
11

Instantons, fermions, and physical consequences

The most important physical consequences of the Yang–Mills instantons are asso-
ciated with the presence of fermions in the theory. Because these turn out to be
closely related to the axial anomaly, I begin with a brief review of that topic.

11.1 Anomalies
It sometimes happens that a transformation that is a symmetry of a classical
field theory ceases to be a symmetry when the theory is quantized. Perhaps the
best-known example of such an anomaly, and the one of relevance for us here,
is that associated with the chiral symmetry of a theory with massless quarks.
Classical analysis predicts a number of conserved vector and axial vector currents.
However, it can happen that after quantization some of the axial currents are
not conserved, but instead have anomalous divergences [255–257].

The simplest example of this axial anomaly occurs in a theory with massless
fermion fields ψr, where the subscript r = 1, 2, . . . , Nf is a “flavor” index, and a
Lagrangian density

L = ψ̄r
(
iγμ∂μ + gγμAaμT

a
)
ψr + · · · , (11.1)

where the ellipsis denotes terms that do not contain the fermion fields. Here I will
take the Aaμ to be SU(Nc) gauge fields, with the T a the corresponding generators.
The “color” gauge indices on the fermions and the corresponding indices on the
T a have been suppressed. For simplicity, let us assume that all flavors of fermions
transform under the fundamental representation of the gauge group.

Classically, this Lagrangian is invariant under both the U(1)×U(1) chiral
transformations

ψr → eiα0ψr ,

ψr → eiβ0γ
5
ψr (11.2)
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11.1 Anomalies 237

and the SU(Nf )×SU(Nf ) chiral transformations

ψr →
(
eiα

aT a
)
rs
ψs ,

ψr →
(
eiβ

aT aγ5
)
rs
ψs , (11.3)

where the T a are generators of SU(Nf ).
These symmetries imply conserved currents

jμ = ψ̄rγ
μψr ,

jμ5 = ψ̄rγ
μγ5ψr (11.4)

and

jμa = ψ̄rT arsγμψs ,
jμ5a = ψ̄rT arsγμγ5ψs , (11.5)

with corresponding conserved charges. In particular, if we define right- and left-
handed fields

ψRr =
1 + γ5

2
ψr ,

ψLr =
1− γ5

2
ψr , (11.6)

the charges corresponding to jμ and jμ5 are

Q =
∫
d3x ψ̄†

rψr = nR + nL ,

Q5 =
∫
d3x ψ̄†

rγ
5ψr = nR − nL , (11.7)

where nR is the number of right-handed particles minus the number of left-
handed antiparticles, and similarly for nL. Thus, Q is the total particle number
and Q5 the net chirality.

The problematic axial current is jμ5 . If it were divergenceless, as predicted by
the classical analysis, we would have the Ward identity

0 = kμTμαβ(k, q1, q2) , (11.8)

where

Tμαβ(k, q1, q2) = i

∫
d4x1 d

4x2〈0|T [jμ5 (0)jαa (x1)jβa (x2)]0〉eiq1·x1+iq2·x2 . (11.9)

Here T denotes time-ordering, jμa is the gauge current that couples to Aaμ, and
k = q1 + q2. The leading contribution to the matrix element comes from the two
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k

γα γ β
q1 q2

γα γ β
q1

q2

γ μγ 5
γ μγ 5

k

Fig. 11.1. The graphs that give the leading contribution to the matrix element
in Eq. (11.9). The incoming momenta and the gamma matrix factors at each
vertex are indicated.

triangle graphs shown in Fig. 11.1. Explicit calculation of these gives the nonzero
result1

kμTμαβ = −Nf
2π2

εαβρσq
ρ
1q
σ
2 . (11.10)

The failure of Eq. (11.8) can be understood by recalling that properly defining
the quantum field theory requires specifying a regulator scheme. Any method for
regulating the triangle graphs that respects the gauge symmetry, as is required
for renormalizability, violates the chiral symmetry. Dimensional regularization
has the problem that the γ5 in the chiral transformation is an explicitly four-
dimensional quantity that cannot be naturally continued to 4 + ε dimensions.
Pauli–Villars regulation is gauge invariant and four-dimensional, but the massive
Pauli–Villars regulator field explicitly breaks the chiral symmetry. This field gives
a contribution to ∂μj

μ
5 that is proportional to the regulator mass M . This explicit

factor of M multiplies a regulator graph proportional to 1/M to give a finite
contribution in the M →∞ limit.

A useful way to interpret Eq. (11.10) is to include factors of Aaα on the exter-
nal gauge lines of the triangle graphs. We can then view Tμαβ as a contribution
to the expectation value of jμ5 in the presence of a background gauge field.
Equation (11.10) gives the divergence of this current in the background field as

∂μj
μ
5 =

Nfg
2

16π2
εμνρσtr (∂μAν − ∂νAμ)(∂ρAσ − ∂σAρ) . (11.11)

1 This assumes a regularization that keeps the two vector currents divergenceless.
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11.2 Spectral flow and fermion zero modes 239

Including the effects of the analogous square and pentagon diagrams gives the
additional terms needed to obtain the gauge-invariant result2

∂μj
μ
5 =

Nfg
2

8π2
trFμνF̃μν . (11.12)

11.2 Spectral flow and fermion zero modes
Notice that the anomalous divergence of the axial current, Eq. (11.12), is, up
to a multiplicative constant, the same as the current jμA that was defined in
Eq. (10.17). This suggests that we combine them to form a divergenceless current

J μ5 = jμ5 − 2Nf j
μ
A . (11.13)

Like jμA, this current is gauge-variant, and so its analysis depends on the gauge in
which we work. Measurable physical consequences must, of course, be the same
in all gauges.

Let us start by working in A0 = 0 gauge, where the instanton corresponds to
tunneling between two vacua of different winding number. The charge associated
with J μ5 is

Q5 = nR − nL − 2Nf n , (11.14)

where n is the winding number of the gauge field. The divergenceless of J μ5
implies that Q5 is conserved. Hence, any change in winding number must be
accompanied by a change in fermion chirality, with

Δ(nR − nL) = 2Nf Δn . (11.15)

To see how this comes about, let us consider the spectrum of the Dirac Hamil-
tonian in the presence of a background field Aμ. It is simplest to view this from
the Dirac sea viewpoint, with both positive and negative energies in the spec-
trum, and antiparticles being unoccupied negative-energy states. For our massless
fermions the Hamiltonian is

H = −iαjDj , (11.16)

where αj = γ0γj . In a basis with

γj =
(

0 iσj

iσj 0

)
, γ0 =

(
0 −iI
iI 0

)
, γ5 =

(
I 0
0 −I

)
, (11.17)

we have

αj =
(
σj 0
0 −σj

)
. (11.18)

2 The anomaly can also be calculated from a careful examination of the behavior of the path
integral measure under chiral transformations [258].
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240 Instantons, fermions, and physical consequences

The four-component fermions naturally split into a pair of two-component Weyl
fermions. For the upper two components, corresponding to right-handed particles,
the Hamiltonian becomes

HR = −iσjDj , (11.19)

while for the lower two, left-handed, components we have

HL = iσjDj . (11.20)

Because HL = −HR, each negative eigenvalue of one Hamiltonian corresponds
to a positive eigenvalue of the other.

Let us start with the background field being a vacuum configuration with wind-
ing number n, and then consider the series of configurations along the tunneling
path defined by an instanton. At intermediate stages along the way, Aμ is not in
a vacuum state, there are nonzero field strengths, and the fermion spectrum is
certainly different from the initial spectrum. Nevertheless, since the final config-
uration is also a vacuum configuration, albeit one with winding number n + 1,
the spectrum, which is gauge invariant, must be the same at the end as it was
at the beginning.

This does not mean, however, that individual states must end up where they
started. As shown schematically in Fig. 11.2, an individual energy level can have
a net movement up or down the spectrum as the gauge field flows along the
tunneling path. The only requirement is that its place be taken up by some
other level. The relationship between the two Hamiltonians requires that for
every level of HR that moves up, an energy level of HL with the opposite sign
must move down, and vice versa.

Fig. 11.2. Schematic illustration of the flow of fermion energy levels as the
gauge field is varied from a vacuum configuration with winding number n
(on the far left) to one with winding number n + 1 (on the far right). The
right-handed levels are indicated by solid lines and the left-handed ones by
the dashed lines. The heavy horizontal line represents the zero of energy.
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11.2 Spectral flow and fermion zero modes 241

In particular, as indicated in the figure, some negative-energy states can
become positive-energy states and some positive-energy states can become
negative-energy states. Let us suppose that the fermions were originally in a
vacuum state, with all negative-energy levels filled and all positive-energy levels
empty. In the adiabatic approximation the occupation of the individual levels
would not change, so the movement of a level from negative to positive energy
would lead to the creation of a positive-energy particle, while a flow from pos-
itive to negative-energy would give a negative-energy hole, corresponding to a
positive-energy antiparticle of the opposite chirality. If the adiabatic approxima-
tion is not applicable, particles may move between levels. However, because the
original Hamiltonian only couples fermion fields of the same chirality, this move-
ment must be between levels of the same chirality, and so won’t affect the total
chirality.

Thus, the relation between the changes in chirality and winding number in
Eq. (11.15) can be understood if in the presence of a gauge field Aμ(x) with
instanton number k there is a net flow upward of k right-handed levels from
negative to positive energy, and an equal flow of left-handed levels from positive
to negative energy. We can show that this is the case by means of an index
theorem.

In order to follow the flow of the energy levels, let us write x4 = τ and
define

HR(τ) = −iσj
[
∂j − igAaj (x, τ)T a

]
(11.21)

and label its instantaneous eigenvalues and two-component eigenfunctions as
ωn(τ) and χn(x; τ), respectively. Now consider the equation

0 = Dχ =
[
− ∂

∂τ
−HR(τ)

]
χ . (11.22)

For Aμ sufficiently slowly varying as a function of τ , this equation is solved by

χ = e−
∫ τ
0 dτ ′ ωn(τ ′) χn(x; τ) . (11.23)

If ωn(τ) has the same sign at τ = −∞ and τ = ∞, this solution diverges as
τ goes to either one limit or the other. On the other hand, if ω(−∞) < 0 and
ω(∞) > 0, the solution goes to zero in both directions, and is a normalizable zero
mode of D. If instead ω(τ) goes from positive to negative, a similar construction
gives a normalizable zero mode of

D† =
∂

∂τ
−HR(τ) . (11.24)
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242 Instantons, fermions, and physical consequences

Thus, if k+ levels of HR move from negative energy to positive energy and k−
modes move from positive to negative, D will have k+ zero modes, D† will have
k− zero modes, and the index of D will be3

I(D) = k+ − k− . (11.25)

In fact, we have already calculated this index. The operator D defined above is
the same as the one defined in Eq. (10.119), written in A0 = 0 gauge. In Sec. 10.8
we showed that the index of D was given by Eq. (10.138). For fermions in the
fundamental representation of SU(N), we have T (R) = 1/2, and hence

I(D) = k . (11.26)

Thus, along the flow defined by a Euclidean gauge field with instanton number
k there are k energy levels of HR that move from negative to positive energy.
Because HL = −HR, there are also k levels of HL that move from positive to
negative energy. This is repeated for each of the Nf flavors, so the net increase
in chirality is 2Nfk, just as required by Eq. (11.15).

The index calculation in Sec. 10.8 did not use the fact that the background field
was self-dual, so our result applies even if Aμ(x) is not a solution of the Euclidean
field equations. On the other hand, the vanishing theorem that showed that D†

had no zero modes did use the self-duality of the gauge field, so for general
background fields Eq. (11.26) only gives the difference between the numbers of
zero modes of D and D†, and thus a lower bound on the number of zero modes.

This analysis of the spectral flow was done in the A0 = 0 gauge, where the
instanton corresponds to a tunneling path between vacua of different winding
number. In a gauge with a unique vacuum, the tunneling path represented by
the instanton is gauge-transformed to one that begins and ends at the same
point. This gauge transformation cannot change the physical consequences of
the instanton. Hence, although the gauge field eventually returns to its initial
value, the flow of the fermion eigenstates as the gauge field background evolves
does not return them to their initial position. Instead, they are shifted, with some
moving from negative to positive energy, or vice versa, just as in A0 = 0 gauge.
This leads to a net change in the fermion chirality, even though the winding num-
ber is unchanged. Thus, Q5 is not conserved. This is not in contradiction with
the vanishing of ∂μJ μ5 . The standard demonstration that a divergenceless current
implies a conserved charge proceeds by integrating over the region between two
spacelike surfaces and converting the integral to a sum of surface integrals. Con-
servation of the charge follows if the surface integrals at spatial infinity vanish,
as is usually the case. However, although the gauge-variant current jμA vanishes

3 One might worry about the fact that Eq. (11.23) only solves Eq. (11.22) in the limit of
slowly varying Aμ. However, the index is a topological invariant, and so the result for more
rapidly varying fields must be the same as for a slowly varying field with the same instanton
number.
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11.2 Spectral flow and fermion zero modes 243

at large distance in A0 = 0 gauge, it is nonvanishing and gives a finite surface
integral in other gauges, with the result that conservation of Q5 is violated by
instanton effects.

Let us find the explicit form of the fermion zero mode in the background of
a single SU(2) instanton centered at the origin. Rather than working in A0 = 0
gauge, it is simpler to work in a gauge where the instanton is given by Eq. (10.87).
In terms of the four ep defined in Eq. (10.63), the zero-mode equation takes the
form

0 = (e†p)αβ [δab∂p − ig(Ap)ab] Φbβ . (11.27)

Here Greek subscripts denote spinor indices 1 or 2 while Latin subscripts from
the beginning of the alphabet denote SU(2) indices, which also take values 1 or
2. The distinction between the two types of indices can be ignored if we view Φbβ
as a 2×2 matrix and rewrite the zero-mode equation as the matrix equation

0 = i [∂p − igAp] Φ (e†p)
t . (11.28)

Now recall that the Pauli matrices satisfy

σtj = (iσ2)σj(iσ2) , j = 1, 2, 3, (11.29)

which implies that

(e†p)
t = e∗p = −(iσ2)ep(iσ2) , p = 1, 2, 3, 4, (11.30)

so that our zero-mode equation becomes

0 = i [∂p − igAp] Φ(iσ2) ep . (11.31)

The instanton is invariant under the combination of a rotation and an SU(2)
global gauge transformation. Since there is only one fermion zero mode, it must
be a singlet under such a transformation. Because εbβ = (iσ2)bβ is an SU(2)
invariant tensor, a natural ansatz is

Φbβ = iεbβ h(x2) . (11.32)

Substituting this into Eq. (11.31) leads to

0 =
[
2xp h′(x2)− igAph(x2)

]
ep , (11.33)

where the prime indicates differentiation with respect to x2. Using the explicit
form of the instanton,

Ap =
1
g

ηpqxq
x2 + λ2

, (11.34)

and the easily verified identity

ηpqep = i
(
δpq − epe†q

)
ep = 3ieq , (11.35)
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244 Instantons, fermions, and physical consequences

we obtain

0 = h′ +
3
2

h

x2 + λ2
, (11.36)

whose solution is

h =
B

(x2 + λ2)3/2
, (11.37)

with B an arbitrary integration constant. The normalized fermion zero mode can
therefore be written as

Ψ =
√

2
π

λ

(x2 + λ2)3/2
χ , (11.38)

where χ is a fixed isospinor four-component Dirac spinor. In the basis in which
we have been working, the lower components of χ vanish and the upper ones are
given by the two-component Weyl spinor Φaα = εaα.

This zero mode is for a fermion in the doublet representation of SU(2). Because
the unit instanton in any larger gauge group is an embedding of the SU(2) instan-
ton, the generalization to other groups is straightforward. In particular, the unit
instanton for SU(Nc) is the embedding of the SU(2) instanton in a 2× 2 block.
The fundamental representation zero mode is obtained by inserting the zero mode
of Eq. (11.38) into the corresponding two components of the fermion field, and
then setting the remaining Nc − 2 components equal to zero.

It is instructive to summarize the chirality-violating processes associated with
an instanton by a nonlocal effective Lagrangian density. This must contain the
product of 2Nf fermion fields, one ψL and one ψ̄R for each flavor. It can be
written in the form [238]

Leff = Ce−8π2/g2(λ)

Nf∏
s=1

(ψ̄sRω)(ω̄ψsL) , (11.39)

where an integration over the positions of the fermion fields is understood, ω is
a fixed Dirac spinor transforming under the fundamental representation of the
gauge group, and the constant C is obtained from the one-loop corrections to
the instanton. The nontrivial contribution from Leff comes from the terms in the
fermion fields corresponding to the zero mode; i.e., the product of the zero mode
and the corresponding creation or annihilation operator. The term shown here is
not Hermitian; one must add its Hermitian conjugate, which gives the effects of
an anti-instanton. One must also, of course, integrate over all instanton positions
and scales.4

4 This effective Lagrangian contains ω, whose form depends on the gauge orientation of the
instanton. However, physical results must be gauge-independent. A gauge-invariant effective
Lagrangian can be obtained by integrating over the gauge orientations of ω [238, 259].
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11.3 QCD and the U(1) problem 245

11.3 QCD and the U(1) problem
Even before QCD was discovered, it was realized that the eight light pseudoscalar
mesons could be understood as approximate Goldstone bosons arising from the
spontaneous breaking of an approximate SU(3)×SU(3) chiral symmetry, with
the especially low masses of the pions indicating that a chiral SU(2)×SU(2) was
even closer to being an exact symmetry of the Lagrangian.

The form of the QCD Lagrangian clarifies the origin of these symmetries.
The part containing the quark fields qr (with the subscript labeling quark
flavor) is

L =
∑
r

[
q̄r
(
iγμ∂μ + gγμAaμT

a
)
qr +mr q̄rqr

]
. (11.40)

The quark “masses”mr are neither the positions of poles in Green’s functions nor
effective constituent masses in hadrons, but simply parameters in the Lagrangian.
Current-algebra arguments lead to the conclusion that the up and down quark
masses are only a few MeV, while the strange quark mass is roughly 100 MeV.
All three are small compared to a typical QCD scale (e.g., constituent up and
down quark masses of about 300 MeV) suggesting that this Lagrangian can be
viewed as an approximation to one with either two or three massless quarks. The
SU(2)×SU(2) and SU(3)×SU(3) chiral symmetries would then correspond to the
transformations in Eq. (11.3).

However, a Lagrangian of this form is also invariant under the transformations
of Eq. (11.2), making the symmetry either U(2)×U(2) or U(3)×U(3) and pre-
dicting either a fourth or a ninth approximate Goldstone boson. In the former
case, with two quarks considered to be light, the only plausible candidate for the
extra Goldstone boson is the η, but its mass of 548 MeV seems to be far too high
compared to that of the pions. (Indeed, one can show that the mass of the fourth
Goldstone boson cannot be more than

√
3 times that of the other three [260].)

With three quarks considered to be light, the Goldstone bosons from the break-
ing of SU(3)×SU(3) are the three pions (135 and 140 MeV), the four kaons (494
and 498 MeV), and the η. Again, the only candidate for the ninth Goldstone
boson, the η′ at 958 MeV, is much too massive. The absence of a satisfactory
candidate for the ninth (or fourth) Goldstone boson was known as the U(1)
problem.

Note that this U(1) problem only arises after the form of the Lagrangian is
determined. It is quite possible to write down theories (the sigma model is an
example) that are invariant under SU(Nf )×SU(Nf ) symmetry but do not have
a U(Nf )×U(Nf ) symmetry.

The effective Lagrangian of Eq. (11.39), generalized to an SU(3) gauge group,
provides a resolution of the U(1) problem. If we define

Mrs = (q̄Rrω)(ω̄qLs) , (11.41)
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the anticommutivity and Grassmann nature of the fermion fields implies that

Nf∏
s=1

(q̄Rsω)(ω̄qLs) =
1

(Nf )!
detM . (11.42)

The transformations in Eqs. (11.2) and (11.3) can all be written in the form

qL → ULqL , qR → URqR , (11.43)

where UL and UR are Nf ×Nf unitary matrices. Under such transformations

M→ U†
RMUL . (11.44)

The determinant of M, and hence Leff , is unchanged if UL and UR are both
SU(Nf ) matrices, with unit determinant, or if UL = UR. However, Leff is not
invariant under U(1) transformations with UL = U†

R, which are precisely those
transformations corresponding to the anomalous current jμ5 . Thus, the U(1) that
appeared to be a spontaneously broken symmetry in the massless quark limit
is not a symmetry at all once instanton effects are included, and so there is no
longer any prediction of an extra Goldstone boson.

It is important to recognize that even though Leff arises from instanton effects,
it is not a small correction to the Lagrangian. We saw in Sec. 10.12 that the inte-
gration over instanton scales diverges and the dilute-gas approximation breaks
down for large instantons. Although this prevents us from obtaining reliable
quantitative results for the instanton effects, we can expect them to be large and
comparable to other strong interaction effects.

11.4 Baryon number violation by electroweak processes
We have seen that instanton effects in QCD can be large, but cannot be reliably
calculated because of the divergence of the integration over instanton size. By
contrast, in the SU(2)×U(1) electroweak theory there are instanton effects that
are calculable although, at first sight, they seem to be negligibly small. These
are associated with the weak isospin SU(2) factor, with the U(1) playing no role.

The essential new factor here is the presence of the Higgs doublet, which must
approach its nonzero vacuum value 〈φ〉 as x2 → ∞ but vanish at the center
of the instanton. The Higgs vacuum expectation value breaks the classical scale
invariance. Its effects favor smaller instanton size, so that the fields deviate from
the vacuum over a smaller region, thus reducing the classical action. On the
other hand, we have seen that the renormalization of the gauge coupling by
the one-loop quantum effects favors large instantons. The net result is that the
integration over instanton size peaks around λ ∼ 1/〈φ〉.

The left-handed fermions of the standard model fall into SU(2) doublets. For
each generation there are three quark doublets (because of the three colors) and
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11.4 Baryon number violation by electroweak processes 247

one lepton doublet. The former each carry baryon number B = 1/3, while the
latter have lepton number L = 1. With three generations, each instanton leads
to violations of baryon and lepton numbers [261]

ΔB = ΔL = 3 . (11.45)

Although B and L are not separately conserved, their difference B − L is con-
served. This corresponds to the fact that the B − L current (unlike the currents
of B and L separately) does not have an anomalous divergence in the Standard
Model.

This is a truly striking result. Even though all perturbative Standard Model
processes conserve baryon number, nonperturbative instanton effects allow
baryon number violating processes such as the annihilation of a proton and
neutron to yield an antinucleon and three leptons.5 However, the prospects
for experimentally observing such a process are rather dim, since the rate is
suppressed by a factor of

(
e−8π2/g2

)2

= e−16π2 sin2 θW /e2 . (11.46)

Because the size of the instantons responsible for this process is given by the
electroweak scale, let us evaluate the quantities on the right-hand side of this
equation at the Z mass. This gives 10−161. The observable universe contains
about 1078 protons and has an age of approximately 1010 years, or 1040 times a
typical strong interaction time scale of 10−23 seconds. Thus, the probability that
baryon number violation by such a process ever happened in our past light cone
would seem to be vanishingly small.

However, matters are not quite so simple. This instanton-mediated process
involves tunneling through the potential energy barrier separating two vacua
with different winding number. An alternative possibility is to pass over the top
of the barrier via a thermal fluctuation. Although unfeasible today, such a process
might have been possible at the much higher temperatures that were present in
the very early universe.

The crucial quantity here is the height of the barrier that must be traversed.
On any path over the barrier there is a high point of maximum energy. If there
is a lowest such maximum, it will dominate the rate for thermal fluctuations; its
energy is the minimum energy needed to be able to cross the barrier without
tunneling. Because this lowest maximum is a stationary point of the potential
energy, it must correspond to a static solution (in A0 = 0 gauge) of the field
equations. Since it is a saddle point, rather than a local minimum, it is an unstable
solution. This solution is known as a sphaleron [262].

5 Note that the spatial location of this process gives a physical interpretation to the instanton
position, which did not have a directly observable meaning in the effects considered
previously.
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The size of the sphaleron is set by the Higgs vacuum expectation value v. This
leads to a rough estimate of its energy,

Esph ∼
4πv
g

, (11.47)

where g is the SU(2) gauge coupling. [The value of the U(1) coupling g′ plays
a lesser role, because it is the non-Abelian part of the theory that gives rise to
the effect.] Using a spherically symmetric ansatz, Manton and Klinkhamer [263]
found a sphaleron solution with an energy that ranged between 7.5 TeV and 13.3
TeV, depending on the Higgs boson mass; current experimental bounds on the
Higgs mass put it in the upper part of this range.

A näıve estimate of the rate for sphaleron processes would be Γ ∼
exp(−Esph/T ). However at finite temperature it is the free energy that is the
relevant quantity, so we expect the somewhat larger rate

Γ ∼ e−Fsph/T , (11.48)

where the calculation of Fsph must take into account the finite temperature cor-
rections to the effective potential and the fact that these reduce the expectation
value of the Higgs field. Even at this level of approximation it is clear that at
temperatures near (and above) that of the electroweak phase transition, baryon
number violation via electroweak processes can proceed at significant rates. This
has the potential of washing out, or at least significantly diluting, any pre-existing
baryon asymmetry. For a detailed review of this and related processes, see [264].

11.5 CP violation and the θF F̃ term
The possibility of vacuum tunneling led to the realization that a term

ΔL =
θg2

16π2
trFμνF̃μν =

θg2

32π2
εμναβtrFμνFαβ (11.49)

can be added to the Yang–Mills Lagrangian. Because this term is a total diver-
gence, it has no effect classically. Even in the quantum theory, it has no effect on
Feynman diagrams, as was already noted below Eq. (10.32).

A clear demonstration that terms such as this can, nevertheless, have an
effect in the full quantum theory is provided by the one-particle Lagrangian
of Eq. (10.41) with the total time derivative term of Eq. (10.42) included. If we
drop the potential energy term, we have

L =
1
2
Bα̇2 +

θ

2π
α̇ . (11.50)

If α is taken to be an angle with period 2π, this can be interpreted as the
Lagrangian for a rigid rotor. The momentum conjugate to α, J = Bα̇+ θ/2π, is
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therefore quantized and takes on integer values (in units where � = 1). Converting
from the Lagrangian to the Hamiltonian and setting J = n gives the energy
eigenvalues

En =
1

2B

(
n− θ

2π

)2

. (11.51)

The shift θ → θ + 2π leaves the spectrum invariant, although with a relabeling
of states, reflecting the periodicity of the θ parameter.

For θ = 0 all levels but the ground state are degenerate, with En = E−n. For
θ = π all levels are paired, with En = E1−n. In both cases the degeneracy is
a consequence of the invariance of the Hamiltonian under time reversal. For all
other values of θ this time-reversal invariance is broken and the degeneracy is
absent.

Now suppose that we add a potential energy K(1−cosα), with K � 1/B; the
rotor is now perhaps better viewed as a rigid pendulum. There is now an energy
barrier against motions in which the pendulum makes a full rotation. For energies
less than the height of this barrier the classical pendulum only oscillates back and
forth, but the quantum pendulum can also tunnel through the energy barrier and
make a full rotation. In the path integral, it is only the latter type of path that is
sensitive to θ. Because these paths are associated with tunneling processes, the
θ-dependence of the low-energy eigenvalues is exponentially suppressed, as are
the T-violating energy splittings.

Let us now return to the Yang–Mills theory, and ask what observable effects
the θ term might have. There could be a θ-dependence of the vacuum energy,
but since θ is fixed there would be no way of observing this.6 A more promising
possibility is to look for signals of the symmetry-breaking properties of the θ
term. The presence of εμναβ means that this term violates both parity and time
reversal; because of CPT invariance, the latter implies CP violation.

In QCD, the apparent divergence of the integral over instanton sizes means
that, although these are instanton effects, there is no exponential suppression.
Could a QCD θ term, then, provide an explanation for the experimentally
observed CP violation that would be an alternative to that based on a phase
in the CKM matrix? Just two pieces of data are sufficient to show that it cannot.

The first observations of CP violation were in kaon decays. For example, the
ratio of the amplitudes for the CP-violating decay K0

L → π+π− and the CP-
conserving decay K0

S → π+π− is [265]

|η+−| =
∣∣∣∣A(K0

L → π+π−)
A(K0

S → π+π−)

∣∣∣∣ = 2.2× 10−3 . (11.52)

On the other hand, a neutron electric dipole moment dn, which would be
T-violating (and therefore CP-violating) has not been observed. A natural scale

6 However, in axion theories the axion field effectively plays the role of a spacetime-dependent
θ and has an effect on the energy density that is in principle observable.
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for such a moment would be e times 10−13 cm, the characteristic length associated
with the nucleon. Experimentally, however, [265]

dn < 2.9× 10−26 e−cm , (11.53)

thirteen orders of magnitude below the natural scale.
In the standard model, this extra 10 orders of magnitude suppression of the

neutron electric dipole moment is attributable to the fact that CP violation is a
weak interaction effect. There is no such suppression in the kaon decays, because
the decays themselves are already weak interaction processes. On the other hand,
if the θ term were the origin of the CP violation, there would be no need to invoke
the weak interactions and therefore no reason to expect such a large discrepancy
in the magnitudes of the two effects. Any value of θ large enough to explain
CP violation in the kaon system would produce a neutron dipole moment far in
excess of the experimental bounds. Hence, a θ term cannot be the explanation
of the observed CP violation.

Rather than being a solution, the possibility of such a term is actually a serious
problem. Because there is no weak interaction suppression, the smallness of the
neutron electric dipole moment places a stringent limit on θ. An estimate using
current-algebra methods gives [266]

dn ≈ 5× 10−16 θ e−cm . (11.54)

Comparing this with Eq. (11.53), we see that θ must be less than 10−10 or so.
Understanding why this parameter in the Lagrangian should take on such an
unnaturally small value has become known as the strong CP problem.

This problem is exacerbated by the presence of fermions in the theory. To
understand this, consider the mass term for a single fermion field. This is usually
written in the form

Lm = −mψ̄ψ = −mψ̄LψR + h.c. (11.55)

with m real and h.c. denoting the Hermitian conjugate. However, by redefining
fields we can convert this to a complex mass parameter. With ψ′ = eiαγ

5
ψ,

Eq. (11.55) becomes

Lm = −me−2iαψ̄′
Lψ

′
R + h.c.

≡ −m′ψ̄′
Lψ

′
R + h.c. (11.56)

This redefinition can be viewed as a chiral transformation of the Lagrangian.
Classically, this would be a symmetry if the mass term were absent and would
imply the conservation of the Noether current jμ5 . Now recall that in the presence
of a symmetry-breaking term the divergence of a Noether current is related to
the infinitesimal change in the Lagrangian ΔL by

∂μJ
μ
Noether = ΔL . (11.57)
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11.5 CP violation and the θF F̃ term 251

Taking α in Eq. (11.56) to be infinitesimal, we would then conclude that

α∂μj
μ
5 = 2iα

(
mψ̄LψR − h.c.

)
. (11.58)

However, we know that this classical result is not the whole story, since even in
the absence of a fermion mass jμ5 has a nonzero anomalous divergence given by
Eq. (11.12). This, in turn, tells us that the change in the Lagrangian is not given
just by the right-hand side of Eq. (11.58), but rather by

ΔL = 2i
(
mψ̄LψR − h.c.

)
+

g2

8π2
trFμνF̃μν . (11.59)

Thus, the same transformation that rotates the phase of m also adds an
additional FF̃ term; i.e., it shifts the value of θ. The invariant quantity is
θ̄ = θ − argm. If there are several flavors of fermions the mass term becomes

Lm = Mrsψ̄rRψsL + h.c. , (11.60)

where the possibility of flavor mixing means that the mass matrix M may have
nonzero off-diagonal terms. Generalizing the one-flavor calculation shows that
the invariant CP-violating parameter is

θ̄ = θ − arg detM . (11.61)

Before considering the effects of fermions it was hard to understand why θ should
be so small. This becomes even harder to understand once we realize that the
effective value of θ has a contribution from a fermion mass matrix that arises from
the coupling to a Higgs field whose vacuum expectation value has an arbitrary
phase.

One possible solution is for one of the fermions to be massless. The phase of
its mass (and, more generally, of the determinant of the mass matrix) would
then be ambiguous and θ could be shifted at will. Hence, all values of θ would
be equivalent and there would be no θ-dependent physical quantities. It has
therefore been suggested that the strong CP problem would be resolved if the up
quark were massless. However, current algebra and other evidence suggests that
it is not.

Perhaps a more plausible resolution of the puzzle is a Peccei–Quinn [267, 268]
type mechanism, in which there is a coupling to a complex scalar field that
dynamically sets θ̄ to zero. There is then a spontaneously broken approximate
U(1) symmetry whose pseudo-Goldstone boson is the axion [269, 270].

Another consequence of a nonzero θ, first pointed out by Witten, is seen in
the electric charges of magnetically charged objects [69]. Recall that the electric
charge plays a dual role in theories that include charged fields. On the one hand,
it is a quantity that is dynamically coupled to electric fields and that can be
measured by examining the Coulomb tail of these fields. On the other hand, it
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is proportional to the conserved Noether charge that arises from the invariance
of the theory under phase rotations of the complex charged fields.

The Noether charge is the generator of the symmetry transformation and is
constructed from products of the variation of the fields and the corresponding
conjugate momenta. Consider a transformation of the form

δAμ =
1
e

Dμ(φ/|φ|) ,

δφ = 0 (11.62)

in a theory with gauge coupling e where SU(2) is broken to U(1) by a triplet
field φ. [As in Chap. 5, boldface vector notation refers to SU(2) group indices.]
The corresponding Noether charge is

QNoether =
∫
d3x δAj ·Πj , (11.63)

where Πj is the momentum conjugate to Aj . If θ = 0,

Πj =
∂L
∂0Aj

= Fj0 , (11.64)

so

eQNoether =
∫
d3xDjφ̂ · Fj0 =

∫
d3x

[
∂j

(
φ̂ · Fj0

)
− φ̂ ·DjFj0

]
. (11.65)

The field equation DjFj0 = φ × D0φ shows that the last term in the second
integral vanishes, so

eQNoether =
∫
d2Sjφ̂ · Fj0 = QE , (11.66)

where the integral is over the surface at spatial infinity. In a gauge with
constant φ̂, Eqs. (11.65) and (11.66) reduce to the expression for the electric
charge in Eq. (5.84). Because QNoether is an integer, we recover the familiar
result QE = ne.

Adding the θ term of Eq. (10.32) changes the conjugate momenta, so that now

Πj =
∂L
∂0Aj

= Fj0 − θe2

16π2
εjklFkl . (11.67)

Repeating the above steps using this modified Πj and using the Bianchi identity
εjklDjFkl = 0 leads to

eQNoether =
∫
d2Sj

(
φ̂ · Fj0 − θe2

16π2
εjklφ̂ · Fkl

)

= QE −
eθ

2π

( e

4π
QM

)
. (11.68)
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11.5 CP violation and the θF F̃ term 253

The Noether charge, being conjugate to a periodic variable, remains quantized
in integer units. Hence, a monopole with magnetic charge QM = 4π/e must
actually be a dyon with electric charge

QE = ne+
eθ

2π
(11.69)

for some integer n. The periodicity of θ can be seen here by noting that the
replacement θ → θ + 2π leaves the spectrum of allowed electric charges invari-
ant. Because all magnetically charged objects have electric charges of this form,
these noninteger charges are consistent with the generalized charge quantization
condition of Eq. (5.16).

Looked at from a distance, the monopole appears like a point object and the
charged fields whose transformation led to the Noether charge are not evident.
The anomalous θ-dependent charge can then be understood by noting that we
effectively have ordinary electromagnetism supplemented by a term

ΔLem = − θe
2

8π2
E ·B . (11.70)

The Abelian Gauss’s law then becomes

∇ ·E− θe2

8π2
∇ ·B = ρ , (11.71)

where ρ represents any purely electric sources.7 It immediately follows that any
magnetic charge must be accompanied by an electric charge at the same point.

It should be stressed that this is not an instanton effect. The connection with
instantons (and the reason for including it here rather than in Chap. 5) is merely
the historical accident that it was the discovery of the instanton solutions that
led to the consideration of the effects of a θ-term.

Finally, there is an apparent puzzle if the theory contains massless fermions.
As was noted already, all values of θ would then be equivalent, which would
seem to be in conflict with the presence of θ in the dyon charge quantization
condition. The resolution can be understood in light of the discussion of fermions
and monopoles in Sec. 5.7. We saw there that the charged fermions create a
condensate cloud about the monopole core, with the radius of the cloud inversely
proportional to the fermion mass. As the fermion mass goes to zero, the charge
density of the fermion–dyon system moves out to spatial infinity, and so the
charge as measured at any finite radius goes to zero, regardless of the value
of θ [93, 118].

7 The presence of the θ-term here might seem to contradict the statement that adding a total
divergence to the Lagrangian density should not affect the equations of motion. The
explanation lies in the singularities of the Abelian gauge potential when a monopole is
present.
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