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LINEAR FUNCTIONALS OF FOLIAGE ANGLE DENSITY
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Abstract

Knowledge about the foliage angle density g(a) of the leaves in the canopy of trees is
crucial in foresty mangement, modelling canopy reflectance, and environmental monitor-
ing. It is usually determined from observations of the contact frequency /(/?) by solving a
version of the first kind Fredholm integral equation derived by Reeve (Appendix in
Warren Wilson [22]). However, for inference purposes, the practitioner uses functionals
defined on g(a), such as the leaf area index F, rather than g(a) itself. Miller [12] has
shown that Fcan be computed directly from/(/J) without solving the integral equation.
In this paper, we show that his result is a special case of a general transformation for
linear functionals defined on g(a). The key is the existence of an alternative inversion
formula for the integral equation to that derived by Miller [11].

1. Introduction

The foliage angle density g(a) (i.e. the area per unit volume of foliage inclined at
an angle a to the horizontal) is related to the contact frequency /(/?) (i.e. the
observed percentage of foliage in the canopy as a function of the elevation angle
/?) by the following first kind Fredholm integral equation:

fU3)=r/2K(a,p)g(a)da (0^[}<7r/2) (l)
•'o

with kernel
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where

\p(a, /?) = cos"'(tan)3/tana) (principal value; a 2* /?). (3)

This version of Reeve's equation (Appendix in Warren Wilson [22]) was derived
by Philip [13], page 359. Miller [11] made a detailed study of this equation and
among other results obtained, after imposing suitable regularity conditions on
/(/?), the following inversion formula

g(a) = tana sec' a r ^ c o s W ^ ) +/"(r)) - cos^f'(r)
J" (tan2r - tan2a)1/2

(4)

where/'(T) = df(r)/dr.
The improperly posed nature of (1) and (2) (cf. de Hoog [6] and Smith, Oliver

and Berry [17], Appendix) is a direct consequence of (4) since it involves first,
second and third derivatives of the contact frequency /(/?). In particular, the form
of the foliage angle density g(a) will be acutely sensitive to small perturbations in
the contact frequency /(/J). As a direct consequence, it will be necessary to
introduce some form of "stabilization" into either the direct solution of (1) and
(2) or the evaluation of the inversion formula (4) in order to cope with the
sensitivity which results from the use of observational data

{</,} = {dj\dj =/{fij) + ej, j = l ,2, . . . ,« ,0 < £ , < & < • • • < / ? „ ;

Ej = random error) (5)

to represent /(/?)• In fact, it follows immediately from (4) that the sensitivity
arises from the third differentiation which must be applied to the data {dj}.

Thus, if order of differentiation is taken as the measure of sensitivity (cf.
Wahba [21]), it follows that the present problem will require stronger stabilization
than that required for the solution of Abel integral equations (half differentiation)
and the direct numerical differentiation (first derivative) of the data {dj}.

Stabilization can be introduced in a number of ways. It can be applied directly
to either the numerical solution of (1), (2) and (5) (e.g. regularization (cf. Wahba
[20] and Lukas [10])) or the evaluation of the inversion formula (4) with respect to
the given data {dj) (e.g. stabilized evaluation of inversion formulas (cf. Anders-
sen [3])). It can also be applied indirectly by evaluating linear functionals defined
on the solution g(a) of the following form

Lt(g)=r/2e(a)g(a)da, 0(a) known, (6)
Jo

instead of g(a) itself. (N.B. The function 0 in (6) is not related to the 0 in Miller
[11].) This latter idea has been applied to a number of first kind integral equations
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(cf. Golberg [9] and Anderssen [4]). The aim of the present paper is to explore the
use of this linear functional approach in the study of contact frequency data.

Often, for inference purposes, the practitioner is more interested in functionals
of the form (6) than in g(a) itself (cf. Golberg [9]). Examples of such functionals
which arise in the study of foliage angle density are discussed in Section 2.

A number of computational procedures have been proposed for the leaf area
index functional

g(a)da. (7)

Philip [13] proposed a Fourier series method for determining F based on first
smoothing the data to " recover" / then solving the integral equation for g, and
finally evaluating (7). It is of interest to note that this method can be given a
Wiener filtering interpretation and that in terms of this interpretation a formali-
zation for Philip's approach can be obtained (cf. Anderssen and Bloomfield [2]).
The disadvantage of this approach is that its implementation requires implicitly
that estimates of the first, second and third derivatives of /(/?) be derived from
the smoothed data.

On the basis of the above remarks about the improperly posed nature of (1)
and (2), it is essential to seek procedures for evaluating F which involve the lowest
possible order of differentiation of the data. In fact, Miller [12] observed that, by
exploiting the existence of the inversion formula (4), F can be expressed as a
linear functional of/of the form

= 2
Jn

•7! /2

cospf(p)dfl; (8)
o

and consequently can be computed directly from the data {dj} without differenti-
ation.

This result is a special case of a more general result connected with the linear
functionals (6). Under appropriate regularity conditions on 6(a), the linear
functionals (6) are equivalent to linear functionals M(f) defined on the contact
frequency /(/?). Through the use of generalized functions, a representation of the
form

£/2 (9)
might be used, but this will not be pursued here, except for the Comment of
Section 4. The general solution is given by Golberg [9], while the special situation
for Abel integral equations along with some general results for integral equations
is contained in Anderssen [4].
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This is the appeal of the linear functional approach. The inherent sensitivity in
the definition of g(a) is annihilated or reduced through the construction of a
functional defined exclusively on the data/(/?).

In this paper, we show how this general result can be constructed for the
functional (6). It hinges on the construction in Section 3 of an alternative
inversion formula to that given by (4). The basic transform from (6) to Af(/) is
constructed in Section 4. In Section 5, it is applied to the first three functionals
listed in Section 2. Because the fourth functional in Section 2 does not satisfy the
conditions of the theorem given in Section 4, it is necessary to construct the
transformation for it by different means. This is also done in Section 5.

2. Linear functionals of foliage angle density

Some examples of linear functionals which arise in the study of foliage angle
density are:

1. Leaf area index or foliage density (i.e. the area of foliage per unit volume of
space) (c/. Warren Wilson [23], page 96; Miller [12])

F = f/2
g(a)da, 8(a) = l. (7)

•'o
The term foliage density is used when g(a) is only defined for a specific level in
the canopy (such data are obtained from inclined point quadrats), while the term
leaf area index is used when either the foliage densities are summed for the whole
canopy or g(a) is defined for the whole canopy (such data are obtained when
photographic methods are used).

2. Vertical projector of the leaf area index (c/. Suits [19])

Lsina(g)=r/2sinag(a)da, 0(a) = sina. (10)
•'o

3. Horizontal projector of the leaf area index (c/. Suits [19])

/•IT/2

'0
= f" cos ag(a) da, 0(a) = cos a. (11)

4. The segmented foliage density (c/. Ross [15], Smith and Oliver [16])

LxlaM(g)=f/2x[a,b]g(a)da, 0<a<b<n/2, (12)
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with

1, a(E[a,b],

In forest research, wide use is made of leaf area index and foliage density. For
example, it has been used extensively in the study of the photosynthesis of
canopies and the effects of older leaves {cf. de Wit [7]). The vertical and
horizontal projectors of the leaf area index play a fundamental role in radiative
transfer models of light through a canopy {cf. Suits [19]). The segmented foliage
density is useful when the amount of data is limited and only a rough (qualitative)
picture of the structure of g{a) is required, such as a three step density model of
the type used extensively by Ross [15]. It can also be used to evaluate the leaf
distribution function {cf. Smith and Oliver [16])

More complex functionals are used in the study of directional reflectance and the
penetration of light into canopies {cf. Anderssen, Jackett and Jupp [5]).

3. An alternative inversion formula

It is well known that the Abel integral equation

G(P) = Lx[0^(g) = fg(a) da, 0 < /? < m/2.

s{x) - (" a^ oo, a = constant, (13)

has two inversion formulas {cf. Sneddon [18])

1/" XII(I-) = -j-f S^-dx, s'{x) = ds{x)/dx,
w r ijx2 - r1

and

< \ ! d f r" xs{x) Iu(r) = -ri| , dx\,
<nr dr \)r ^ 2 _ ri j

and that it is via the use of this second inversion formula that the transformation
of linear functionals defined on u{r) to linear functionals defined on s{x) is
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accomplished. It is therefore natural to seek the corresponding alternative to the
inversion formula (4). It is given by

LEMMA. / / / is such that f" exists and is absolutely continuous on [0, IT/2] and
f'QO) = f'(ir/2) = 0, then

« (tan' p — tan' a) ' J

exists for almost all a and is the solution of(\) belonging to Lv

PROOF. Applying integration by parts to the right hand side of (14) yields

r.h.s.(14) = -seca^{jr/2cos3/?(/(/?) + /"(/?))^(tan2/? - tan2a)'/

= sec«£ {/^V2/? - tan2«)l/2^ (cos3/?(/(

and hence

r.h.s. (14) = -tan a sec3 a

X jT/2^(cos3/?(/(/?) +/"(i8)))(tan2
)8 - tan2 «)-'/2 dfi

The result follows since this last expression is simply a more compact form of the
right hand side of (4).

4. Transformation of linear functionals defined on the foliage angle density

We now construct the general transformation for the functionals Le(g) of (6).

THEOREM 1. Let f be such that f" exists and is absolutely continuous on [0, w/2]
andf'(0) = f\ir/2) = 0, and assume that 8 is a given function on [0, n/2] such that
6' exists and is continuous. Then the linear functionals

Le(g)=r28(a)g(a)da (15)
•'o

can be transformed to

Le(g) = e(0)f(ir/2) +/'r/V(i8)sin)3{/()3) +/"(/?)} dp = M(f) (16)
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with

^(p) = (P^-(sec ae{a))(tan2 p - i&n2 a)'V2 da. (17)

PROOF. Substitution of (14) into (15) yields

with

T(O) = r/2sinp(f(p) +/"(0))(tan2i8 - tan2 a)'V2 dp.

Applying integration by parts to (18), we obtain

Lg(g) — -[seca^(o)T(a)]°Zo + / r(a)-j— (secad(a)) da

fir/1 Cn/i d
JQ JQ da

After applying integration by parts twice to the term

r
and using the fact that/'(0) = 0, this last expression becomes

Le(g) =

/*/2cos
•'o

The required result (16) now follows on applying a change in the order of
integration to this last expression.

As an immediate consequence, it follows that, in terms of the order of
differentiation of /(/8) required, (16) is better posed numerically for the evalua-
tion of Le than (15). The order of differentiation which must be applied to/(/J)
can be further reduced if \p(fl) is sufficiently smooth. In fact, we have

COROLLARY 1. Ifip'(fl) exists and is integrable on [0, w/2], then

M(f) = *(0)/(»/2) +jT/2{.K/0sin/J/()3) -/'(jB)^(iKjB)sinjB)} dfi.

(19)

If, further, ^'(fi) is absolutely continuous on [0,7r/2], then

M(f) = {0(0) - *'(*/2)}/(*/2) + *(0)/(0)

^ } (20)
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PROOF. Apply integration by parts to the term

'0

on the right hand side of (16).

COMMENT. There are a number of ways in which the linear functionals (6) can
be interpreted within a broader mathematical framework. Whereas the argument
used here exploits the existence of explicit inversion formulas, the essence of the
argument used by Golberg [9] exploits the inner product representation for
bounded linear functionals in the Hilbert space of L2-functions defined on
(0, w/2); namely

Le(g) = f / 2 0 ( « ) g ( « ) da = (0, g), 9,gE L2(0, w/2),
•'o

where (.,.) denotes the inner product in L2(IT/2).

On the other hand, we know from Miller [11] that the Fredholm integral
equation (1) is defined for all g(a) E L,(0, TT/2) (the Banach space of measurably
and absolutely integrable (in the Lebesgue sense) functions on (0, w/2)). This
space can therefore be taken as the domain of the operator defined by (1). In this
way, the bounded linear functionals Le(g) defined on g can be interpreted as
bounded linear functionals on L,. It is well known that the functions 0 which
define these functionals generate the dual space of L{(0, w/2) which is the space
Loo(0, TT/2). This yields an alternative characterization for the functions 6 and the
functionals they generate.

5. Transformations for some specific linear functionals
of foliage angle density

We now apply the result of Section 4 to transform the leaf area index and
vertical and horizontal projectors of the leaf area index to linear functionals
defined on the contact frequency /(/}).

Initially, we derive the formula for the leaf area index F which was first
obtained by Miller [11].

COROLLARY 2. For 0(a) — 1,

<M/0 = j8 (21)

and the leaf area index F of (7) becomes

F = 2 r/2cos/?/(/?) 48. (8)
•'o
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PROOF. Introducing the change of variable tan fi = s and tan a = t after setting
0(a) = 1,(17) becomes

tdt
•'n'o Jl+t2is2-t2

A further change of variables defined by s2 = w and t2 = v yields an integral
tabulated in Erdelyi et al. [8], 13.1(8), from which it follows that

^(i8) = w 1 / 2
2 F 1 ( l , l /2 ;3 /2 ; -w) .

Using appropriate results about hypergeometric functions (c/. Abramowitz and
Stegun [1], 15.1.1 and 15.1.5), it follows that

The required result (8) now follows on substituting this value for ^(/?) in (20).

COROLLARY 3. For 0(a) = sin a,

*/2 (22)

and the vertical projector of leaf area index (10) becomes

Lsina(g) = »/(0)/2. (23)

PROOF. Introducing the change of variables tan P = s and tan a = t after
setting $(a) = sin a, (17) becomes

The required result (23) now follows on substituting this value for <//(/?) in (20).

COROLLARY 4. For 6(a) = cos a,

= 0 (24)
and the horizontal projector of leaf area index (11) becomes

(25)

For the segmented foliage density (12),

$(a) = x[a,b], 0 < a < fc < TT/2,

which does not satisfy the regularity conditions imposed on 0(a) in Theorem 1.
Nevertheless, the functionals (12) can be transformed. For obvious reasons, it is
only necessary to consider the functionals

0(a)=x[a,ir/2], O^a^w/2.
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By extending the argument Miller [12] used to derive the alternative form (8)
for the leaf area index F, we obtain

THEOREM 2. The segmented foliage density (12) with 6(a) = x[a, v/2], 0 «s a <
TT/2, has the following representation as a linear functional (9) defined on the contact
frequency /(/?)

(26)
where

r{a,P) = arctan((sin2)3 - sin2 a )'/2(cos0 )""'). (27)

PROOF. Substitution of (4) into (12) yields

" tana(cosa)" 3 r (tan2/? - tan2a)~'/2tana(cosa)"3r (tan2/? - tan2a)~
a Ja

X-^{cos'P(f(P)+f"(P))}dPda.

Changing the order of integration, we obtain

^[.../2](g) = -/f l*
/2/(/0^{cos3/*(/(£) +f'W) dfi, (28)

where

I(P) = [Pt<ina(cos a)-\tan2 P - tan1 a)~W2 da
J a

= cos 0 fPsin a(cos a)"3(sin2 p - sin2 a)~X/1 da, (29)
•'a

because

tan2 P — tan2 a = (sin2 P — sin2 a)/cos2 a cos2 p.

The introduction of the change of variable

x2 — sin2 P — sin2 a

into (29) yields

I(p) = cosp(\x2 +cos2 p)~2dx, 2 = (sin2j8-sin2a)1 / 2 .
•'o

This last integral is tabulated in Abramowitz and Stegun [1], equation 3.3.24.
Using this result, /(/?) becomes

I(P) = r(a,p){2cos2 p)~l + {sin2p - sin2a)1/2(2cosj3cos2 a)"1 (30)

with j(a,P) defined as in (27).
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We note that, when a = 0, (30) yields

which agrees with Miller [12].
We next observe that the application of integration by parts to (28) yields

a

since

/(j3)cos3j8 = ±cos0T(a, 0) + icos2j6(sin20 - sin2 a)'/2(cos2 a)"1

vanishes when /} = a and /? = m/2. Standard manipulations yield

8T(O, /0/3/* ~ s m /?(sin2 P ~ s m 2 a)~

and

/'(/?) = {cos0dT(a,P)/dP + sin)8T(a, /?)}/cos3/?. (32)

The required result (26) follows on substituting (32) in (31).

In conclusion, we note that the type of results derived here will also hold for
the other foliage angle integral equations examined by Philip [14].
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