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Abstract. We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry
with an analytical solution from Low and Lou. The potential field source surface (PFSS) model
is served as the initial and boundary conditions where observed data are not available. The
analytical solution can be well recovered if the boundary and initial conditions are properly
handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data,
and find that preprocessing is necessary for NLFFF extrapolations when we use the observed
photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a
solar area where four active regions interacting with each other. An M8.7 flare occurred in one
active region. NLFFF modeling in spherical geometry simultaneously constructs the small and
large scale magnetic field configurations better than the PFSS model does.
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Nonlinear force-free field (NLFFF) extrapolations provide more information for the so-
lar magnetic field, such as free magnetic energy and highly sheared magnetic field lines,
compared to potential magnetic field models. In order to study large scale magnetic
field connections between different active regions, the curvature of the solar surface can-
not be ignored, which asks for magnetic field modeling in spherical geometry. However,
there are only a few NLFFF procedures in spherical geometry, such as the optimiza-
tion method proposed by Wheatland et al. (2000) and implemented by Wiegelmann
(2007) and the magnetohydrodynamics (MHD) relaxation method implemented by van
Ballegooijen (2004) and by Jiang et al. (2012) independenly. Another version of the op-
timization method in spherical geometry has been implemented by J. McTiernan in the
FORTRAN language and released in the Solar Software (SSW). Although Tadesse et al.
(2009) have tested the optimization code in spherical geometry implemented by Wiegel-
mann (2007), it is still necessary to test J. McTiernan’s version of the code before we
apply it to observations.

We adopt an analytical NLFFF solution from Low & Lou (1990) as the benchmark
for testing J. McTiernan’s version of the optimization code. The potential field source
surface (PFSS; Schrijver & DeRosa 2003) model is used as the initial condition. The
computation domain is a wedge-shaped volume that is bounded by six boundaries with
r ∈ [rmin , rmax], θ ∈ [θmin , θmax], and φ ∈ [φmin , φmax]. For boundary conditions in a test
case with the Low and Lou solution, all the six boundaries can be specified. In such a
case, the analytical solution can be well recovered to the numerical accuracy. To simulate
realistic observations, only the bottom boundary condition is specified by the analytical
vector fields. The boundary conditions on the other five surfaces are specified by the PFSS
model. In such a case, the analytical solution cannot be well recovered. This is because
the lateral and top boundary conditions, which are provided by the PFSS model, do
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not match with the NLFFF model. To reduce the boundary effect, we use a weighting
function in a buffer zone with six grid points toward the top and lateral boundaries. The
weighting function decreases from 1 to 0 from inside to outside with a cosine profile. Test
results show that a weighting function improves the NLFFF extrapolation.

Molodensky (1969) and Aly (1989) pointed out that the magnetic force-free and torque-
free conditions must be satisfied for vector magnetic fields on a closed boundary of any
force-free volume. For practical observations, only magnetic fields on the bottom bound-
ary are available, and they are usually not force-free. Therefore, the observed boundary
data should be preprocessed in an isolated region to remove the net magnetic force and
magnetic torque (Wiegelmann et al. 2006). The preprocessing routine in spherical geom-
etry has been developed by Tadesse et al. (2009). We have written another version of
the preprocessing code following Tadesse et al. (2009). In order to test the preprocess-
ing code, we prepare a noisy bottom boundary by adding Gaussian-distributed random
noises to the bottom surface of the Low and Lou solution. Then, two NLFFF extrapo-
lations are conducted with different bottom conditions, one with the preprocessed data
and the other with the noisy data. Comparisons of the two extrapolations show that the
preprocessing procedure improves the extrapolation results.

We apply the NLFFF model in spherical geometry to the vector magnetic fields ob-
served by the Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012) on board the
Solar Dynamic Observatory (SDO). The region of interest includes four active regions,
in one of which an M8.7 class flare occurred. The magnetic field configurations both
before and after the flare are constructed. The extreme ultraviolet (EUV) coronal loops
observed by the Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) on board SDO
show a highly non-potential structure in the flare-productive region before the flare. The
projection of NLFFF field lines matches both the lower filament structure and the higher
EUV coronal loops better than the PFSS model does. After the flare, the two models
have less differences from each other. A more detailed analysis on the aforementioned
studies can be found in Guo et al. (2012).
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