Random
Forest, XGBoost, and deep learning approaches, with XGBoost yielding the best performance
(R? = 0.72, RMSE = 17 mg/L, Bias = -1.8%). Model interpretability was supported using
SHAP values (SHapley Additive exPlanations), which identified visible and infrared spectral
bands, along with geographic features, especially longitude, as key predictors. This reflects the
importance of coastal typology in shaping the SSC-reflectance relationship.

The model’s practical value is demonstrated through a spatio-temporal analysis of SSC in
Wexford Harbour using the modelled SSC from 10 years of satellite data. Seasonal patterns
showed higher estuarine mixing during winter months compared to summer. High SSC
events were associated with elevated daily rainfall and strong winds, indicating responsiveness
to meteorological drivers at a local level.

These findings highlight the potential of integrating remote sensing and machine learning
for scalable, interpretable, and cost-effective SSC monitoring, supporting data-driven research
in dynamic coastal environments.

1 Impact Statement

2 Climate change and land use change are threatening the functioning and quality of coastal
s environments in Ireland as elsewhere across the globe. Suspended sediment concentration
4 in coastal waters acts as an indicator of coastal dynamics, storm impact, water quality,
s and ecosystem service delivery. Its measurement is thus of extreme importance to coastal
s management and land-use planning, and capturing temporal and spatial fluctuations in
7 suspended sediment concentrations is critical for informed environmental management and
s decision-making. Measuring SSC is also notoriously difficult as direct sampling of coastal
s waters is at best costly and at worst impossible, compromising the ability of governments
w and public agencies to monitor SSC. Remote sensing from aircraft or satellites allows
u  us to estimate SSC remotely but this has other challenges, such as cloud cover or the
1 complex way in which many constituents of coastal water (e.g. algae) reflect sunlight and
15 complicate the SSC ‘signal’. We offer a methodology for estimating SSC in the coastal
u  waters of Ireland using machine learning. As there are some direct measurements within
15 Irish coastal areas (from water samples largely collected to meet Ireland’s obligations
16 as part of the EU’s Water Framework Directive’s), we were able to compare measured
1w with remotely estimated SSC using a combination of NASA’s Landsat-8 and Copernicus
s Sentinel-2 satellite imagery. As the relationship between actual and satellite estimated SSC
15 is heavily affected by the type of coast, we see an influence of geographic location on the
» model developed. The resultant machine learning tool has the advantage that it can be
a  continuously improved as more satellite imagery is acquired, with minimal field sampling

C AMB RID GE 2 effort. If adopted by governments and public agencies as a tool to monitor SSC, spatially

UNIVERSITY PRESS = explicit coastal management and planning will improve markedly.
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78
Introduction 79

Suspended sediment concentration is an important parameter
to monitor at the coast. Changes in SSC can reflect coastal s
erosion and affect the formation of coastal landforms, as well =
as impacting how coastal landforms persist and continue to
provide coastal flood protection. Coastal wetland areas are =
particularly sensitive to changes in SSC. Within shallow es- s
tuarine settings allochthonous (externally-derived and tidally s
imported) sediment has been shown to be a critical deter-«
minant of an individual coastal wetland’s ability to accrete s
upwards (French et al. 1995). Once compaction and shallow &
subsidence has been taken into account (see e.g. Allen (2000)), s
such accumulation determines the wetland’s elevation relative o
to sea level rise. Under conditions of low wave energy, sus- o
pended sediment can also deposit on tidal flats and influence o
the time to maturity of salt marshes or mangroves, which pro-
vide many important ecosystem services (Currin, Davis, and s
Malhotra 2017; Lovelock 2008). Thus in addition to requiring s
sufficient accommodation space (for example landwards migra- «
tion), whether intertidal wetlands can persist in the face of a s
rise in sea level is critically determined by suspended sediment o
concentrations (see also Saintilan et al. (2022) and Kirwan
and Megonigal (2013)). Sediment in tidal waters also plays
an important role in impacting water quality and primary ,,
production, both of which are key controls on the shallow

water marine food web (Bilotta and Brazier 2008). Spatial ,,,
patterns and temporal changes in SSC are thus important in
affecting recreational and commercial marine fisheries. 105

Importantly, recent global climatic and regional and local
land use changes have led to changes in many of the controls
on sediment delivery and distribution in shallow coastal seas.
While land use changes such as dam construction, river dredg-,,
ing and flood defences have significantly altered the release of
sediment from river catchments (Syvitski et al. 2005; Heritage ,,,
and Entwistle 2020),there has also been an increasing inten-,,
sity of meteorologically induced storm surges (Debernard,,,,
Sextra, and Reed 2002; Michaels, Knappenberger, and Davis
2005), and changes in the behaviour of sediment (e.g. the
flocculation of clay particles which is dependent on salinity ,,
and flow velocities (Mietta et al. 2009)) in the coastal ocean.,,
The spatial distribution of SSC is thus of particular interest ,,,
in areas that have coastlines vulnerable to flooding or erosion
and dependent on the deposition and configuration of the shal- ,,
low intertidal zone. In Ireland, such areas include Wexford
Harbour. In such locations, better monitoring of SSC can aid N
in planning of adjacent land use and coastal flood risk man-
agement. Current modelling of SSC, however, is often based
on point measurements at specific locations for water quahty
assessment, at long and irregular time-intervals. Knowledge
on the spatio-temporal patterns of SSC is thus limited by the e
spatial distribution of the sampling sites, which does not allow .
for sufficient frequency of observations over larger (> km?)
areas and time periods (> decades).
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Remote sensing of SSC

Remote sensing has become a powerful tool for monitoring
inland and coastal water bodies. Earth observation satellites,
such as those in the Landsat, Sentinel, and MODIS missions,
acquire imagery across a range of spectral bands, from visible to
near-infrared and shortwave infrared, allowing for consistent,
large-scale observations of surface conditions. These sensors
measure top-of-atmosphere radiance, which is processed to
yield surface reflectance: the proportion of incoming solar
radiation reflected by the Earth’s surface back toward the sensor
at different wavelengths(Wang et al. 2020).

In aquatic environments, surface reflectance is influenced
by the optical properties of the water column, which are, in
turn, affected by various constituents, including suspended
sediments, coloured dissolved organic matter (CDOM), phy-
toplankton (quantified via chlorophyll-a), and dissolved sub-
stances (Gholizadeh, Melesse, and Reddi 2016). Suspended sed-
iment concentration (SSC), in particular, plays a dominant role
in modulating water-leaving reflectance, primarily through
the scattering and absorption of light . Because suspended par-
ticles alter the reflectance signature in specific spectral regions
it is possible to relate satellite-derived surface reflectance to
SSC using a range of modelling approaches.

Analytical and semi-analytical methods require detailed
information about the water column, including depth, sed-
iment characteristics (e.g., mass, rock type, and grain size),
and the relative proportions of CDOM and SSC (Wang et
al. 2020). Montanher and Souza Filho (2015) found that differ-
ent spectral bands were needed for modelling SSC depending
on whether the water was dominated by inorganic particles or
a combination of inorganic and phytoplankton. The turbidity
of the water also affects the best spectral bands for modelling
(Gholizadeh, Melesse, and Reddi 2016). These methods neces-
sitate comprehensive local water studies, making the resulting
models highly location-specific. Empirical methods, by con-
trast, rely primarily on SSC samples collected near the time
of satellite image capture. These samples are used to establish
a statistical relationship between surface reflectance and SSC
(Wang et al. 2020). Several challenges arise when using these
methods. Firstly, they often remain location-specific, as the
relationship between reflectance and SSC is influenced by the
particular particulate matter present, as well as water depth.
Secondly, these methods require a substantial number of SSC
samples collected concurrently with satellite overpasses under
cloud-free conditions, particularly for dynamic areas.

Research on coastal SSC modelling has primarily focused
on location-specific empirical models, often achieving good
results in non-turbid waters (< 100 mg/L) using multiple spec-
tral bands. However, in turbid waters, model performance
frequently deteriorates, likely due to reflectance saturation
in visible bands around 100 mg/L and in non-visible bands
between 500 and 1000 mg/L (Luo et al. 2018). As a result, re-
mote sensing based solely on surface reflectance becomes less
effective for detailed SSC modelling in highly turbid waters
(Shahzad et al. 2018).

Given the prevalence of local-specific models, most studies
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either target highly turbid waters, such as rivers, or waters 1
with low turbidity (Marinho et al. 2021). One of the major 1
challenges in applying remote sensing to SSC modelling is 10
obtaining a sufficiently large and representative dataset of in 1
situ SSC samples for calibration. This is particularly critical 12
in coastal regions, which often experience high spatial and 1%
temporal variability in SSC and are vulnerable to processes on 1
instantaneous time-scales, such as localised erosion, that can s
have a high but potentially short-lived impact on sediment in 16
the water column. Identifying and quantifying these changes 157
is essential for effective management and mitigation strategies.ass

199

200

Machine Learning models

201
Traditional approaches for SSC modelling in the literature
often rely on regression models using one or more spectral .
bands (Knaeps et al. 2015). These models have used various
regression forms, including linear, log-linear, and polynomial ”
equations, to relate surface reflectance to SSC. While relatively 0
simple and interpretable, such models are typically limited in **
their ability to capture complex, non-linear relationships and **
often require location-specific calibration. To address these ™’
limitations, more recent studies have explored machine learn-"*
ing (ML) techniques, including Random Forests and gradient **
boosting methods, which offer enhanced predictive capabil-**
ities. For instance, Hu et al. (2023) combined spectral bands
with weather and river flow data to estimate monthly SSC **
using a gradient boosting model in the lower Yellow River in **
China. Machine learning models have become increasingly **
popular in the study of coastal sediment transport (Goldstein,
Coco, and Plant 2019), driven by the growing availability of 25
remote sensing and environmental data. 216
However, ML models also present significant challenges.»
Chief among these is their reliance on large, high-quality 2
training datasets. Without sufficient data, especially labelled 2
SSC samples, models are prone to overfitting and poor gener-2
alisation (Goldstein, Coco, and Plant 2019; Brigato and Iocchi 2
2021). This leads to overconfidence in the model and low per-22
formance outside of the training dataset. Deep learning models,
such as neural networks, are particularly data-intensive and
have seen limited application due to the high cost and logistical 22«
complexity of acquiring adequate in situ samples. 25

211

Interpretability remains a key concern when applying ML 22
in environmental sciences. SHAP (SHapley Additive exPlana-zr
tions) has emerged as a widely used method for interpreting »s
complex models. Rooted in game theory (Shapley et al. 1953),226
SHAP treats each feature as a player in a cooperative game and 2
allocates the model’s output to features based on their marginal 2
contributions. It provides local explanations that show how 2
individual input features influence model predictions. SHAP 23
is especially effective for explaining ensemble models like Ran—zs
dom Forests and XGBoost, which otherwise would be a black 2
box, by looking at the importance of the features across the 2
ensemble, making it more stable for ensemble methods than 2
sensitivity analysis. It has been successfully applied in environ-zs
mental modelling for feature selection, model transparency, s
and diagnostics (Tang et al. 2022; Lundberg and Lee 2017). 2o
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The primary goal of this study was to develop a model
capable of capturing spatio-temporal patterns of SSC to gain
insights into the dynamic nature of SSC in coastal waters,
taking advantage of the spatio-temporal coverage of satellite-
based remotes sensing. Information on such patterns and their
dynamics over time is needed both for furthering our marine
and coastal ecological and geomorphological knowledge base
but also for tailoring land and coastal management practices in
a way that allows adaptation to climatic change and mitigation
of climate change impacts. The advantages of the model’s
ability to accurately detect patterns and changes in SSC, its
sensitivity to variations, thus outweighs the fact that its ability
to exactly predict SSC at any given point in place and time is
necessarily limited.

Materials and methods

Data

Satellite Imagery

This study used imagery from the Harmonized Landsat and
Sentinel-2 (HLS) dataset, developed by NASA to provide con-
sistent surface reflectance products from Landsat-8/9 (OLI)
and Sentinel-2A/B (MS]) satellites (Claverie et al. 2018). By
harmonising bandpass differences, spatial resolution (30m), and
applying bidirectional reflectance distribution function nor-
malisation, the dataset enables high temporal resolution (2-3
days) through combined satellite observations. The satellite im-
ages were obtained and processed using Google Earth Engine
(Gorelick et al. 2017).

Suspended Sediment Concentration data

In-situ SSC samples were obtained from the EPA and Edenlre-
land, covering the period 1992 to 2024, collected as part of
the Water Framework Directives monitoring of Transitional
and Coastal Waters (Environmental Protection Agency 2024).
Only surface and grab samples were included, because the
spectral signal weakens with depth (Curran and Novo 1988).
Each sample was taken at a Monitoring Station, which had a
unique set of co-ordinates.

Combined dataset

In order to use remote sensing imagery as input to a suspended
sediment concentration model, calibration to the study area is
needed. This requires a set of samples matched with satellite
images within a short time period, or overpass. The number
of days between sample measurement and satellite image cap-
ture, and the timing of the sample is particularly important
in coastal areas where there is a high amount of change on a
short scale, where the time scale and degree of such change is
itself time-dependent (e.g. seasonally variable). It is thus to be
expected that the accuracy of any model is improved where
samples are collected as close as possible in time to the time
of satellite overpass. Unfortunately, this is particularly tricky
in areas that receive a lot of clouds and precipitation, such as
coastal regions of Ireland, and can limit the amount of available
data. This study uses a strict overpass of < 1 day, which allows
for a suitable range of SSC to be used for calibration, with
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151 samples available in total. Similar studies such as Yepez xs
et al. (2018), which modelled SSC in the range of 18-203,
mg/L used an overpass of 1 day, while Dethier, Renshaw, and |
Magilligan (2020) tested an overpass of between 0 and 8 days ,,,
and found that 2 days best balanced accuracy with uncertainty
for their study area. The location of each monitoring station
with the number of samples available is shown in Figure 1A,
and histogram of the suspended sediment concentration in the
log scale is shown in Figure 1B. There were 147 in-situ sam-,,,
ples that were matched with satellite images, from 78 unique
monitoring stations, from July 2013 to October 2024. 97 of
the images were from Landsat-8, and 50 were from Sentinel-2., |
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Figure 1. Location and distribution of the sampled SSC. The locations of the

monitoring stations, and the number of samples from each station is shown 30

in A, with the distribution (in the log scale) shown in B. 301
302

303

Methods 0
This study involved data pre-processing, data aggregation, and
comparing modelling methods for prediction and validation of ™
SSC. The code used to produce the results in the paper is pub—
licly available to download on the authors GitHub repository:

https://github.com/igoea20/Remote_Sensing_SSC_Ireland.
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Data pre-processing

Remotely sensed spectral data requires a high-amount of pre-
processing to ensure its accuracy, particularly in areas where
there is a high amount of cloud cover, such as the Irish coast.
Cloud and shadow masking was performed using the Fmask
quality bands, masking cirrus, cloud, cloud shadow, and cloud-
adjacent pixels based on the approach described by Qiu, Zhu,
and He (2019). Known limitations of the S30 cloud detec-
tion are addressed using a time series outlier filtering method
adapted from Chen and Guestrin (2016), which applies a Ham-
pel filter and temporal consistency analysis using the modified
Normalised Difference Water Index (nNDWI), which is a ra-
tio of the green (0.53 - 0.59 pm) and Shortwave Infrared (1.57
- 1.65 pm) bands (Claverie et al. 2018; Vermote, Justice, and
Bréon 2008). Cloud-contaminated or physically implausible
values (e.g., negative reflectance) were removed. Water pixels
were identified using the mNDWI (Xu 2006).

For the in situ samples of SSC, some data points had to be
removed due to their unsuitability to remote sensing. Measure-
ments from water shallower than 1m were excluded to reduce
errors from sediment bed backscattering. Only samples from
depths < 5m were used to ensure that the satellite-derived sig-
nal corresponded to the upper water column, as the penetration
reduces with turbidity (Curran and Novo 1988).

Random Forest

Random Forest regression, an ensemble method based on de-
cision trees, was implemented using Scikit-learn (Pedregosa
et al. 2011). It uses bootstrap samples to train individual trees,
with predictions averaged to improve accuracy and reduce
overfitting. To use RF models it is necessary to adjust the
model’s hyperparameters to suit the data and problem in ques-
tion. RandomizedSearchCV was used to randomly search a
grid of hyperparameters, choosing the optimal hyperparam-
eters that minimised RMSE. The optimal hyperparameters
found were: number estimators of 50, min samples in a split of
2, min samples in a leaf of 1, max features of 1, and max depth
of 7.

Extreme Gradient Boosting

XGBoost (Chen and Guestrin 2016), a gradient boosting
framework, builds sequential models where each minimises
the errors of its predecessor, with the model consisting of
many weak learners (small regression models), and the final
predictions being the weighted sum of the predictions from
the weak learners. It has improved control against overfitting
compared to Random Forest through regularisation. The XG-
Boost library (version 2.1.2) was used (Chen et al. 2016), with
hyperparameters tuned using RandomizedSearchCV. The op-
timal hyperparameters found were: number of trees of 100,
tree depth of 4, learning rate of 0.03, subsample of 0.7. To
improve the model interpretability, SHapley Additive exPla-
nations (SHAP) values were computed for the final XGBoost
model, allowing insight into feature contributions and reduc-
ing its "black box" nature.
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Multi-Layer-Perceptron (MLP) 355
MLP is a simple form of feedforward artificial neural network, s
and was implemented using Scikit-learn (Pedregosa et al. 2011).
Due to the limited number of samples available for training,
it was configured with one hidden layer. Hyperparameters
such as the number of neurons in the hidden layer, learning
rate, and regularisation strength were optimised using Ran-
domizedSearchCV. The optimal hyperparameters found were:
solver = adam’, initial learning rate = 0.03, hidden layer size =
10, alpha = 0.01, activation = ’relu’.

Input Variables

Input features to the model included the spectral bands, band o
ratios, and spatial coordinates. The coordinates were included **
to account for regional environmental gradients and poten-**
tial spatial autocorrelation. The input vector was as follows:**
['Blue’, 'Red’, ’Green’, "NIR Narrow’, ‘Blue/Red’, ‘Blue/Green’,**
"Red/Green’, SWIR 1, Latitude’, "Longitude’], where Blue **
(0.45-0.51 pm), Red (0.64 - 0.67 pm), Green (0.53-0.59 pm)**
are the visible bands, NIR Narrow (0.85 - 0.88 pm) is the Near-***
Infrared band, and SWIR 1(1.57 - 1.65 pm) is the Shortwave **
Infrared band. 36

367

368

Model Evaluation .
Model performance was evaluated using Leave One Out Cross
Validation (LOOCYV) (Hastie et al. 2005). In this approach, the .,
dataset of size N is split into N iterations, each using N -1,
samples for training and the remaining one for testing. This ,,,
method ensures each data point is tested once, providing an ,,,
unbiased estimate of model generalisation, and ensuring the .
performance is reflective of the whole dataset. Model per-,
formance was evaluated using the root mean squared error
(RMSE, Equation 1), the coefhicient of determination (R?
Equation 2), and the relative percentage bias (Equation 3)
where SSC; is the true in-situ value of SSC for observation i,.,,
SSC; is the predicted value of SSC for observation i, SSC is
the mean value of observed SSC, and # is the total number of
observations.

2378

2379

383

384

RMSE _ \/Z(SSC, - S§C1)2 (1) 385

n 386

387

S2(SSC; - 8C)? 0™
S (SSC; - 55C)

390

3 391
SSC) ( )392

393

RZ=1-

1 A~
Rel. Bias = 100 x 422 (95Ci=85C))

Results

Model Performance 394
The results for all three modelling approaches are shown in sss
Table 1. The XGBoost method demonstrated the highest ss
model performance with R2 =0.72, RMSE = 17 mg/L, Rel ssr
Bias = -1.8%. The scatter plot in Figure 2A) shows the results s
from the LOOCV predictions, compared to the in situ samples.sss
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Overall the model was able to learn the distribution, but there
was a lot of scatter around the y = x line.

Table 1. Results from LOOCV of the machine learning models.

Model RMSE [mg/L] | R®> | Rel.Bias (%)
Random Forest 19 0.65 -0.68
MLP 23 0.47 2.77
XGBoost 17 0.72 -1.8

Feature Importance

Figure 2B) shows the SHAP summary plot of the XGBoost
model, indicating the impact of each feature on the SSC output.
The x-axis shows the SHAP value of each feature, with a value
>0 indicating that the feature pushed the prediction higher,
and a value <0 means the feature lowered the predicted SSC.
The colour of each point indicates whether the feature value
was high or low. Each point indicates a training point in
the model. Longitude is shown to have the largest overall
impact on model predictions, with higher values (the east of the
country), tending to increase SSC. This suggests that regional
differences, such as contrasting geology, sedimentology, and
glacial history, as well as exposure to the predominant westerly
airflow, strongly influence SSC, and we can see that there is a
non-linear relationship, as expected (Devoy et al. 2021). The
red and blue bands both have significant influence on SSC,
with lower red or blue values tending to decrease SSC. Latitude
is less important, but we can see that there is an indication
of north-south differences, with higher latitude tending to
decrease SSC. The other bands (non-visible NIR Narrow and
SWIR 1, and band ratios) have less of an impact on SSC, and
they tend to show complex relationships with SSC, due to the
relationship being non-linear. We see that a high Blue/Green
is associated with lower SSC (lower turbidity). A combination
of short and long wavelengths takes advantage of deeper water
penetration and sensitivity to high values of SSC (Curran and
Novo 1988).

Several monitoring stations had consistently high predic-
tion error (>20 mg/L), some of these locations are shown in
Figure 3. The error in the monitoring stations can be ex-
plained as follows: In A there is wave breaking and diffraction
around a man made structure, in B there is shallow water
wave shoaling, in C it is a shallow subtidal area with surface
reflectance of the bed changing between low and high tide
(spring tidal range of 1.5m, neap of 0.9m (Hartnett and Nash
2004)), in D there is an artificial surface above the waterbody,
in E and F there are tidal inner estuary channels.

Seasonal and event-based patterns in SSC

The developed model facilitates investigation of both seasonal
variations and event-driven anomalies in SSC. Figure 4 illus-
trates the seasonal distribution of SSC within Wexford Har-
bour, comparing the winter period (December 2022 to Febru-
ary 2023) with the summer period (June 2023 to August 2023).
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Figure 2. A) The modelled SSC, using the XGBoost model, is shown in blue.
Each pointis from a LOOCV iteration. The green line shows a linear regression
between observed and predicted SSC. B) The SHAP analysis of the input
features is shown, with the x-axis showing whether the feature increased or
decreased SSC. The colorbar indicates whether the sample had a high or low
value for that feature.
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2023 to August 2023. The distribution of SSC for A) is shown in C), and the
distribution of B) is shown in D).
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Figure 5 provides additional insight into potential envi-ss
ronmental drivers of extreme SSC events. Figure 5A) displays ,,,
the monthly distribution of daily total rainfall and average ,,,
windspeed measured at Johnstown Castle in Wexford over the ,,,
period 2014-2024. Superimposed red lines indicate years in ,,,
which SSC exceeded 140 mg/L, highlighting the temporal ,,,
alignment between extreme SSC values and weather extremes.,,,
Between 2014 and 2025, eight SSC measurements exceeded ,,,
140 mg/L, spanning five unique dates: 03/10/2019, 19/10/2022, ,,
08/07/2023, 27/09/2023, and 13/06/2024. These events were
cross-examined against concurrent meteorological conditions.
Notably, the SSC peak in June 2024 coincided with anoma-,,
lously high daily rainfall for that month, as seen in Figure 5B).,,,
Similarly, high-rainfall conditions were also observed during .,
the SSC peaks in September 2023 and October 2022, Figure ,,
5C) shows that the SSC events on 27/09/2023 and 03/10/2019
corresponded to days with unusually high windspeed for those
months.
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Discussion

The XGBoost model had the highest R? value and lowest
RMSE, and was chosen as the best of the machine learning
models tested for remotely-sensed SSC in coastal Ireland. Fea-
ture attribution using SHAP (SHapley Additive exPlanations)
analysis provided additional insights into the model’s behav-
ior. Among the input features, longitude was more influential
than latitude, indicating a pronounced east—west spatial gradi-
ent in the SSC—spectral reflectance relationship. This spatial
dependency is likely due to differences in coastal geomorphol-
ogy, hydrodynamics, and sediment characteristics between the
Irish Sea and Atlantic-facing coasts, and exposure to the pre-
dominant westerly airflow (Gallagher, Tiron, and Dias 2014),
(Devoy 2008). SHAP analysis also confirmed that the visible
bands, particularly blue, green, and red, were among the most
important spectral features.

Interpreting trends in SSC

In Figure 4 a clear seasonal signal is evident, with more mixing
in the winter months. Although the median SSC for the
whole estuary is similar (32 mg/L for winter and 31 mg/L for
summer), the spatial distribution of SSC is different as seen in
Figure 4 C and D. In summer 70% of the pixels are less than
30 mg/L, compared to 60% in winter. The maximum SSC in
winter is 209 mg/L in winter and 179 mg/L in summer. This
pattern of elevated SSC in a wider spatial area may be attributed
to increased hydrodynamic activity, including higher river
discharge and wind-driven resuspension during the winter
season. Bowers, Boudjelas, and Harker (1998) identified strong
seasonal variations in suspended sediment in the Irish Sea.
The model also facilitates the identification and analysis
of extreme suspended SSC events, as illustrated in Figure 5.
When examined alongside concurrent meteorological data,
including daily total rainfall and average windspeed, these
high-SSC episodes frequently coincide with periods of in-
tense weather activity. In the Wexford Harbour case study,
six remote-sensing detected SSC peaks were investigated. Of
these, three were associated with anomalously high monthly
rainfall, while four corresponded with elevated wind speeds.
These observations are consistent with previous findings sug-
gesting that both runoff and wind-driven resuspension signifi-
cantly influence episodic increases in SSC (Drewry, Newham,
and Croke 2009; Kalnejais et al. 2007). Fluvial input, in par-
ticular, emerges as a likely contributor to such events, while
windspeed appears to play an additional role in mobilising and
resuspending sediments, further elevating SSC levels. Fur-
ther research, with additional data for a greater set of extreme
events could allow for a better understanding of the drivers of
SSC and whether it is from runoff or wind-driven resuspen-
sion. To understand this relationship from a causal standpoint
we suggest further development of methodology.
Meteorological records also indicate the occurrence of
named storms in close temporal proximity to several of the
identified SSC events. Notably, Storm Agnes occurred on
27 September 2023, coinciding with one of the highest SSC
values observed during the study period. Similarly, Storm
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Lorenzo impacted the region on 4 October 2019, shortly af-ss
ter an SSC spike recorded on 3 October 2019 (Met Eireann s
2025). These temporal alignments reinforce the hypothesis s
that extreme weather events can act as signiﬁcant triggers for st
abrupt increases in coastal SSC (Miller 1999; Suursaar, Jaagus,ss
and Tdnisson 2015). 533
Collectively, these findings highlight the model’s capabil-ss

ity to capture both spatial and temporal variability in SSC. In s
addition to identifying high-SSC zones and seasonal trends, it sx
proves effective in detecting episodic events linked to environ-s
mental drivers such as rainfall anomalies, storm activity, and s
wind-induced resuspension. 539
540

541

Study limitations and next steps "

A key limitation of the model lies in its reduced accuracy at ,,
higher SSC (>75 mg/L) levels. This issue is evident in Fig-,,
ure 2 and is consistent with previous findings on reflectance ,,
saturation at elevated SSCs (Curran and Novo 1988; Shahzad .,
et al. 2018; Markert et al. 2018). Reflectance becomes less sensi-,,
tive to additional suspended material beyond certain thresholds,
particularly due to the optical saturation of visible and near-,,
infrared bands (Luo et al. 2018; Bowers, Boudjelas, and Harker |
1998; Doxaran et al. 2002). Moreover, machine learning mod-,
els such as XGBoost and Random Forest are inherently non-,
extrapolative, meaning their predictions are restricted to the
range observed in the training data (Chen and Guestrin 2016)
Therefore, caution is needed when interpreting model outputs
in high-turbidity regimes, and they should not be treated as ab-
solute estimates outside the validated range. A major contribut-sss
ing factor to this limitation is the under-representation of high-sss
SSC samples in the training dataset. Expanding the calibration ss
dataset to better capture high-turbidity conditions would be s
a logical next step. Targeted field sampling in known high-ss
turbidity areas, coordinated with satellite overpasses, could s
enhance the model’s predictive power and ability to model s
extreme sediment conditions. 562
Figure 3 highlights several monitoring stations where SSC s
predictions were problematic. These cases emphasise the im-ss
portance of quality control in calibration data and the need for ss
manual inspection and filtering to ensure representativeness.sss
Remote sensing models must also be applied cautiously, par-ss
ticularly in tidal areas where water depth fluctuates and may s
push pixels in and out of the valid range for SSC estimation s
(Dethier, Renshaw, and Magilligan 2020; Pahlevan et al. 2017).s
The lack of high-resolution, up-to-date bathymetry data sn
for Ireland’s coastal waters presents an additional constraint sn
(O’Toole et al. 2022). Without accurate bathymetric infor-s
mation, the reliability of reflectance-based SSC estimates di-sn
minishes in shallow or variable-depth regions. Addressing sis
this will require improved tidal prediction tools and detailed s
bathymetric surveys to support broader operational use. 577

554

This study also raises broader questions around the com-ss
plexity and interpretability of machine learning models in envi-sis
ronmental science. While achieving high predictive accuracy s
is important, it must not come at the expense of transparency ss
and rigorous validation. This includes using cross-validation, ss2
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multiple performance metrics, and interpretability tools such
as SHAP values. However, it’s important to note that SHAP,
while useful, only provides correlational insight. Moreover,
model performance is constrained by the quality and size of
the training data, requiring thoughtful choices around regu-
larisation, architecture, and parameter tuning—especially in
deep learning models such as neural networks (Zhu, Yang, and
Ren 2023; Karpatne et al. 2018).

Although results were visualised using downsampled out-
puts for clarity, the model retains its full 30m spatial resolution,
enabling fine-scale environmental monitoring in regions as
small as 5 km?. This makes the method particularly well-
suited for event-based studies (e.g., storms or floods), multi-
year trend assessments, and local-scale management decisions.
For example, it can help evaluate post-construction sediment
changes around coastal infrastructure (e.g., breakwaters or
tidal barrages) by comparing recent SSC patterns to historical
baselines. It also holds promise for the long-term monitoring
of sediment-sensitive ecosystems such as estuaries, saltmarshes,
and wetlands.

In addition to expanding the dataset and improving bathymetry,

future research could explore the use of causal inference meth-
ods to go beyond correlational models and gain a mechanistic
understanding of the drivers of SSC variability. This could
yield more actionable insights for environmental planning
and policy, especially in coastal zones prone to rapid sediment
changes.

Conclusions

In this study, we developed and validated a machine learning
approach for modelling SSC in coastal areas using remote sens-
ing data, incorporating geographic information to improve
predictive accuracy. Our model, based on XGBoost, inte-
grated visible and infrared spectral bands from Landsat and
Sentinel satellites with spatially explicit geographic data, and
was rigorously evaluated using leave-one-out cross-validation.
The model effectively captured key spatio-temporal pat-
terns of relative SSC in shallow coastal waters, demonstrating
strong performance across multiple scales. At the regional
level, it successfully identified SSC dynamics across thousands
of kilometres surrounding the island of Ireland. At the local
scale, its application to multi-temporal imagery of Wexford,
Ireland, revealed seasonal and event-driven sediment patterns
that were consistent with known meteorological, hydrody-
namic, and fluvial processes at that site. Wexford estuary is a
drowned valley estuary with a barrier, with flood-tidal dom-
inance. Sediment supply forming the sediment deposits is
heavily impacted by seasonal tides and flooding, with a large
internal fetch distance meaning that waves are generated that
can resuspend SSC and modify the shoreline (Cooper 2006).
Given the complexity and variability of Ireland’s coastal
zones, shaped by a range of environmental drivers, our findings
are encouraging. They indicate that this modelling framework
can accommodate location-specific dynamics within a unified
and scalable SSC monitoring approach. While further refine-
ment is warranted, particularly through more sophisticated
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integration of geographic information, such as geographic re-ex
gression techniques or spatial clustering of regions, our results &
highlight the potential of remote sensing—based SSC monitor-g
ing. Such methods can support local and national agencies in &
tracking sediment dynamics across seasonal to multi-annual **
timeframes and spatial scales ranging from tens of meters to the

national level. Ultimately, this approach can inform adaptlve

land and coastal management strategies that promote ecologi—zz
cal resilience, geomorphological stability, and climate adapta—,

tion in dynamic coastal environments. 44
645
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