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Abstract

Let X, B, and Y be the Dirichlet, Bernoulli, and beta-independent random variables such
that X ∼ D(a0, . . . , ad), Pr(B = (0, . . . , 0, 1, 0, . . . , 0)) = ai/a with a = ∑d

i=0 ai ,
and Y ∼ β(1, a). Then, as proved by Sethuraman (1994), X ∼ X(1 − Y ) + BY .
This gives the stationary distribution of a simple Markov chain on a tetrahedron. In
this paper we introduce a new distribution on the tetrahedron called a quasi-Bernoulli
distribution Bk(a0, . . . , ad) with k an integer such that the above result holds when B

follows Bk(a0, . . . , ad) and when Y ∼ β(k, a). We extend it even more generally to the
case where X and B are random probabilities such that X is Dirichlet and B is quasi-
Bernoulli. Finally, the case where the integer k is replaced by a positive number c is
considered when a0 = · · · = ad = 1.

Keywords: Perpetuities; Dirichlet process; Ewens’ distribution; quasi-Bernoulli law;
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1. Introduction

In a recent paper Ambrus et al. [1] make the following observation. If V , Y , and W are
independent random variables such that V ∼ (1/π)( 1

4 − v2)−1/21(−1/2,1/2)(v) dv, Y is uniform
on (0, 1), and Pr(W = 1) = Pr(W = −1) = 1

2 , then

V ∼ V (1 − Y ) + W

2
Y.

The law μ of a random variable V satisfying V ∼ V M + Q, where the pair (M, Q) is
independent of V on the right-hand side, is often called a perpetuity generated by the law ν

of (M, Q). Thus, another way of stating the observation from [1] is that an arcsine random
variable on (− 1

2 , 1
2 ) is a perpetuity generated by the distribution of (M, Q) ∼ (1 − Y, WY/2).

This property of the arcsine law is actually an instance of a much more general result due to
Sethuraman (see [10] or Theorem 1.1 below) on the Dirichlet distribution.

To recall Sethuraman’s result, we will need the following notation. The natural basis of
R

d+1 is denoted by e0, . . . , ed . The convex hull of {e0, . . . , ed} is a tetrahedron that we denote
by Ed+1. The elements of Ed+1 are therefore the vectors λ = (λ0, . . . , λd) of R

d+1 such that
λi ≥ 0 for i = 0, . . . , d and such that λ0 + · · · + λd = 1. If p0, . . . , pd are positive numbers
whose sum is equal to 1, the distribution

∑d
i=0 piδei

of B = (B0, . . . , Bd) ∈ Ed+1 is called a
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Bernoulli distribution. By definition, B satisfies Pr(B = ei) = pi . If a0, . . . , ad are positive
numbers, the Dirichlet distribution D(a0, . . . , ad) of X = (X0, . . . , Xd) ∈ Ed+1 is such that
the law of (X1, . . . , Xd) is

1

B(a0, . . . , ad)
(1 − x1 − · · · − xd)a0−1x

a1−1
1 · · · xad−1

d 1Td
(x1, . . . , xd) dx1 · · · dxd,

where B(a0, . . . , ad) = �(a0) · · · �(ad)/�(a0 + · · · + ad) and Td is the set of (x1, . . . , xd)

such that xi > 0 for all i = 0, 1, . . . , d, with the convention x0 = 1−x1 · · ·−xd . For instance,
if the real random variable X1 follows the beta distribution

β(a1, a0)(dx) = 1

B(a1, a0)
xa1−1(1 − x)a0−11(0,1)(x) dx,

then (1 − X1, X1) ∼ D(a0, a1).

Theorem 1.1. ([11].) Let a0, . . . , ad be positive numbers. Define a = a0 + · · · + ad . Let
X, Y , and B be the Dirichlet, beta, and Bernoulli independent random variables such that
X ∼ D(a0, . . . , ad) and B ∼ ∑d

i=0 aiδei
/a are valued in R

d+1 and such that Y ∼ β(1, a).
Then X ∼ X(1 − Y ) + BY .

Remark. Considering each coordinate, Theorem 1.1 says that, for all i = 0, . . . , d, we have
Xi ∼ Xi(1 − Y ) + BiY . Since 1 = ∑d

i=0 Xi = ∑d
i=0 Bi , the statement for i = 0 is true if it is

verified for i = 1, . . . , d. For instance, for d = 1, Theorem 1.1 can be reformulated as in the
next result.

Corollary 1.1. Let a0, a1 > 0. Let X1, Y , and B1 be three independent random variables
such that X1 ∼ β(a1, a0), Y ∼ β(1, a0 + a1), B1 ∼ a0δ0/(a0 + a1) + a1δ1/(a0 + a1). Then
X1 ∼ X1(1 − Y ) + B1Y .

The initial remark contained in [1] is therefore a particular case of Theorem 1.1 for d = 1
and a0 = a1 = 1

2 . More generally, the case in which d = 1 and a0 = a1 covers the power
semicircle distributions discussed in [2] (with θ = a0 − 3

2 ). In particular, a0 = a1 = 3
2 is the

classical semicircle distribution.
Part of the reason we found Theorem 1.1 interesting is that there are relatively few examples

of exact solutions to perpetuity equations in the literature.
The aim of this paper is to generalize Sethuraman’s result, and our generalization (see The-

orem 4.1 below) will provide more examples of the explicit generation of perpetuities. Stating
Theorem 4.1 needs the introduction of a new distribution Bk(a0, . . . , ad) on the tetrahedron
Ed+1. We call it a quasi-Bernoulli distribution of order k. It is concentrated on the faces of
order less than k in a way that we will make reasonably explicit in Section 3. With these new
distributions, we add a family of laws with interesting properties to the zoo of distributions on
a tetrahedron.

Finally, one can prove Corollary 1.1 directly by showing that E(X1(1 − Y ) + B1Y )n) =
E(Xn

1 ) for all integers n. Our proof of Theorem 4.1 is somewhat linked to this method of
moments. It relies on the properties of the Tc transform of a distribution on the tetrahedron
Ed+1 introduced in [4] (see also [9]). We will prove several convenient properties of the Tc

transform in Theorem 2.1. Theorem 5.1 extends Theorem 4.1 to random probability measures
on an abstract space 	, where the Dirichlet distribution is replaced by the Dirichlet random
measure governed by the positive measure α on 	. Surprisingly, the construction of the quasi-
Bernoulli random measure of Section 5 uses Ewens’ distribution.
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Note that the same perpetuity can be generated by different ν. See Section 6 for a reminder
of the classical link between perpetuities and the stationary distributions of the Markov chains
obtained by iteration on random affine maps.

2. The Tc transform of a distribution on the tetrahedron

In the sequel if f = (f0, . . . , fd) and x = (x0, . . . , xd) are in R
d+1, we write 〈f, x〉 =∑d

i=0 fixi and define Ud+1 = {f = (f0, . . . , fd) ∈ R
d+1; f0 > 0, . . . , fd > 0}. Let X =

(X0, . . . , Xd) be a random variable on Ed+1, and let c > 0. The Tc transform of X is the
following function on Ud+1:

Tc(X)(f ) = E(〈f, X〉−c).

Its existence is clear from Tc(X)(f ) ≤ (mini fi)
−c < ∞. It satisfies

Tc(X)(λf ) = λ−cTc(X)(f ).

The explicit calculation of Tc(X) is easy in some rare cases, including the Dirichlet case
D(a0, . . . , ad) when c = a = a0 +· · ·+ad and the Bernoulli case

∑k
i=0 piδei

. In some sense,
the present paper originated from an effort to compute Tc(X) when X ∼ D(a0, . . . , ad) and
c = a + k, where k is a positive integer. For d = 1, knowing the Tc transform is equivalent to
knowing the function t 
→ E((1 − tX)−c) on (−∞, 1) when X is a random variable valued in
[0, 1] since

Tc((1 − X, X))(1, 1 − t) = E((1 − tX)−c).

The Tc transform is a tool which is in general better adapted to the study of distributions on the
tetrahedron than the Laplace transform E(exp(−〈f, X〉)). The next theorem gathers its main
properties. It shows for instance that Tc(X) characterizes the distribution of X and gives in
(2.4) a crucial probabilistic interpretation to the product Ta(X0)Tb(X1) when X0 and X1 are
independent random variables valued in Ed+1.

Theorem 2.1. 1. If X and Z are random variables on Ed+1 and if there exists c > 0 such that
Tc(X)(f ) = Tc(Z)(f ) for all f ∈ Ud+1, then X ∼ Z.

2. If k is a nonnegative integer and H = −(∂/∂f0 + · · · + ∂/∂fd), then

HkTc(X) = (c)kTc+k(X), (2.1)

where (c)n is the Pochhammer symbol defined by (c)0 = 1 and (c)n+1 = (c)n(c + n).

3. If (a0, . . . , ad) ∈ Ud+1 with a = a0 + · · · + ad and X ∼ D(a0, . . . , ad), then

Ta(X)(f ) = f
−a0
0 · · · f −ad

d . (2.2)

4. Suppose that X0, . . . , Xr, Y are independent random variables such that Xi ∈ Ed+1 for
i = 0, . . . , r and Y = (Y0, . . . , Yr ) ∈ Er+1 has Dirichlet distribution D(b0, . . . , br ). Then,
for b = b0 + · · · + br and Z = X0Y0 + · · · + XrYr , we have, on Ud+1,

Tb(Z)(f ) = Tb0(X0)(f ) · · · Tbd
(Xd)(f ). (2.3)

In particular, if Y ∼ β(b1, b0), we have

Tb0+b1((1 − Y )X0 + YX1) = Tb0(X0)Tb1(X1). (2.4)

5. The probability of the face x0 = · · · = xk = 0 is computable by the Tc transform:

lim
f0→∞ Tc(X)(f0, . . . , f0, 1, 1, . . . , 1) = Pr(X0 = X1 = · · · = Xk = 0).
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Proof. To prove part 1, fix g ∈ R
d+1, set fi = 1 − tgi for small enough t , and develop

t 
→ E(〈f, X〉−c) in a neighborhood of t = 0. Since 〈f, X〉 = 1 − t〈g, X〉, we have

Tc(X)(f ) = E((1 − t〈g, X〉)−c) =
∞∑

n=0

(c)n

n! E(〈g, X〉n)tn.

It follows from the hypothesis Tc(X) = Tc(Z) that E(〈g, X〉n) = E(〈g, Z〉n) for all n. Thus,
〈g, X〉 ∼ 〈g, Z〉 since both are bounded random variables with the same moments. Since this
is true for all g ∈ R

d+1, we have X ∼ Z. Equation (2.1) is easy to obtain by induction on k

using the fact that X0 + · · · + Xd = 1.
We do not give a proof of the classical formula (2.2); see Proposition 2.1 of [4], or [9]

where three different proofs are discussed. Equation (2.3) follows from (2.2) by replacing
X, a0, . . . , ad with Y, b0, . . . , br and f with 〈f, X0〉, . . . , 〈f, Xr 〉. Using conditioning and the
independence of X0, . . . , Xr , we obtain

Tb(Z)(f ) = E

(
E

([ r∑
j=0

Yj 〈f, Xj 〉
]−b ∣∣∣∣ X0, . . . , Xr

))

= E

( r∏
j=0

〈f, Xj 〉−bj

)

=
r∏

j=0

Tbj
(Xj )(f ).

Applying (2.3) to (Y0, Y1) = (1 − Y, Y ) ∼ D(b0, b1), we obtain Z = (1 − Y )X0 + YX1. This
leads to (2.4). Property 5 is obvious since the events X0 +· · ·+Xk = 0 and X0 = X1 = · · · =
Xk = 0 coincide.

Remark. Theorem 2.1 may be used to obtain a proof of Theorem 1.1 that is different to
Sethuraman’s original argument. Since it is related to our proof of Theorem 4.1 below, we
briefly sketch it. Take X0 = X, X1 = B, b1 = 1, and b0 = a in (2.4). Thus,

T1(B)(f ) = 1

a

(
a0

f0
+ · · · + ad

fd

)
.

The trick for computing T1+a(X) is to observe from (2.1) and (2.2) that

T1+a(X)(f ) = −1

a

( d∑
i=0

∂

∂fi

) d∏
i=0

1

f
ai

i

= Ta(X)(f )T1(B)(f ).

From (2.4) we also know that, for Z = (1 − Y )X + YB, we have T1+a(Z) = Ta(X)T1(B).
Thus, T1+a(Z) = T1+a(X). Part 1 of Theorem 2.1 implies that X ∼ Z.

3. The quasi-Bernoulli distributions on a tetrahedron

We begin by slightly extending the definition of a Dirichlet distribution D(a0, . . . , ad) by
allowing ai ≥ 0 instead of ai > 0 while keeping a = ∑d

i=0 ai > 0. For such a (a0, . . . , ad)

sequence, we define the nonempty set T = {i; ai > 0}. We say that D(a0, . . . , ad) is the
Dirichlet distribution concentrated on the tetrahedron ET generated by (ei)i∈T with parameters
(ai)i∈T . If X ∼ D(a0, . . . , ad), the formula E(〈f, X〉−a) = ∏d

i=0 f
−ai

i still holds. If T
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contains only one element i0 then D(a0, . . . , ad) is simply δei0
and does not depend on a. Now

recall a simple combinatorial formula where k is a positive integer and a = a0 + · · · + ad :

∑
(b0,...,bd )∈N

d+1

b0+···+bd=k

d∏
i=0

(ai)bi

bi ! = (a)k

k! . (3.1)

The proof is immediate if we use generating functions: expand
∏d

i=0(1 − t)−ai = (1 − t)−a

in a power series on both sides. We now define our new distributions.
Let a0, . . . , ad > 0 and a = a0 + · · · + ad , and let k be a positive integer. The quasi-

Bernoulli distribution of order k is the distribution on the tetrahedron Ed+1 defined as the
mixing of Dirichlet distributions:

Bk(a0, . . . , ad) = k!
(a)k

∑
(b0,...,bd )∈N

d+1

b0+···+bd=k

d∏
i=0

(ai)bi

bi ! D(b0, . . . , bd). (3.2)

Equation (3.1) shows that (3.2) is indeed a probability on Ed+1. Setting c = k in Theorem 4.2
below gives an explicit form of Bk(a0, . . . , ad) in the particular case a0 = · · · = ad = 1. For
the sake of simplicity in the following, define

σj =
d∑

i=0

ai

f
j
i

. (3.3)

Proposition 3.1. If B ∼ Bk(a0, . . . , ad) then

Tk(B)(f ) = k!
(a)k

∑
(b0,...,bd )∈N

d+1

b0+···+bd=k

d∏
i=0

(ai)bi

bi ! f bi

i

(3.4)

= k!
(a)k

∑
(m1,...,mk)∈N

k

m1+2m2+···+kmk=k

k∏
j=1

σ
mj

j

jmj mj ! . (3.5)

Proof. Equation (3.4) is obvious from the definition of Bk(a0, . . . , ad) and (2.2). To
prove (3.5), denote by k! Bk/(a)k and by k! Ck/(a)k the right-hand sides of (3.4) and (3.5),
respectively. Now ∞∑

k=0

Ckt
k =

∑
m1,m2,...

∏
j≥1

tjmj σ
mj

j

jmj mj !

= exp

(∑
j≥1

tj σj

j

)

= exp

(∑
j≥1

tj

j

d∑
i=0

ai

f
j
i

)

=
d∏

i=0

(
1 − t

fi

)−ai

.

We compute
∑∞

k=0 Bkt
k similarly, leading to Bk = Ck and (3.5).
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The remainder of this section comprises several remarks on Bk(a0, . . . , ad), with Section 4
containing further information. If T ⊂ {0, . . . , d}, denote by FT the relative interior of ET .
This set is sometimes called a face of Ed+1. It is equal to the relative interior of Ed+1 if
T = {0, . . . , d}, and the family of FT s is a partition of Ed+1. Therefore, Bk(a0, . . . , ad) is a
mixing of distributions on the faces FT which have densities hk,T with respect to the uniform
distribution λT on FT . Here λT = D(b0, . . . , bd), where bi = 1 if i ∈ T and bi = 0 otherwise.
Note that if T is reduced to the point i0 then λT = δei0

, while the relative interior of ET is empty.
Observe that if k ≤ d , only faces of dimension less than k are charged by Bk(a0, . . . , ad). To
be more specific, define aT = ∑

i∈T ai and bT = ∑
i∈T bi . When restricted to (ai)i∈T , (3.1)

becomes ∑
(bi )i∈T ∈N

T

bT =k

∏
i∈T

(ai)bi

bi ! = (aT )k

k! .

A probabilistic interpretation of this is

Bk(a0, . . . , ad)

( ⋃
S⊂T

FS

)
= (aT )k

(a)k
.

Since the FS are disjoint, for S ⊂ {0, . . . , d}, the weights wS = Bk(a0, . . . , ad)(FS) satisfy∑
S⊂T wS = (aT )k/(a)k . The principle of inclusion–exclusion therefore implies that wT =

(1/(a)k)
∑

S⊂T (−1)|T \S|(aS)k . Let us introduce the symmetric polynomial

Pk(a0, . . . , ad) =
∑

S⊂{0,...,d}
(−1)d+1−|S|(aS)k.

Its explicit calculation is not easy. With the convention that P0 = 1, we obtain the following
generating function:

∞∑
k=0

Pk(a0, . . . , ad)
tk

k! =
∑

S⊂{0,...,d}
(−1)d+1−|S|

∞∑
k=0

(aS)k
tk

k!
=

∑
S⊂{0,...,d}

(−1)d+1−|S|(1 − t)−ai

=
d∏

i=0

[(1 − t)−ai − 1]

= td+1
d∏

i=0

(1 − t)−ai − 1

t
. (3.6)

In particular, (3.6) shows that Pk(a0, . . . , ad) = 0 if k ≤ d and that

Pd+1(a0, . . . , ad) = (d + 1)! a0 · · · ad.

With this notation we have wT = Pk((ai)i∈T )/(a)k (recall that
∑

T ⊂{0,...,d} wT = 1). Another
representation of the quasi-Bernoulli distribution as a sum of mutually singular measures is

Bk(a0, . . . , ad) =
∑

T ⊂{0,...,d}
wT hk,T λT . (3.7)
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For simplicity, denote hk,T by hk,d in the particular case T = {0, . . . , d}. Of course, it is not
zero only if k ≥ d + 1. The following proposition gives a generating function for the sequence
(Pk(a0, . . . , ad)hk,d(x))k≥d+1 in terms of confluent hypergeometric functions.

Proposition 3.2. For a, b > 0, define

1F 1(a; b; z) =
∞∑

n=0

(a)n

n! (b)n
zn.

Then

∞∑
k=d+1

1

(k − 1)!Pk(a0, . . . , ad)hk,d(x0, . . . , xd)tk−d−1 =
d∏

i=0

1

ai
1F 1(ai + 1; 2; xit).

Proof. Restricting (3.7) to the interior of Ed+1 we obtain, writing ni = bi − 1 and using the
definition of the Dirichlet distribution,

Pk(a0, . . . , ad)hk,d(x)1Ed+1(x) dx

=
∑

bi>0 for all i∑d
i=0 bi=k

( k∏
i=0

(ai)bi

bi !
)

D(b0, . . . , bd)(dx)

= (k − 1)!
∑

ni≥0 for all i∑d
i=0 ni=k−d−1

( d∏
i=0

(ai)ni+1

(ni + 1)! ni !x
ni

i

)
1Ed+1(x) dx.

Multiplying both sides by tk−d−1 and summing over k = d +1, d +2, . . . completes the proof.

4. Perpetuities for quasi-Bernoulli

We now compute the Tk transform of a quasi-Bernoulli distribution Bk(a0, . . . , ad),
deducing from it the desired extension of Theorem 1.1.

Theorem 4.1. Let a0, . . . , ad > 0 with a = a0 + · · · + ad , and let k be a positive integer.
Suppose that X ∼ D(a0, . . . , ad) and B ∼ Bk(a0, . . . , ad). Then

Tk(B)(f ) = Ta+k(X)(f )

Ta(X)(f )
.

In particular, if X, B, and Y ∼ β(k, a) are independent then

X ∼ (1 − Y )X + YB.

Proof. Recall the differential operator H on Ud+1 introduced in Theorem 2.1. Consider the
function F(f ) = ∏d

i=0 f
−ai

i = Ta(X)(f ). The idea of the proof is to compute F−1Hk(F ) in
two ways. A multinomial expansion shows that

Hk = k!
∑

(b0,...,bd )∈N
d+1

b0+···+bd=k

d∏
i=0

(−1)bi

bi !
∂bi

∂f
bi

i

.
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We also observe that ( d∏
i=0

(−1)bi
∂bi

∂f
bi

i

)
F = F

d∑
i=0

(ai)bi

f
ai+bi

i

.

Combining these two formulae with the definition of Bk(a0, . . . , ad) we obtain F−1Hk(F ) =
(a)kTk(B). On the other hand, by applying (2.1) to X ∼ D(a0, . . . , ad) and to c = a, we obtain
F−1Hk(F ) = (a)kTa+k(X). Comparing these two results yields a proof of Ta(X)Tk(B)(f ) =
Ta+k(X). Applying (2.4) completes the proof.

Corollary 4.1. It holds that limk→∞ Bk(a0, . . . , ad) = D(a0, . . . , ad), where the limit
converges in the weak sense.

Proof. If X ∼ D(a0, . . . , ad), Yk ∼ β(k, a), and Bk ∼ Bk(a0, . . . , ad) are independent,
Theorem 4.1 shows that (1 − Yk)X + YkBk ∼ D(a0, . . . , ad). Since Ed+1 is compact,
there exists a subsequence kn → ∞ as n → ∞ and a probability μ on Ed+1 such that
Bkn(a0, . . . , ad) → μ as n → ∞ in the weak sense. Furthermore, the distribution of 1 − Yk

converges to the Dirac mass δ0—a quick way to see this is to consider the Mellin transform for
s > 0:

E((1 − Yk)
s) = �(a + s)

�(a)

�(a + k)

�(a + k + s)
→ 0 as k → ∞.

Therefore, the distribution of (1 − Ykn)X + YknBkn converges weakly to μ. As a consequence,
μ = D(a0, . . . , ad) and does not depend on the particular subsequence (kn). This completes
the proof.

Theorem 4.1 implies that, for all integers k and X ∼ D(a0, . . . , ad), there exists a probability
distribution for B such that Tk(B) = Tk+a(X)/Ta(X). A natural question to ask is whether
this statement can be extended to positive real numbers c. More specifically, does there exist
a distribution Bc(a0, . . . , ad) on Ed+1 for B such that Tc(B) = Tc+a(X)/Ta(X)? We easily
observe that this cannot be true. Taking c to be a positive number, X uniform on (0, 1), and
Y ∼ β(c, 2) with X and Y independent. Then

• if 0 < c < 1, it is impossible to find a distribution for a random variable B independent
of X and Y such that X ∼ (1 − Y )X + YB;

• if c ≥ 1 and B ∼ (δ0 + δ1)/c+ 1 + (c− 1)1(0,1)(b) db/(c+ 1) is independent of (X, Y ),

X ∼ (1 − Y )X + YB.

More generally, we prove the following result.

Theorem 4.2. Let c be a positive number. For a nonempty set T ⊂ {0, . . . , d}, we denote by
λT the uniform probability on the convex set generated by {ei; i ∈ T }. We also introduce the
uniform probability on the union of the faces of Ed+1 of dimension k,


k = (k + 1)! (d − k)!
(d + 1)!

∑
T ⊂{0,...,d}, |T |=k+1

λT ,

and consider the signed measure on Ed+1 defined by

νc,d = d! (d + 1)!
(c + 1)(c + 2) · · · (c + d)

d∑
k=0

(c − 1)(c − 2) · · · (c − k)

k! (k + 1)! (d − k)! 
k.
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Then, for all fi > 0, i = 0, . . . , d,∫
Ed+1

νc,d(dx)

〈f, x〉c = f0 · · · fd

∫
Ed+1


d(dx)

〈f, x〉c+d+1 . (4.1)

In particular, if Y ∼ β(c, d + 1) and X ∼ 
d are independent, then there exists a random
variable B on Ed+1 independent of (Y, X) such that X ∼ (1 − Y )X + YB if and only if either
c is a nonnegative integer or c > d . Under these conditions, B ∼ νc,d .

Remarks. Note that 
d = D(1, . . . , 1). Therefore, Theorem 4.2 says that the quasi-Bernoulli
distribution νc,d = Bc(1, . . . , 1) with continuous parameter c does exist if and only if either c

is an integer or c > d. For d = 2, denote by λij the uniform distribution on the segment ei, ej ,
and by 
2 the uniform distribution of the triangle with vertices e0, e1, e2. Then, for c = 1 or
c ≥ 2,

νc,2 = Bc(1, 1, 1)

= 1

(c + 1)(c + 2)
(2(δe0 + δe1 + δe2) + 2(c − 1)(λ01 + λ02 + λ12)

+ (c − 1)(c − 2)
2).

The proof of Theorem 4.2 is intricate enough for us to think that the existence of Bc(a0, . . . , ad)

for arbitrary positive numbers (a0, . . . , ad) is a delicate problem, even when all the ai are equal.
To illustrate this for d = 1, we have to determine whether there exists a positive probability
μ(db) on [0, 1], depending on a0, a1, and c, such that, for all (f0, f1) = (1, 1 − t), we have

∫ 1

0

μ(db)

(1 − tb)c
= (1 − t)a1

B(a0, a1)

∫ 1

0

xa1−1(1 − x)a0−1

(1 − tx)a0+a1+c
dx.

Application of property 5 of Theorem 2.1 shows that μ(db) necessarily has atoms at 0 and 1.
As shown by Proposition 4.1 below, the mass at 0 is given by the limit

lim
t→−∞

(1 − t)a1

B(a0, a1)

∫ 1

0

xa1−1(1 − x)a0−1

(1 − tx)a0+a1+c
dx = B(a0 + c, a1)

B(a0, a1)
.

A similar result holds for the mass at 1. However, finding the part of μ(db) concentrated on
(0, 1) is challenging. One can postulate that it has a density f which therefore satisfies, in
terms of the Gauss hypergeometric function 2F 1,

∫ 1

0

f (b) db

(1 − tb)c
= (1 − t)a1

2F 1(a0 + a1 + c, a1; a0 + a1, t) − B(a0 + c, a1)

B(a0, a1)

− B(a0, a1 + c)

B(a0, a1)

1

(1 − t)c
.

If a0 and a1 are positive integers, one can show that f is a polynomial of degree a0 + a1 − 2
with a complicated expression.

Proof of Theorem 4.2. Since all probabilities 
0, . . . , 
d are mutually singular, clearly, νc,d

is a positive measure if and only if either c is an integer or c > d. We also observe that

d∑
k=0

1

k! (k + 1)! (d − k)! (c − 1)(c − 2) · · · (c − k) = 1

d! (d + 1)! (c + 1)(c + 2) · · · (c + d).
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(Compute the coefficient of zd+1 on both sides of (1 + z)d(1 + z)c = (1 + z)d+c to see
this.) This proves that the total mass of νc,d is 1. For simplicity, define Fc(f0, . . . , fd) =∫
Ed+1


d(dx)/〈f, x〉c+d+1. This is a symmetric function of the fis. We now show by induction
on d that

Fc(f0, . . . , fd) = d!
(c + 1)(c + 2) · · · (c + d)

d∑
i=0

1

f c+1
i

∏
j 
=i (fj − fi)

. (4.2)

This holds for d = 1 since∫ 1

0

dx1

(f0(1 − x1) + f1x1)c+2 = 1

(c + 1)(f0 − f1)

(
1

f c+1
1

− 1

f c+1
0

)
.

Assuming that (4.2) holds for d−1 we write (recall that Td is the tetrahedron defined in Section 1
and that its Lebesgue measure is 1/d!)

Fc(f0, . . . , fd)

= d!
∫

Td

dx1 · · · dxd

(f0(1 − x1 − · · · − xd) + f1x1 + · · · + fdxd)c+d+1

= d!
∫

Td−1

(∫ 1−x1−···−xd−1

0

dxd

(f0(1 − x1 − · · · − xd) + f1x1 + · · · + fdxd)c+d+1

)

× dx1 · · · dxd−1

= d

(c + d)(f0 − fd)
(Fc(f1, f2, . . . , fd) − Fc(f0, f1 . . . , fd−1)).

The last equality is enough to extend (4.2) from d−1 to d. We now apply (4.2) to the computation
of

∫
Ed+1

λT (dx)/(〈f, x〉)c when |T | = k + 1 by changing (d, c) to (k, c − k − 1):∫
Ed+1

λT (dx)

〈f, x〉c = k!
(c − k)(c − k + 1) · · · (c − 1)

∑
i∈T

1

f c−k
i

∏
j 
=i,j∈T (fj − fi)

.

Using this result, (4.1) can be equivalently written as

∑
∅
=T ⊂{0,...,d}

∑
i∈T

1

f
c+1−|T |
i

∏
j 
=i,j∈T (fj − fi)

= f0 · · · fd

d∑
i=0

1

f c+1
i

∏
j 
=i, j∈T (fj − fi)

.

(4.3)
Interchanging the order of the summations on the left-hand side yields

d∑
i=0

1

f c
i

∑
T �i

∏
j 
=i, j∈T

fi

(fj − fi)
=

d∑
i=0

1

f c
i

∏
j 
=i

fj

(fj − fi)
.

Now we easily prove that, for all i = 0, . . . , d,

∑
T �i

∏
j 
=i, j∈T

fi

(fj − fi)
=

∏
j 
=i

fj

(fj − fi)
. (4.4)

To see this, it is enough to prove the i = 0 case. Letting Xj = f0/(fj − f0), equality (4.4)
for i = 0 becomes

∑
T ⊂{1,...,d}

∏
j∈T Xj = ∏d

j=1(1 + Xj), which is obviously true and
proves (4.1). The remainder of the theorem straightforwardly follows.
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The next proposition concerns the weights of a face and a vertex for Bc(a0, . . . , ad) when
this distribution exists.

Proposition 4.1. If B ∼ Bc(a0, . . . , ad) with a = a0 + · · · + ad and a′ = ak+1 + · · · + ad ,
then

Pr(B0 = · · · = Bk = 0) = �(a)�(a′ + c)

�(a + c)�(a′)
, Pr(B = ei) = �(a)�(ai + c)

�(a + c)�(ai)
.

Proof. By definition, Tc(B) = Ta+c(X)/Ta(X), where X ∼ D(a0, . . . , ad). We use
property 5 of Theorem 2.1 and consider

Tc(B)(f0, . . . , f0, 1, . . . , 1)

= f a−a′
0

B(a0, . . . , ad)

∫
Td

x
a0−1
0 · · · xad−1−1

d−1 (1 − x0 − · · · − xd−1)
ad−1 dx0 . . . dxd−1

((f0 − 1)(x0 + · · · + xk) + 1)a+c

→ EF

B(a0, . . . , ad)
as f0 → ∞, (4.5)

where

E =
∫

(0,∞)k+1

u
a0−1
0 · · · uak−1

k du0 · · · duk

(1 + u0 + · · · + uk)a+c
= B(a0, . . . , ak, a

′ + c) (4.6)

and

F =
∫

Td−k−1

x
ak+1−1
k+1 · · · xad−1−1

d−1 (1 − xk+1 − · · · − xd−1)
ad−1 dx0 · · · dxd−1

= B(ak+1, . . . , ad).

Equality (4.5) is obtained by making the change of variable ui = f0xi for i = 0, . . . , k and
taking the limit when f0 → ∞. The second equality of (4.6) can be easily proved by letting
A = 1 + u0 + · · · + uk in

1

Aa+c
=

∫ ∞

0
e−sAsa+c−1 ds

�(a + c)
.

Letting k = d − 1 so that a′ = ad , we obtain

Pr(B = ed) = Pr(B0 = · · · = Bd−1 = 0) = �(a)�(ad + c)

�(a + c)�(ad)
.

The general case Pr(B = ei) follows by symmetry.

5. Quasi-Bernoulli and Dirichlet processes

Recall that if (	, α) is a measure space such that α(	) = a is finite, the Dirichlet process with
parameter α is a random probability P ∼ D(α) on 	 such that, for any partition (A0, . . . , Ad)

of 	,
(P (A0), . . . , P (Ad)) ∼ D(α(A0), . . . , α(Ad)).

While the term ‘process’ is questionable since no idea of time is involved in this concept, it is
now well ingrained in the literature; the reason is that, when 	 is the interval [0, T ] and α is the
Lebesgue measure, the distribution function P {[0, t]} for 0 ≤ t ≤ T is Y (t)/Y (T ), where Y is
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the standard gamma Lévy process. A striking property of P ∼ D(α) is that it is almost surely
purely atomic: if (Vj )

∞
j=1 are independent and identically distributed (i.i.d.) random variables

on 	 with distribution Q = α/a, there exists random weights (Wj )
∞
j=1 (that is, Wj ≥ 0 and∑∞

j=1 Wj = 1) such that
∑∞

j=1 WjδVj
∼ D(α). Various descriptions of the distribution of

(Wj )j≥1 can be found in the literature, in particular in [6], but the simplest is obtained from
the data of i.i.d. (Yj )j≥1 with distribution β1,a and by taking Wj = Yj

∏j−1
k=1(1 − Yk). A large

number of papers has followed [6]. The survey by Lijoi and Prunster [10] contains a wealth
of information on the Dirichlet process P ∼ D(α) and on the distributions of the functionals∫
	

f (w)P (dw) with numerous references. We also mention the inspiring paper by Diaconis
and Kemperman [5]. Here we describe the analogous random probability P ∼ Bk(α): for any
partition (A0, . . . , Ad) of 	,

(P (A0), . . . , P (Ad)) ∼ Bk(α(A0), . . . , α(Ad)). (5.1)

The object Bk(α) is natural since, for k = 1, the random probability P = δV , where V ∼ α/a,
satisfies (5.1). Not surprisingly, we will see that random probabilities on 	 satisfying (5.1)
are concentrated on at most k points V1, . . . , Vk , where Vi ∼ α/a, although they will not
be independent as they are in the limiting case of the Dirichlet process. Needless to say, the
distribution of the random weights on these atoms will not be simpler than in the limiting case.

Before stating the theorem for general k we sketch the construction of B2(α). We first select
V1 ∼ α/a. Then, with probability 1/(a + 1), we take V2 = V1 and, with probability a/(a + 1),
we choose V2 independently from V1 with distribution α/a. Finally, we take W1 uniform on
(0, 1) and W2 = 1 − W1, and we consider the random probability P = W1δV1 + W2δV2 .

To prove that (5.1) is satisfied for k = 2, let ai = α(Ai) for simplicity; we observe that the
probability of (P (A0), . . . , P (Ad)) equaling ei for i = 0, . . . , d is exactly

Pr(V1, V2 ∈ Ai) = 1

a + 1

ai

a
+ a

a + 1

a2
i

a2 = (ai)2

(a)2
.

For i 
= j , we have

Pr(V1 ∈ Ai, V2 ∈ Aj) = a

a + 1
Pr(V1 ∈ Ai) Pr(V2 ∈ Aj) = aiaj

(a)2
.

As a consequence, the conditional distribution of (P (A0), . . . , P (Ad)), with V1 ∈ Ai and
V2 ∈ Aj , is equal to the law of W1ei + W2ej . These two facts show that (5.1) holds for k = 2.

Theorem 5.1. Let (	, α) be a measure space such that α(	) = a is finite, and let k be a
positive integer. We select the random variables (M, X, W) as follows.

1. M = (M1, . . . , Mk) ∈ N
k are such that M1 + 2M2 + · · · + kMk = k, with the Ewens’

distribution with parameters k and a:

Pr((M1, . . . , Mk) = (m1, . . . , mk)) = C(m)
a

∑k
j=1 mj

(a)k
.

Here

C(m) = C(m1, . . . , mk) = k!∏k
j=1 jmj mj !

.

We define Sj = M1 + · · · + Mj and B(M) = (bt )
Sk

t=1, where bt = j for Sj−1 < t ≤ Sj .

2. Let (Xn)1≤n≤k be a sequence of i.i.d. random variables with law α/a, independent of M .
Let the conditional distribution of X given M be the same as the law of (X1, . . . , XSk

).
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3. Let W = (Wt )
k
t=1 be a random vector such that the conditional law of W given M is

D(B(M)) for (W1, . . . , WSk
) and Wj = 0 for j ∈ {Sk + 1, . . . , k}.

4. When conditioned on M , the random variables X and W are independent.

Then P = ∑Sk

t=1 WtδXt satisfies (5.1).

Remarks. 1. We say that m = (m1, . . . , mk) is the portrait of a permutation π of {1, . . . , k} if
π has mj cycles of order j for j = 1, 2, . . . , k. Therefore, C(m) is the number of permutations
with portrait m. For the history and the properties of Ewens’ distribution, see, e.g. Johnson et
al. [8, Chapter 41]. Note that m = (m1, . . . , mk) can be seen as the coding of a partition of
the integer k. For instance, if k = 13 and the partition is represented by the Ferrers diagram

◦ ◦ ◦ ◦ ◦
◦ ◦
◦ ◦
◦ ◦
◦
◦

corresponding to the partition 1 + 1 + 2 + 2 + 2 + 5 = 13, then m = (2, 3, 0, 0, 1, . . .), where
the dots represent a sequence of eight 0s. In this example,

∑k
i=1 mk , which is the height of the

Ferrers diagram, is equal to 6. The sequence (bt )

∑k
i=1 mk

1 mentioned in part 1 of Theorem 5.1 is
also another coding of the partition and describes the lengths of the rows of the Ferrers diagram
from below. In the above example, (b1, b2, b3, b4, b5, b6) = (1, 1, 2, 2, 2, 5).

2. Let us consider Theorem 5.1 for k = 3. In this case

Pr(M = (3, 0, 0)) = a3

(a)3
, Pr(M = (1, 1, 0)) = 3a2

(a)3
, Pr(M = (0, 0, 1)) = 2a

(a)3
,

B(3, 0, 0) = (1, 1, 1), B(1, 1, 0) = (1, 2), B(0, 0, 1) = (3).

Therefore,

• the conditional law of P given M = (3, 0, 0) is the same as W1δX1 + W2δX2 + W3δX3

with (W1, W2, W3) ∼ D(1, 1, 1);

• the conditional law of P given M = (1, 1, 0) is the same as W1δX1 + W2δX2 with
(W1, W2) ∼ D(1, 2);

• the conditional law of P given M = (0, 0, 1) is δX1 .

3. To illustrate the notation of Theorem 5.1, let us return to the case k = 2. Above, we informally
first took V1 ∼ α/a, then took V2 with a mixed distribution δV1/(a + 1) + aα/(a + 1)a, and
finally took P = W1δV1 + W2δV2 . Under the new notation, M takes two values:

• (M1, M2) = (0, 1) with probability 1/(a + 1)—in this case X1 = V1 = V2, B(0, 1) =
(2), and P = δX1 ;

• (M1, M2) = (2, 0) with probability a/(a+1)—in this case B(2, 0) = (1, 1), the random
probability P has in general two atoms X1 and X2 (at least when α has no atoms), and
(W1, W2) = (W1, 1 − W1) ∼ D(1, 1), that is, W1 is uniform on (0, 1).
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4. If we consider the particular case where 	 = (0, 1) and α is the Lebesgue measure (therefore,
a = 1), the random probabilityP ∼ Bk(α)on (0, 1)will be computed according to Theorem 5.1
as follows. To create M , take a permutation π of {1, . . . , k} with uniform distribution. Consider
M = (M1, . . . , Mk), where M1, . . . , Mk are the numbers of cycles of π of sizes 1, . . . , k,
respectively; the sequence M induces a partition B(M) of the integer k. Take i.i.d. random
variables (Xn)1≤n≤k uniformly distributed on (0, 1) such that they are independent of M (then
X1, . . . , XM1+···+Mk

will be the points of discontinuity of the random distribution function
F(t) = P([0, t])). Finally, take a Dirichlet random variable W = (Wt )

M1+···+Mk

t=1 ∼ D(B(M)),
where Wt is the amplitude of the jump of the random process F in Xt .

5. We observe that the idea of the Tc transform extends well to the context of random
probabilities on 	. If f is a positive measurable function on 	, c > 0, and P is a random
probability on 	, we define

Tc(P )(f ) = E

((∫
	

f (w)P (dw)

)−c)
≤ ∞,

which is finite in particular if there exists m > 0 such that f (w) ≥ m for all w ∈ 	.
If P = X ∼ D(α) is a Dirichlet process such that a = α(	) then (3.1) or [4, p. 35] shows that

Ta(X)(f ) = E

((∫
	

f (w)X(dw)

)−a)
= exp

(
−

∫
	

log f (w)α(dw)

)
.

An interesting application of Proposition 3.1 gives the following when P = B ∼ Bk(α) is
the quasi-Bernoulli process of Theorem 5.1. Defining σj (f ) = ∫

	
α(dw)/f (w)j , we have the

elegant result

Tk(B)(f ) = E

((∫
	

f (w)B(dw)

)−k)
= k!

(a)k

∑
(m1,...,mk)∈N

k

m1+2m2+···+kmk=k

k∏
j=1

σ
mj

j

jmj mj ! .

For instance, for k = 2,

T2(B)(f ) = 1

a(a + 1)

(∫
	

α(dw)

f (w)

)2

+ 1

a(a + 1)

∫
	

α(dw)

f (w)2 .

6. Needless to say, the formula which is the backbone of the paper, namely,

Tk(B)(f ) = Ta+k(X)(f )

Ta(X)(f )
,

still holds for a Dirichlet process X ∼ D(α) and a quasi-Bernoulli process B ∼ Bk(α).
Consequently, X ∼ (1 − Y )X + YB holds when Y ∼ β(k, a) is independent of B.

Proof of Theorem 5.1. To show (5.1), we let ai = α(Ai). We compute first the distribution of
Z = (P (A0), . . . , P (Ad)) by conditioning with respect to M and X. Denote by Ni,j the number
of Xt such that Sj−1 < t ≤ Sj and Xt ∈ Ai . Note that

∑d
i=0 Ni,j = Mj . Conditionally on M ,

the vector Nj = (Ni,j )
d
i=0 of R

d+1 has a multinomial distribution

Pr(Nj = (n0,j , . . . , nd,j )) = Mj !
n0,j ! · · · nd,j !

a
n0,j

0 · · · and,j

d

aMj
,
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where n0,j + · · · + nd,j = Mj . Furthermore, N1, . . . , Nk are conditionally independent
given M . Now we introduce the quantities Bi = ∑k

j=1 jNi,j , which satisfy
∑d

i=0 Bi =∑d
i=0

∑k
j=1 jNi,j = ∑k

j=1 jMj = k. Observe that, conditionally on M and X, we have
Z ∼ D(B0, . . . , Bd). To see this, we use the following definition of Z:

Z =
(∑

t

Wt1{t;Xt∈A0}, . . . ,
∑

t

Wt1{t;Xt∈Ad }
)

=
( k∑

j=1

∑
Sj−1<t≤Sj

Wt1{t;Xt∈A0}, . . . ,
k∑

j=1

∑
Sj−1<t≤Sj

Wt1{t;Xt∈Ad }
)

.

A property of the Dirichlet distribution is that if bi = ∑ki

j=1 aij with aij ≥ 0 and i = 0, . . . , d,

(Xij )0≤i≤d, 1≤j≤ki
∼ D((aij )0≤i≤d, 1≤j≤ki

),

and Yi = ∑ki

j=1 Xij , then (Y0, . . . , Yd) ∼ D(b0, . . . , bd). A quick way to see this is to use (2.2).
We apply this principle to (Xij ) = (Wt ), to ki = k, to at = aij = j when

∑
Sj−1<t≤Sj

, and to
Yi = P(Ai). We obtain

Z ∼ D

( k∑
j=1

jN0,j , . . . ,

k∑
j=1

jNd,j

)
= D(B0, . . . , Bd).

The last step of the proof removes the conditioning on X and M . We have

E

(
1

〈f, Z〉k
)

= E

(
E

(
1

〈f, Z〉k
∣∣∣∣ M, X

))

= E

(
E

(
1

f
B0
0 · · · f Bd

d

∣∣∣∣ M, X

))

= E

(
E

(
1∏k

j=1 f
jN0,j

0 · · · f jNd,j

d

∣∣∣∣ M, X

))

= E

( k∏
j=1

E

(
1

f
jN0,j

0 · · · f jNd,j

d

∣∣∣∣ M, X

))

= E

( k∏
j=1

1

aMj
σ

Mj

j

)

= k!
(a)k

∑
(m1,...,mk)∈N

k

m1+2m2+···+kmk=k

k∏
j=1

σ
mj

j

jmj mj ! ,

where in the last equality we have used the notation σj introduced in (3.3). The second
equality follows from Z ∼ D(B0, . . . , Bd) when conditioned on (M, X) and from (2.2);
the third equality follows from the definition of B0, . . . , Bd ; the fourth equality follows from
the independence of the Nj ; and the last equality follows from the generating function of a
multinomial distribution. Equation (3.5) proves that Z ∼ Bk(a0, . . . , ad).
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6. A Markov chain on the tetrahedron

In this section we give an application of Theorems 1.1 and 4.1; it does not contain new
results and serves as a conclusion. Consider the homogeneous Markov chain (X(n))n≥0 valued
in the convex hull Ed+1 of (e0, . . . , ed) with the following transition process. Given X(n) ∈
Ed+1, randomly choose a point B(n + 1) ∈ Ed+1 such that B(n + 1) ∼ Bk(a0, . . . , ad) and
independently a random number Yn+1 ∼ β(k, a). Now draw the segment (X(n), B(n + 1))

and take the point
X(n + 1) = X(n)(1 − Yn+1) + B(n)Yn+1

on this segment. Theorem 4.1 says that the Dirichlet distribution D(a0, . . . , ad) is a stationary
distribution for the Markov chain (X(n))n≥0. Recall the following principle (see [3, Proposi-
tion 1]).

Theorem 6.1. If E is a metric space and C is the set of continuous maps f : E → E, fix a
probability ν(df ) on C. Let F1, F2, . . . be a sequence of independent random variables on C

with the same distribution ν. Let Wn = Fn ◦ · · · ◦ F2 ◦ F1 and Zn = F1 ◦ · · · ◦ Fn−1 ◦ Fn.
Suppose that Z = limn Zn(x) almost surely exists in E and does not depend on x ∈ E. Then
the following assertions hold.

1. The distribution μ of Z is a stationary distribution of the Markov chain (Wn(x))n≥0 on E.

2. If X and F1 are independent and X
d= F1(X), then X ∼ μ.

Choose E = Ed+1. Apply Theorem 6.1 to the distribution ν of the random map F1 on Ed+1
defined by F1(x) = (1 − Y1)x + Y1B(1), where Y1 ∼ β(k, a) and B(1) ∼ Bk(a0, . . . , ad)

are independent. If the Fn defined by Fn(x) = (1 − Yn)x + YnB(n) are independent with
distribution ν, clearly,

Zn(x) =
( n∏

j=1

(1 − Yj )

)
x +

n∑
k=1

(k−1∏
j=1

(1 − Yj )

)
YkB(k)

converges almost surely to the sum of the converging series

Z =
∞∑

k=1

(k−1∏
j=1

(1 − Yj )

)
YkB(k), (6.1)

and, therefore, the hypotheses of Theorem 6.1 are met. As a consequence, the Dirichlet law
D(a0, . . . , ad) is the unique stationary distribution of the Markov chain (X(n))n≥0 and is the
distribution of Z defined by (6.1). Finally, recall the definition of a perpetuity [7] on an affine
space A. Let ν(df ) be a probability on the space of affine transformations f mapping A into
itself. We say that the probability μ on A is a perpetuity generated by ν if X

d= F(X) when
F ∼ ν and X ∼ μ are independent. If the conditions of Theorem 6.1 are met for ν, there
is exactly one perpetuity generated by ν. Theorems 1.1, 4.1, and 4.2 say that the Dirichlet
distribution is a perpetuity for the random affine map F(x) = (1 − Y )x + YB on the affine
hyperplane A of R

d+1 containing e0, . . . , ed generated by various distributions ν of (1−Y, YB).
Theorem 6.1 shows that a Dirichlet process is also a perpetuity generated by the distribution
of (1 − Y, YB), where the set of probabilities on 	 replaces the tetrahedra with d + 1 vertices
and where Y ∼ β(k, a) is independent of the quasi-Bernoulli process Bk(α).
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