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Abstract. We characterize all algebraic numbers α of degree d ∈ {4, 5, 6, 7}
for which there exist four distinct algebraic conjugates α1, α2, α3, α4 of
α satisfying the relation α1 + α2 = α3 + α4. In particular, we prove that
an algebraic number α of degree 6 satisfies this relation with α1 + α2 /∈ Q
if and only if α is the sum of a quadratic and a cubic algebraic number.
Moreover, we describe all possible Galois groups of the normal closure of
Q(α) for such algebraic numbers α. We also consider similar relations
α1 + α2 + α3 + α4 = 0 and α1 + α2 + α3 = α4 for algebraic numbers of
degree up to 7.

1. Introduction

Let α1 := α, α2, . . . , αd be the algebraic conjugates of an algebraic number
α of degree d over Q. In the present paper we will be interested in algebraic
numbers α of small degree d (namely, d ⩽ 7) whose conjugates satisfy one of
the equations

α1 + α2 + α3 + α4 = 0, α1 + α2 + α3 = α4 or α1 + α2 = α3 + α4. (1)
The main motivation to study (1) stems from the paper of Dubickas and
Jankauskas [5] where they investigated the linear relations α1 = α2 + α3 and
α1 + α2 + α3 = 0 in conjugates of an algebraic number α of degree d ⩽ 8 over
Q. They proved that solutions to those equations exist only in the case d = 6
(except for the trivial solution of the second equation in cubic numbers with
trace zero) and gave explicit formulas for all possible minimal polynomials
of such algebraic numbers. In particular, equation α1 = α2 + α3 is solvable
in roots of an irreducible sextic polynomial if and only if it is an irreducible
polynomial of the form

p(x) = x6 + 2ax4 + a2x2 + b ∈ Q[x].
Similarly, for d in the range 4 ⩽ d ⩽ 8 (the case d = 3 is trivial), equation
α1 + α2 + α3 = 0 is solvable if and only if d = 6 and the minimal polynomial
of α over Q is an irreducible polynomial of the form

p(x) = x6 + 2ax4 + 2bx3 + (a2 − c2t)x2 + 2(ab− cet)x+ b2 − e2t

for some rational numbers a, b, c, e ∈ Q and some square-free integer t ∈ Z.
Let α1, α2, α3 be three distinct algebraic conjugates of an algebraic number

α of degree d ⩽ 8. Recently, Virbalas [16] extended the research of Dubickas
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and Jankauskas [5] by determining all possible linear relations of the form
aα1 + bα2 + cα3 = 0 with non-zero rational numbers a, b, c. He also obtained
a complete list of transitive groups that can occur as Galois groups for the
minimal polynomial of such an algebraic number α. Moreover, Virbalas [15]
proved that for any prime number p ⩾ 5 there does not exist an irreducible
polynomial p(x) ∈ Q[x] of degree 2p with three distinct roots adding up to
zero.

Recently, Dubickas and Virbalas [7] proved that every nontrivial linear rela-
tion between algebraic conjugates has a corresponding multiplicative relation.
They also gave a complete characterization of all possible linear relations be-
tween four distinct algebraic conjugates of degree 4 (see, also, [9]). Moreover,
Serrano Holgado [12] characterized irreducible quartic polynomials (not nec-
essarily over Q) having nontrivial multiplicative relations among their roots.

Recall that a real algebraic integer α > 1 is called a Pisot number if all of
its conjugates αj , other than α itself, satisfy |αj | < 1. Dubickas, Hare, and
Jankauskas in [4] showed that there are no Pisot numbers whose conjugates
satisfy the equation α1 = α2 + α3. They also proved the impossibility of

α1 + α2 = α3 + α4 (2)

in conjugates of a Pisot number of degree d > 4, by showing that there is a
unique Pisot number, namely, α = (1 +

√
3 + 2

√
5)/2 whose conjugates satisfy

(2). This particular number α was first found in [6].
Throughout this paper, the term algebraic number means algebraic number

over the field of rational numbers Q. Similarly, the term irreducible polynomial
means irreducible over Q. Let α1 = α, α2, . . . , αd be the algebraic conjugates
of an algebraic number α of degree d. Then tr(α) := α1 + α2 + · · · + αd is
called the trace (or the absolute trace) of α. In the present paper, we restrict
ourselves to the degrees in the range 4 ⩽ d ⩽ 7. The case d = 8 is more
complicated and will be treated in the future. We will not assume that α is a
Pisot number in the equations (1). For the first two equations in (1) we have
the following result:

Theorem 1. Let α be an algebraic number of degree d, where d ∈ {4, 5, 6, 7}.
(i) Some four distinct algebraic conjugates of α satisfy the relation

α1 + α2 + α3 + α4 = 0

if and only if d = 4 and tr(α) = 0 or d = 6 and the minimal polynomial
of α is an irreducible polynomial of the form

x6 + ax4 + bx2 + c ∈ Q[x].

(ii) No four distinct conjugates of α satisfy the relation

α1 + α2 + α3 = α4.

The following theorem treats algebraic numbers α of degree d ∈ {4, 5, 6, 7}
with some four distinct algebraic conjugates satisfying the relation

α1 + α2 = α3 + α4. (3)
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Note that for any r ∈ Q, replacing α with α − r does not affect the relation
(3). By setting r = tr(α)/d we obtain an algebraic number α− tr(α)/d whose
trace equals zero. Therefore, without the loss of generality, we assume that α
has zero trace.

Theorem 2. Let α be an algebraic number of degree d ∈ {4, 5, 6, 7} and
tr(α) = 0. Denote by p(x) the minimal polynomial of α. Suppose that some
four distinct algebraic conjugates of α satisfy the relation (3). Then either
d = 4 or d = 6. Moreover, the following statements are true.

(i) If d = 4, then p(x) is an irreducible polynomial of the form
p(x) = x4 + ax2 + b

for some rational numbers a, b ∈ Q. Conversely, for any such irre-
ducible polynomial p(x), the four distinct roots of p(x) satisfy the rela-
tion (3).

(ii) Suppose that d = 6 and the sum α1 + α2 in (3) is a rational number.
Then p(x) is an irreducible polynomial of the form

p(x) = x6 + ax4 + bx2 + c

for some rational numbers a, b, c ∈ Q. Conversely, for any such ir-
reducible polynomial p(x), some four distinct roots of p(x) satisfy the
relation (3).

(iii) Suppose that d = 6 and the sum α1 +α2 in (3) is not a rational number
(i.e., α1 + α2 ∈ C \ Q). Then p(x) is an irreducible polynomial of the
form
p(x) = x6 + (2b− 3a)x4 + 2cx3 + (3a2 + b2)x2 + 2c(3a+ b)x

− a3 − 2a2b− ab2 + c2.

for some rational numbers a, b, c ∈ Q. Conversely, for any such ir-
reducible polynomial p(x), some four distinct roots of p(x) satisfy the
relation (3).

The following theorem gives an alternative description of sextic algebraic
numbers α that satisfy the relation (3) with α1 + α2 /∈ Q. We will derive this
result from Proposition 11 (see Section 2).

Theorem 3. Let α be an algebraic number of degree 6. Some four distinct
algebraic conjugates of α satisfy the relation α1 + α2 = α3 + α4 =: β /∈ Q if
and only if α equals the sum of a quadratic and a cubic algebraic number.

Let α be an algebraic number of degree d and let G be the Galois group
of the normal closure of Q(α) over Q. Note that this normal closure is also
the splitting field of the minimal polynomial of α over Q, and therefore G is
the Galois group of this polynomial. The group G is determined (in a unique
way) by its action on S = {α1, α2, . . . , αd}: it corresponds to some transitive
subgroup of the full symmetric group Sd. Next, we will consider possible groups
G, related to the algebraic numbers α in Theorem 1 and Theorem 2.

If d = 4 and the linear relation in Theorem 1 is satisfied, thenG is isomorphic
to one of 5 transitive subgroups of the symmetric group S4, namely, V4 (Klein
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4-group), C4 (a cyclic group of order 4), D4 (a dihedral group of order 8), A4
(the alternating group) or S4 itself. There are no more transitive subgroups of
S4 (see, e.g., [2, Chapter 3] or [11]).

If d = 6 and some four distinct conjugates of α satisfy the relation in (i) of
Theorem 1, then we need to look at the transitive subgroups of S6. Awtrey
and Jakes in [1] investigated the Galois groups of even sextic polynomials
x6 + ax4 + bx2 + c with coefficients from a field of characteristic ̸= 2. In this
particular case, there are 8 possibilities for the Galois group G:

C6, S3, D6, A4, A4 × C2, S
+
4 , S

−
4 , S4 × C2, (4)

where S+
4 and S−

4 are certain transitive subgroups of S6 of order 24. Note
that, in total, there are 16 transitive subgroups of S6 (see, e.g., [2, Chapter
3]). Awtrey and Jakes in [1] also provided one-parameter families of even sextic
polynomials (for values of t ∈ Q that result in irreducible polynomials) with
specified Galois group over Q (see Table 1).

Polynomial p(x) Galois group G of p(x)
x6 + (t2 + 5)x4 + ((t− 1)2 + 5)x2 + 1 C6

x6 + 3t2 S3
x6 + 2t2 D6

x6 − 3t4x2 − t6 A4
x6 − 3t2x2 + t3 A4 × C2
x6 + t2x4 − t6 S+

4
x6 + (31t2)2x2 + (31t2)3 S−

4
x6 + (2t2)2x2 + (2t2)3 S4 × C2

Table 1. One-parameter families of even sextic polynomials
p(x) with corresponding Galois groups G.

If d = 4 and the linear relation in (3) is satisfied, then G is one of 3 transitive
subgroups of the symmetric group S4: V4, C4 orD4. This result is due to Kappe
and Warren (see Theorem 3 in [8]). Again, Awtrey and Jakes in [1] provided
one-parameter families of even quartic polynomials (except for values of t ∈ Q
that result in reducible polynomials) with specified Galois group over Q (see
Table 2).

Polynomial p(x) Galois group G of p(x)
x4 + (2t+ 1)2 V4
x4 + 4tx2 + 2t2 C4
x4 + t2 + 1, t ̸= 0 D4

Table 2. One-parameter families of even quartic polynomials
p(x) with corresponding Galois groups G.

If d = 6 and some four distinct conjugates of α satisfy α1+α2 = α3+α4 ∈ Q,
then the Galois group is, again, one of the already mentioned 8 transitive
subgroups in (4).
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The most interesting case is the following:

Theorem 4. Let α be an algebraic number of degree 6 and tr(α) = 0. Suppose
that some four distinct algebraic conjugates of α satisfy the relation

α1 + α2 = α3 + α4 =: β ̸∈ Q.

Then the Galois group of the normal closure of Q(α) over Q is isomorphic to
one of three groups: the dihedral group D6 of order 12, the symmetric group
S3 or the cyclic group C6.

Theorem 4 follows from Proposition 11, which gives more details on the
possible Galois group of the normal closure of Q(α). Moreover, all three groups
in Theorem 4 arise as Galois groups in this setting, i.e., for any group G ∈
{D6, S3, C6} there exists an algebraic number α of degree 6 satisfying α1+α2 =
α3 + α4 ̸∈ Q such that the Galois group of the normal closure of Q(α) over Q
is isomorphic to G. Corresponding examples are provided in Table 3.

Polynomial p(x) (a, b, c) Galois group G of p(x)
x6 − 6x4 + 4x3 + 12x2 + 24x− 4 (2, 0, 2) D6
x6 − 3x4 + 2x3 + 12x2 − 12x+ 17 (−1,−3, 1) C6
x6 − 3x4 + 8x3 + 12x2 − 48x+ 32 (−1,−3, 4) S3

Table 3. Minimal polynomials p(x) from part (iii) of Theo-
rem 2 with the corresponding Galois groups G.

The converse of Theorem 4 is false, i.e., for any group G ∈ {D6, S3, C6}
there exists an algebraic number α of degree 6 such that the Galois group of
the normal closure of Q(α) over Q is isomorphic to G and no four distinct
algebraic conjugates of α satisfy the relation α1 + α2 = α3 + α4. Indeed,
it suffices to take an irreducible polynomial of degree 6, having the specified
Galois group, which is not of the form given in (iii) of Theorem 2. Such
examples are provided in Table 4.

Polynomial p(x) Galois group G of p(x)
x6 + 2x3 + 2 D6
x6 + x3 + 1 C6

x6 + 54x3 + 1029 S3

Table 4. Polynomials p(x) that are not of the form given in
(iii) of Theorem 2 with the corresponding Galois groups G.

The paper is organized as follows. Some auxiliary results are stated in
Section 2. The proofs of the main results are given in Section 3. We first
prove Proposition 10 and 11. Theorem 4 directly follows from Proposition 11.
Then we use Proposition 11 to prove Theorem 3, which then is used to prove
Theorem 2.
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2. Auxiliary results

The following result is due to Kurbatov [10]. We will use it to eliminate
impossible relations among algebraic conjugates.

Lemma 5. The equality
k1α1 + k2α2 + · · · + kdαd = 0

with conjugates α1, α2, . . . , αd of an algebraic number α of prime degree d over
Q and k1, k2, . . . , kd ∈ Z can only hold if k1 = k2 = · · · = kd.

Smyth’s result from [13] is useful for similar purposes.

Lemma 6. If α1, α2, α3 are three conjugates of an algebraic number satisfying
α1 ̸= α2 then 2α1 ̸= α2 + α3.

The following result is a generalization of Lemma 6 proved by Dubickas [3].

Lemma 7. If β1, β2, . . . , βn, where n ⩾ 3, are distinct algebraic numbers con-
jugate over a field of characteristic zero K and k1, k2, . . . , kn are non-zero
rational numbers satisfying |k1| ⩾ |k2| + · · · + |kn| then

k1β1 + k2β2 + · · · + knβn /∈ K.

Dubickas and Jankauskas in their paper [5] proved the following result.

Lemma 8. The equality
k1α1 + k2α2 + · · · + kdαd = 0

with conjugates α1, α2, . . . , αd of an algebraic number α of degree d over Q and
k1, k2, . . . , kd ∈ Z satisfying

∑d
i=1 ki ̸= 0 can only hold if tr(α) := α1 + α2 +

· · · + αd = 0.

The following result is a partial case of Theorem 1.3 in [17].

Lemma 9. Suppose that α and β are algebraic numbers over Q of degree m
and n, respectively. If m and n are coprime integers, then α+β is a primitive
element of the compositum Q(α, β), i.e., Q(α, β) = Q(α+ β).

To prove Proposition 11 and Theorem 2 we will need the following result.

Proposition 10. Let α be an algebraic number of degree d = 6 and tr(α) = 0.
Suppose that some four distinct conjugates of α satisfy the relation

α1 + α2 = α3 + α4.

Then either α1 + α2 = 0 or α1 + α2 is an algebraic number of degree 3 and
tr(α1 + α2) = 0.

Denote π := (1 2 5 4 3 6), σ = π4 = (1 3 5)(2 6 4) and τ = (1 2)(3 4)(5 6),
permutations of the symmetric group S6. Theorem 4 is a corollary of the
following proposition, which will also be used in the proof of Theorem 3.

Proposition 11. Let α be an algebraic number of degree 6 and tr(α) = 0.
Suppose that some four distinct algebraic conjugates of α satisfy the relation

α1 + α2 = α3 + α4 =: β ̸∈ Q.
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Then β is a cubic algebraic number and it is possible to label the algebraic
conjugates α1, α2, . . . , α6 of α in such a way that these satisfy the relations

β1 = α1 + α2 = α3 + α4,

β2 = α2 + α5 = α3 + α6,

β3 = α1 + α6 = α4 + α5,

(5)

where β1 = β, β2, β3 are the algebraic conjugates of β. Let G be the Galois
group of the normal closure of Q(α) over Q. Consider G as a subgroup of S6,
acting on the indices of the conjugates α1, α2, . . . , α6 of α. Then, given the
relations (5), there are exactly three possible cases:

(1) G = ⟨τ, π | τ2 = π6 = id, τπτ = π5⟩ ∼= D6;
(2) G = ⟨π | π6 = id⟩ ∼= C6;
(3) G = {id, σ, σ2, τ, τσ, τσ2} ∼= S3.

3. Proofs

Proof of Theorem 1. (i) Suppose that some four distinct algebraic conjugates
of an algebraic number α of degree d ∈ {4, 5, 6, 7} satisfy the relation α1 +α2 +
α3 + α4 = 0. The case d = 4 is trivial in view of tr(α) = α1 + α2 + α3 + α4.
By Lemma 5, d cannot be 5 or 7. Let d = 6. Lemma 8 implies that tr(α) = 0.
Then α5 + α6 = tr(α) − (α1 + α2 + α3 + α4) = 0. Hence, α6 = −α5. Let p(x)
be the minimal polynomial of α over Q. We have that p(α6) = p(−α5) = 0.
Hence, α5 is a root of p(−x). Thus p(x) divides the polynomial p(−x). Since
both polynomials p(x) and p(−x) are of the same degree and and their constant
terms coincide, we have that p(−x) = p(x). So p(x) is of the form

x6 + ax4 + bx2 + c ∈ Q[x].
The converse is clear, since the roots α1, α2, . . . , α6 of such polynomial satisfy

α1 = −α2, α3 = −α4, α5 = −α6.

Thus, α1 + α2 + α3 + α4 = 0.
(ii) Suppose that some four distinct algebraic conjugates of an algebraic

number α of degree d ∈ {4, 5, 6, 7} satisfy the relation α1 + α2 + α3 = α4.
If d = 4, then, by Lemma 8, tr(α) = α1 + α2 + α3 + α4 = 0 and we obtain
α4 + α4 = (α1 + α2 + α3) + α4 = 0. A contradiction. By Lemma 5, d cannot
be 5 or 7. Hence, d = 6. By Lemma 8, tr(α) = α1 + · · · + α6 = 0. Since
α1 + α2 + α3 = α4, we have that

0 = α1 + · · · + α6 = 2α4 + α5 + α6,

which is impossible in view of Lemma 7. □

Proof of Proposition 10. Let α be an algebraic number of degree d = 6 such
that tr(α) = 0 and some four distinct conjugates of α satisfy the relation

α1 + α2 = α3 + α4 =: β.
Let

S := {α1, α2, α3, α4, α5, α6}
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be the full set of algebraic conjugates of α. Then, in view of tr(α) = 0, we
have

α1 + α2 = α3 + α4 = β, α5 + α6 = −2β.
Let G be the Galois group of the normal closure of Q(α1) over Q. The group

G is determined (in a unique way) by its action on S: it corresponds to some
transitive subgroup of the full symmetric group S6. First consider the trivial
case:

α1 + α2 = α3 + α4 = a, α5 + α6 = −2a,
where a ∈ Q. Select an automorphism ϕ ∈ G that maps α1 to α5. Setting
ϕ(α2) = αk, we obtain α5 +αk = a. We claim that k = 6. Indeed, if 1 ⩽ k ⩽ 2,
then α1 +α2 = a together with α5 +αk = a imply α5 = α1 or α5 = α2, which is
impossible. Similarly, if 3 ⩽ k ⩽ 4, then α3 +α4 = a together with α5 +αk = a
imply α5 = α3 or α5 = α4, and we get another contradiction. Clearly, k ̸= 5,
so the only option is α5 + α6 = a. But we already know that α5 + α6 = −2a.
Thus a = −2a, meaning that a = 0.

Now assume that

α1 + α2 = α3 + α4 = β, α5 + α6 = −2β,

where β /∈ Q. We will prove that β1 := β is a cubic algebraic number.
Let us write all possible distinct expressions of β1 in terms of αi +αj (sum of

two distinct α conjugates). Assume that there are exactly l distinct expressions
(two expressions αi + αj and αu + αv are distinct if {i, j} ≠ {u, v}):

β1 = α1 + α2 = α3 + α4 = αu + αv = . . . .

Notice that l ⩾ 2, since the equality α1 + α2 = α3 + α4 provides at least two
distinct expressions of β1. We will show that l = 2. Indeed, assume that l ⩾ 3.
Then we have at least three distinct expressions of β1 as a sum of two distinct
conjugates of α:

β1 = α1 + α2 = α3 + α4 = αu + αv. (6)
Then {u, v} = {5, 6}. Indeed, if u ∈ {1, 2, 3, 4}, then (6) implies that αv

coincides with one of the conjugates α1, α2, α3, α4, which is impossible, since
all three expressions in (6) are distinct. Similarly, v ∈ {1, 2, 3, 4} also leads to
a contradiction. Hence, {u, v} = {5, 6}. So (6) becomes

β1 = α1 + α2 = α3 + α4 = α5 + α6.

Adding all these expressions of β1, we obtain

3β1 = α1 + α2 + α3 + α4 + α5 + α6 = 0,

which is impossible in view of β1 /∈ Q.
Now we have that l = 2 and

β1 = α1 + α2 = α3 + α4. (7)

Next, we will obtain an upper bound for deg(β1). Note that by acting on (7)
with an appropriate automorphism from G we can obtain expressions of the
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form (7) for every algebraic conjugate of β1:
β1 = α1 + α2 = α3 + α4,

β2 = αi21 + αi22 = αi23 + αi24 ,

= · · · · · ·
βt = αit1 + αit2 = αit3 + αit4 .

(8)

Here t is the degree of β1 and β1, β2, . . . , βt are the algebraic conjugates of β1.
We have precisely 2 · t distinct expressions of the form αi + αj in (8), since
there are exactly t algebraic conjugates of β1 and every such conjugate has
exactly two expressions. On the other hand, since deg(α) = 6, we have at
most

(6
2
)

= 15 possible pairs of indices for distinct expressions αi +αj . Hence,
2t ⩽ 15 and t = deg(β1) ⩽ 7.

Next, we will show that, in fact, deg(β1) is divisible by 3. Indeed, in (8)
there are 2t distinct expressions of conjugates of β1 as sums αi +αj . Each such
sum contains two conjugates of α. Hence there are exactly 2 · 2t appearances
of conjugates of α in (8). On the other hand, since G is transitive on the set
of algebraic conjugates of α, each αi must appear the same number of times in
(8). Suppose that every αi appears exactly k times in (8). So we have exactly
k · deg(α) = 6k appearances of conjugates of α in (8). Hence, 4t = 6k, and
therefore t is divisible by 3. Recall that t = deg(β1) ⩽ 7. So deg(β1) = 3 or 6.

Finally, we will show that deg(β1) ̸= 6. Indeed, assume that deg(β1) = 6.
Since each conjugate of β1 has exactly 2 distinct expressions of the form αi+αj ,
we obtain 6 ·2 = 12 distinct expressions. Recall that there are at most

(6
2
)

= 15
possible pairs of indices for distinct expressions αi + αj and also

−2β1 = −(α1 + α2) − (α3 + α4) = α5 + α6.

By applying all automorphisms from G to −2β1 = α5 + α6, we get at least
deg(β1) = 6 expressions of the form αi + αj for algebraic conjugates of −2β1.
These expressions must be distinct from each other and from the 12 expressions
that we already have. Note that there is no pair of indices (i, j) such that
βi = −2βj . Indeed, let q(x) be the minimal polynomial of the β1, β2, . . . , βt

and assume that βi = −2βj . In such a case, q(x) and (−2)tq(−x
2 ) would be

the same polynomial. This implies that either t = 0 or q(x) = xt, which are
both impossible. But in that case, there would be

12 + 6 = 18
distinct expressions αi+αj . A contradiction, since there are at most 15 distinct
such expressions. Hence, deg(β1) ̸= 6, and the only possibility is deg(β1) =
3. □

Proof of Proposition 11. Let α be an algebraic number of degree d = 6 and
tr(α) = 0. Assume that some four distinct algebraic conjugates of α satisfy
the relation

α1 + α2 = α3 + α4 =: β ̸∈ Q. (9)
Then, by Proposition 10, β is a cubic algebraic number and tr(β) = 0. Let
β1 = β, β2, β3 be the algebraic conjugates of β. Let G be the Galois group of
the normal closure of Q(α) over Q. Consider G as a subgroup of S6, acting on
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the indices of the conjugates α1, α2, . . . , α6 of α. Take two automorphisms of
G such that one maps β1 to β2 and another maps β1 to β3. Acting with these
automorphisms on (9), we obtain

β1 = α1 + α2 = α3 + α4,

β2 = αi21 + αi22 = αi23 + αi24 ,

β3 = αi31 + αi32 = αi33 + αi34 ,

(10)

where each αikl
is an algebraic conjugate of α. In view of tr(α) = 0, we also

obtain corresponding relations
−2β1 = α5 + α6,

−2β2 = αi25 + αi26 ,

−2β3 = αi35 + αi36 .

(11)

Note that for every k = 2, 3 the numbers ik1, ik2, ik3, ik4, ik5, ik6 are distinct.
We will specify the indices in (10) and (11) by relabeling the conjugates
α1, α2, . . . , α6, if necessary. First, we will prove that each −2βk has a unique
expression in terms of αi +αj (recall that two expressions αi +αj and αu +αv

are distinct if {i, j} ≠ {u, v}). Indeed, say, −2β1 has two distinct expressions:

−2β1 = α5 + α6 = αu + αv. (12)

If u = 5 (or u = 6), then by (12), v = 6 (or v = 5, respectively). In this
scenario, the expressions αu + αv and α5 + α6 become identical. This implies
that u /∈ {5, 6}. A similar argument shows that v /∈ {5, 6}. Consequently,
u, v ∈ {1, 2, 3, 4}. Without loss of generality, let u = 1. We then examine the
following cases for (u, v):
Case 1: If (u, v) = (1, 1), then α5 + α6 = 2α1, which contradicts Lemma 6.
Case 2: If (u, v) = (1, 2), then equations (10) and (12) yield −2β1 = β1 implying

β1 = 0. This contradicts the condition that β1 /∈ Q.
Case 3: If (u, v) = (1, 3), then we have β1 = α1 + α2 and −2β1 = α1 + α3.

Substituting the first into the second gives 3α1 + 2α2 + α3 = 0, which
contradicts Lemma 7.

Case 4: Similarly, (u, v) ̸= (1, 4).
These cases imply that u /∈ {1, 2, 3, 4}. Therefore, −2β1 has a unique expres-
sion in terms of αi + αj . Since β1, β2, β3 are algebraic conjugates of β1, it
follows that every −2βk (for k = 1, 2, 3) also has a unique expression in terms
of αi + αj .

Now we will prove that all the α’s appear exactly once in (11). Indeed,
note that each conjugate of α appears exactly three times counting both (10)
and (11): the set {α1, . . . , α6}, {αi21 , . . . , αi26} and {αi31 , . . . , αi36} make three
copies of the set of conjugates of α, and since each appears exactly twice in
(10) (as was proven in the proof of Proposition 10), there must be one full set
of conjugates in (11).

We have that {αi25 , αi26 , αi35 , αi36} = {α1, α2, α3, α4}. Without loss of gen-
erality, we can assume that αi25 = α1. If αi26 = α2, then −2β2 = β1. Substi-
tuting this expression of β1 into tr(β) = β1 +β2 +β3 = 0 yields β2 = β3, which
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is impossible. Hence, αi26 ∈ {α3, α4}. Note that α3 and α4 appear symmetri-
cally in the first equation of (10). Without loss of generality, by relabeling α3
and α4, if necessary, we can assume that αi26 = α4. From this, we immediately
derive that {αi21 , αi22 , αi23 , αi24} = {α2, α3, α5, α6}. Note that β2 ̸= α5 + α6.
Indeed, if β2 = α5 + α6, then β2 = −2β1. Substituting this expression of β2
into tr(β) = β1 +β2 +β3 = 0 yields β1 = β3, which is impossible. Thus α5 and
α6 appear in distinct expressions of β2 in (10), as well as α2 and α3. Without
loss of generality, we can assume that αi21 = α2 and αi23 = α3. Since α5 and
α6 appear symmetrically in the first equation of (11), by relabeling α5 and α6,
if necessary, we can assume that αi22 = α5 and αi24 = α6. So far, we have
obtained 

β1 = α1 + α2 = α3 + α4,

β2 = α2 + α5 = α3 + α6,

β3 = αi31 + αi32 = αi33 + αi34 ,


−2β1 = α5 + α6,

−2β2 = α1 + α4,

−2β3 = αi35 + αi36 .

Since {αi35 , αi36} = {α2, α3}, without loss of generality, we assume that αi35 =
α2 and αi36 = α3. Then {αi31 , αi32 , αi33 , αi34} = {α1, α4, α5, α6}. Note that
β3 ̸= α5 + α6. Indeed, if β3 = α5 + α6, then β3 = −2β1. Substituting this
expression of β3 into tr(β) = β1 + β2 + β3 = 0 yields β1 = β2, which is
impossible. Therefore, α5 and α6 appear in distinct expressions of β3 in (10),
as well as α1 and α4. Thus, without loss of generality, we can assume that
αi31 = α1 and αi33 = α4. Now we have two possible cases:

β3 = α1 + α5 = α4 + α6 or β3 = α1 + α6 = α4 + α5.

The first case is impossible. Indeed, by adding β1 = α1 +α2, β2 = α2 +α5 and
β3 = α1 + α5, we obtain

0 = β1 + β2 + β3 = 2(α1 + α2 + α5) = 2(β1 + α5),

and hence β1 = −α5, which is impossible, since 6 = deg(−α5) ̸= deg(β1) = 3.
Finally, we can rewrite equations (10) and (11) as follows

β1 = α1 + α2 = α3 + α4,

β2 = α2 + α5 = α3 + α6,

β3 = α1 + α6 = α4 + α5,

(13)


−2β1 = α5 + α6,

−2β2 = α1 + α4,

−2β3 = α2 + α3.

(14)

Now, we will prove that the Galois group G is of order |G| = 6 or 12. Since
G is transitive, the Orbit-Stabilizer Theorem implies

|G| = |Orb(α1)| · |Stab(α1)| = 6 · |Stab(α1)|,

where Stab(α1) = {ψ ∈ G : ψ(α1) = α1}. Hence, if we can show that
|Stab(α1)| ⩽ 2, then it follows that |G| = 6 or 12. Let ψ ∈ Stab(α1).
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If ψ stabilizes α2, then, in view of −2β2 = α1 + α4 and −2β3 = α2 + α3, ψ
stabilizes β2, α3 and α4. Since β2 = α2 + α5, it follows that ψ stabilizes α5.
Hence, ψ stabilizes every conjugate of α. Therefore, ψ = id.

Suppose that ψ(α2) ̸= α2. Since ψ(α1) = α1 and every conjugate of α
appears exactly once in (14), it follows that ψ stabilizes β2 and α4. Moreover,
from (13) we obtain that ψ maps β1 = α1 +α2 to β3 = α1 +α6 and vice versa.
Hence, ψ(α2) = α6 and ψ(α6) = α2. Furthermore, ψ maps −2β1 = α5 + α6
to −2β3 = α2 + α3 and vice versa. So ψ(α3) = α5 and ψ(α5) = α3. Hence,
ψ = (2 6)(3 5) ∈ S6.

We have proved that if every ψ ∈ Stab(α1) stabilizes α2, then the stabilizer
subgroup Stab(α1) is trivial and G has order 6. If there exists ψ ∈ Stab(α1)
which does not stabilize α2, then Stab(α1) = {id, (2 6)(3 5)} and accordingly G
has order 6 · 2 = 12. Hence, if G has order 12, then necessarily (2 6)(3 5) ∈ G.

Next we will prove that the group G contains the permutation σ := (1 3 5)
(2 6 4) ∈ S6. Indeed, since β1 is a cubic algebraic number, the Galois group
G contains an element, denote it by φ, that permutes the conjugates of β1.
Without loss of generality, we can assume that

φ(β1) = β2, φ(β2) = β3, φ(β3) = β1

(by exchanging φ with φ2, if necessary).
Relations in (14) imply that φ maps {α1, α4} to {α2, α3}. Consider two

possible cases: φ(α1) = α2 and φ(α1) = α3.
If φ(α1) = α2, then φ(α4) = α3. The expressions of β1 and β2 in (13) imply

that φ maps {α1, α2} to {α2, α5}. Since φ(α1) = α2, we obtain φ(α2) = α5.
Similarly, we see that φ maps {α3, α4} to {α3, α6}. Since φ(α4) = α3, we
derive φ(α3) = α6. The expressions of β2 and β3 in (13) imply that φ maps
{α2, α5} to {α4, α5}. Since φ(α2) = α5, we obtain φ(α5) = α4. We are left
with only one option for φ(α6), i.e., φ(α6) = α1. Hence, φ = (1 2 5 4 3 6).
Note that φ4 = (1 3 5)(2 6 4) = σ. So that in this case (φ(α1) = α2) the
permutation σ is contained in G.

If φ(α1) = α3, then φ(α4) = α2. The expressions of β1 and β2 in (13) imply
that φ maps {α1, α2} to {α3, α6}. Since φ(α1) = α3, we have φ(α2) = α6.
Similarly we see that φ maps {α3, α4} to {α2, α5}. Since φ(α4) = α2, we get
φ(α3) = α5. The expressions of β2 and β3 in (13) imply that φ maps {α2, α5}
to {α1, α6}. Since φ(α2) = α6, we obtain φ(α5) = α1. We are left with only
one option for φ(α6), i.e., φ(α6) = α4. Hence, φ = (1 3 5)(2 6 4) = σ.

We have proved that the groupG contains the permutation σ = (1 3 5)(2 6 4).
Now we are in a position to find all possible groups G.

A simple computation with SageMath [14] shows that there is a unique tran-
sitive subgroup of S6 which has order 12 and contains permutations (2 6)(3 5)
and σ = (1 3 5)(2 6 4). This subgroup is generated by the permutations
τ = (1 2)(3 4)(5 6) and π = (1 2 5 4 3 6) and is isomorphic to the dihedral group
D6 of order 12.

Similarly, there are exactly four transitive subgroups of S6 which have order
6 and contain the permutation σ = (1 3 5)(2 6 4). These are

• G1 = ⟨σ, τ⟩ isomorphic to S3, where τ = (1 2)(3 4)(5 6);
• G2 = ⟨π⟩ isomorphic to the cyclic group C6, where π = (1 2 5 4 3 6);
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• G3 = ⟨(1 6 5 2 3 4)⟩ isomorphic to the cyclic group C6;
• G4 = ⟨(1 4 5 6 3 2)⟩ isomorphic to the cyclic group C6.

Note that the groups G3 and G4 do not preserve the relations in (14). Indeed,
the generator of G3 maps α1 + α4 to α6 + α1 while the generator of G4 maps
α1 + α4 to α4 + α5. Hence, G ̸= G3 and G ̸= G4.

We have proved that there are three options for the group G:
(1) G = ⟨τ, π⟩ ∼= D6;
(2) G = ⟨σ, τ ⟩ ∼= S3;
(3) G = ⟨π ⟩ ∼= C6.

This completes the proof of Proposition 11.
□

Proof of Theorem 3. Necessity. Suppose that α is an algebraic number of de-
gree 6 whose four distinct algebraic conjugates satisfy the relation α1 + α2 =
α3 + α4 =: β /∈ Q. Note that for any r ∈ Q the number α − r will also have
this property. Moreover, α equals the sum of a quadratic and a cubic alge-
braic number if and only if α − r has the same property. Hence, by taking
r = tr(α)/6, we can assume that α has trace zero, tr(α) = 0. Let G be the
Galois group of the normal closure of Q(α) over Q. Consider G as a subgroup
of S6, acting on the indices of the conjugates α1, α2, . . . , α6 of α. Then, by
Proposition 11, we have the following:

(i) β is a cubic algebraic number.
(ii) One can label the algebraic conjugates α1, α2, . . . , α6 of α in such a

way that these satisfy the relations
β1 = α1 + α2 = α3 + α4,

β2 = α2 + α5 = α3 + α6,

β3 = α1 + α6 = α4 + α5,

(15)

where β1 = β, β2, β3 are the algebraic conjugates of β.
(iii) Given the relations (15), there are exactly three options for the Galois

group G:
(1) G = ⟨τ, π | τ2 = π6 = id, τπτ = π5⟩ ∼= D6;
(2) G = ⟨π | π6 = id⟩ ∼= C6;
(3) G = {id, σ, σ2, τ, τσ, τσ2} ∼= S3.

Here π = (1 2 5 4 3 6), σ = (1 3 5)(2 6 4) and τ = (1 2)(3 4)(5 6).
Consider the number α1 − α4. The expression of β1 in (15) implies that

α2 − α3 = −(α1 − α4). Moreover,
τ(α1 − α4) = α2 − α3 = −(α1 − α4),
π(α1 − α4) = α2 − α3 = −(α1 − α4),
σ(α1 − α4) = α3 − α2 = α1 − α4.

Hence, α1 − α4 is a quadratic algebraic number. Moreover, the relations β2 =
α2 + α5 = α3 + α6 together with tr(α) = 0 imply −2β2 = α1 + α4, which is
equivalent to

α1 = α1 − α4
2 − β2.
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Consequently, α = α1 is the sum of the quadratic algebraic number (α1−α4)/2
and the cubic algebraic number −β2.

Sufficiency. Assume that α is the sum of a quadratic algebraic number γ and
a cubic algebraic number δ. We will prove that α has degree 6 and some four
distinct algebraic conjugates of α satisfy the relation α1 + α2 = α3 + α4 /∈ Q.
Indeed, let γ1 = γ, γ2 be the algebraic conjugates of γ and let δ1 = δ, δ2, δ3 be
the algebraic conjugates of δ. Since the compositum Q(γ, δ) contains γ and δ of
degree 2 and 3, respectively, it follows that the degree of Q(γ, δ) is divisible by
2 · 3 = 6. On the other hand, [Q(γ, δ) : Q] ⩽ [Q(γ) : Q] · [Q(δ) : Q] = 2 · 3 = 6.
Hence, [Q(γ, δ) : Q] = 6. By Lemma 9, we obtain that Q(γ, δ) = Q(γ + δ).
Therefore, α = γ+ δ has degree 6. Hence, the numbers γi + δj , for i = 1, 2 and
j = 1, 2, 3, are distinct algebraic conjugates of γ + δ. The identity

(γ1 + δ1) + (γ2 + δ2) = (γ1 + δ2) + (γ2 + δ1)

implies that four distinct algebraic conjugates of α = γ + δ satisfy

α1 + α2 = α3 + α4,

where α1 = γ1 + δ1, α2 = γ2 + δ2, α3 = γ1 + δ2 and α4 = γ2 + δ1. Finally, since
tr(γ) = γ1 + γ2 and tr(δ) = δ1 + δ2 + δ3 are rational numbers, we obtain that

α1 + α2 = γ1 + δ1 + γ2 + δ2 = tr(γ) + tr(δ) − δ3

is a cubic algebraic number, and therefore α1 + α2 /∈ Q. □

Proof of Theorem 2. Let α be an algebraic number of degree d ∈ {4, 5, 6, 7}
such that tr(α) = 0. Suppose that four distinct conjugates of α1 := α satisfy
the relation

α1 + α2 = α3 + α4. (16)
By Lemma 5, d ̸= 5 and d ̸= 7. Hence, d = 4 or 6.

(i) Suppose that d = 4. Then (16) together with tr(α) = 0 imply α1 +α2 =
α3 + α4 = 0. Hence, α2 = −α1, and therefore the minimal polynomial p(x) of
α is of the form p(x) = x4 + ax2 + b ∈ Q[x].

Conversely, let p(x) = x4 + ax2 + b ∈ Q[x] be an irreducible polynomial.
Let β, γ ∈ C be two distinct roots of p(x) such that γ ̸= −β. Then α1 = β,
α2 = −β, α3 = γ and α4 = −γ are all the roots of p(x) and the relation (16)
holds.

(ii) Suppose that d = 6 and the sum α1 + α2 in (16) is a rational number.
Then, by Proposition 10, α1 +α2 = α3 +α4 = 0. This implies that α2 = −α1.
Therefore, the minimal polynomial p(x) of α is of the form p(x) = x6 + ax4 +
bx2 + c ∈ Q[x]. Similarly, as in case (ii), we see that some four distinct roots
of any such irreducible polynomial satisfy the relation (16).

(iii) Suppose that d = 6 and the sum α1+α2 in (16) is not a rational number.
Then, by Theorem 3, α is a sum of a quadratic algebraic number γ and a cubic
algebraic number δ. Let γ1 = γ, γ2 be the algebraic conjugates of γ and let
δ1 = δ, δ2, δ3 be the algebraic conjugates of δ. Then the numbers γi + δj , for
i = 1, 2 and j = 1, 2, 3, are the algebraic conjugates of α = γ+δ. We have that
tr(α) = 0. On the other hand, tr(α) equals the sum of all the numbers γi + δj ,
for i = 1, 2 and j = 1, 2, 3. The later sum equals 3(γ1 + γ2) + 2(δ1 + δ2 + δ3).
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Hence, 0 = tr(α) = 3tr(γ) + 2tr(δ). Therefore, tr(γ)/2 + tr(δ)/3 = 0 and we
can represent α as

α =
(
γ − tr(γ)

2

)
+

(
δ − tr(δ)

3

)
.

Note that γ−tr(γ)/2 and δ−tr(δ)/3 are quadratic and cubic algebraic numbers,
respectively, both having trace zero. Consequently, without loss of generality,
we can assume that tr(γ) = 0 and tr(δ) = 0 in the expression α = γ+ δ. Then
the minimal polynomial of γ is of the form x2 −a and the minimal polynomial
of δ is of the form R(x) = x3 + bx+ c, where a, b, c ∈ Q. Moreover, in view of
tr(γ) = 0 and γ1γ2 = −a, we obtain that γ1 = ±

√
a and γ2 = ∓

√
a. Now the

minimal polynomial p(x) of α can be expressed as

p(x) =
∏

i=1,2
j=1,2,3

(x− γi − δj) =
∏

i=1,2
(x− γi − δ1)(x− γi − δ2)(x− γi − δ3)

= R(x− γ1)R(x− γ2) = R(x−
√
a)R(x+

√
a)

= x6 + (2b− 3a)x4 + 2cx3 + (3a2 + b2)x2 + 2c(3a+ b)x (17)
− a3 − 2a2b− ab2 + c2.

Conversely, given an irreducible polynomial p(x) of the form (17), we can factor
it as p(x) = R(x−

√
a)R(x+

√
a), where R(x) = x3+bx+c. Note that

√
a /∈ Q,

since p(x) is irreducible. Consequently,
√
a is a quadratic algebraic number.

Moreover, R(x) is irreducible. Indeed, if R(x) factors as R(x) = P (x)Q(x)
with some polynomials P (x), Q(x) ∈ Q[x] both of degree ⩾ 1, then
p(x) = R(x−

√
a)R(x+

√
a) = P (x−

√
a)P (x+

√
a)Q(x−

√
a)Q(x+

√
a)

with both polynomials P (x−
√
a)P (x+

√
a) and Q(x−

√
a)Q(x+

√
a) having

rational coefficients. This contradicts the assumption that p(x) is irreducible.
Hence, R(x) is irreducible. Finally, the factorization p(x) = R(x−

√
a)R(x+√

a) implies that every root of p(x) is a sum of a quadratic algebraic number
±

√
a and a root of R(x), which is a cubic algebraic number. Therefore, by

Theorem 3, some four distinct roots of p(x) satisfy the relation (16) with
α1 + α2 /∈ Q. □

Notes.
1. The polynomial in (17) is obtained by expanding the product R(x −√

a)R(x+
√
a). This can be done either by hand or using a computer

algebra system, e.g., SageMath [14].

2. The polynomial in (17) is irreducible if and only if a is not the square
of a rational number and the polynomial R(x) = x3 + bx + c has no
roots in Q.
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Argentina (2025). Early view: published March 16, 2025.

[8] Luise-Charlotte Kappe and Bette Warren. “An elementary test for the
Galois group of a quartic polynomial”. English. In: Am. Math. Mon. 96.2
(1989), pp. 133–137.

[9] Yoshiyuki Kitaoka. “Notes on the Distribution of Roots Modulo a Prime
of a Polynomial”. In: Uniform Distribution Theory 12.2 (2017), pp. 91–
117.

[10] V. A. Kurbatov. “Galois extensions of prime degree and their primi-
tive elements”. In: Izv. Vysš. Učebn. Zaved. Matematika 1(176) (1977),
pp. 61–66.

[11] Joseph J. Rotman. An Introduction to the Theory of Groups. 4th ed.
Vol. 148. Graduate Texts in Mathematics. Springer, 1995.

[12] Álvaro Serrano Holgado. “Nontriviality of the module of relations for
degree 4 polynomials”. In: Acta Mathematica Hungarica 176.1 (2025),
pp. 236–243.

[13] C. J. Smyth. “Conjugate algebraic numbers on conics”. English. In: Acta
Arith. 40 (1982), pp. 333–346.

[14] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 10.6.0). https://www.sagemath.org. 2025.

[15] Paulius Virbalas. “Linear relations between three algebraic conjugates of
degree twice a prime”. In: Glasnik Matematicki (2025). (to appear).

[16] Paulius Virbalas. “Linear Relations Between Three Conjugate Algebraic
Numbers of Low Degree”. In: Journal of the Korean Mathematical Society
62.2 (2025), pp. 253–284.

[17] Steven H. Weintraub. “Observations on primitive, normal, and subnor-
mal elements of field extensions”. In: Monatsh. Math. 162.2 (2011), pp. 239–
244.

16

https://doi.org/10.4153/S0008439525101148 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101148


Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius
University, Naugarduko 24, Vilnius LT-03225, Lithuania

Email address: zygimantas.baronenas@mif.stud.vu.lt

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius
University, Naugarduko 24, Vilnius LT-03225, Lithuania

Email address: paulius.drungilas@mif.vu.lt

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius
University, Naugarduko 24, Vilnius LT-03225, Lithuania

Email address: jonas.jankauskas@mif.vu.lt

17

https://doi.org/10.4153/S0008439525101148 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101148

	1. Introduction
	2. Auxiliary results
	3. Proofs
	References

