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Abstract
A reassessment of radiocarbon counting statistics in accelerator mass spectrometry (AMS) at the Andre E. Lalonde
National Facility revealed that the traditionally assumed Poisson distribution may not always apply. An extensive
analysis of 2.5 years of 14C and 12C data was conducted on a MICADAS™AMS. This study found that only 63% of
results adhered to Poisson statistics, while 34.2% showed slight deviations, and 2.8% exhibited strong non-Poisson
behavior. This finding challenges the classic assumption that radiocarbon AMS is inherently a Poisson process. This
study recommends considering non-Poisson models, specifically quasi-Poisson and negative binomial models, to
better account for internal error and improve the accuracy of the reported error. Integrating 12C current noise into
error calculations is also suggested as it plays a significant role in measurement variability. We would like to ignite
curiosity on other AMS laboratories to test the non-Poisson error framework with the broader aim of assessing its
applicability in improving conventional statistical models, error expansion methods, and in ensuring more accurate
and reliable 14C results.

Introduction

The Poisson distribution is a fundamental principle for estimating the variance of 14C count rates in
radiocarbon accelerator mass spectrometry (Burr et al. 2007; Stuiver and Becker 1986; Stuiver and
Polach 1977). The Poisson probability density function (Eq. 1) computes the probability of counting a
certain number of 14C events during a specific time lapse (Pinsky and Karlin 2011) or cycle time. The
number of counts per cycle is the same as count rate or counts per block (Ni) where i is the cycle or
block. The term μi is the expected counts per cycle and can be approximated to the average count rate.
AMS has long used Poisson uncertainty estimation from classical radioactivity-decay counting methods
(Povinec et al. 2009).

Pois N;µ� � � µN e�µ

N!
(1)

Typically, an AMS radiocarbon measurement is conducted by counting during s number of cycles
(e.g. s = 15 cycles). A group of cycles is called a run or pass (of the sample target wheel) and the entire
sample measurement consists of n passes. In statistical terms, the counts per cycle are observations
drawn from a population of unknown distribution, and the size s is the size of the statistical sample. If μ
is constant across the passes or stationary, then μ can be estimated from the global mean of counts per
cycle defined as
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µglobal � NT= n � s� � (2)

where NT is the total counts for the entire measurement. If the Poisson model is applicable, then the
absolute scatter (uncertainty) of the distribution of the whole set of count rates is given by

σpois � �������������
µglobal

p
(3)

If the mean count rate μ is not constant and behaves as a moving average across the passes of the
measurement, then the Poisson process is deemed non-stationary. The uncertainty of non-stationary
Poisson processes cannot be calculated with Eq. 3, but with σpois � �����

µi
p

, because the uncertainty
changes over time. Therefore, a model for μi must be estimated to capture the trend of the counts per
cycle (Ni). The non-stationary data can then be transformed into stationary data around μglobal by
detrending with an appropriate model μi (Poplová et al. 2017). Stationary and non-stationary processes
fail to meet a Poisson distribution when the measured scatter is higher than

�����
µi

p
. This situation is called

overdispersion. In short, counting statistics is the proposed model that dynamically describes the
uncertainty at a certain time point along the measurement is being executed.

Some papers discussing the counting of radioactive decay observed unusual overdispersion
attributed to unexplained events occurring during the counting process. Consequently, several
alternative models have been suggested (Currie et al. 1998). In the case of AMS, the ion source
physically destroys the graphite target during counting (Litherland et al. 1987). Therefore, owing to
sample destruction, AMS assays should be prone to events that lead to a non-Poisson counting
distribution. Nevertheless, most AMS studies do not report deviations from Poisson statistics.

In the field of radiocarbon by AMS, the Poisson processes have been investigated by measuring the
time between the arrival of each 14C particle at the detector, known as the interarrival time (Vogel et al.
2004). Vogel et al. (2004) showed a limited set of experiments where the interarrival time distribution
corresponded to Poisson processes. They measured only a few (n = 5) samples with different 14C/12C
ratios (14,12R) and three measurements at different cathode potentials. However, we believe there is still
insufficient evidence to assume that radiocarbon AMS counting follows a Poisson distribution. Rather,
radiocarbon Poisson distribution should be directly evaluated from the observed count rates,
considering the stability and conditions of the AMS signal.

From the point of view of the actual spread of the measurand of interest, 14C/12C ratio (14,12R), the
relative standard error of the whole measurement (Eq. 4) is calculated from the standard deviation of the
passes means (σmeans) factored by

���
n

p
(Malonda and Carles 2020) and such sampling means should be

normally scattered around the global mean 〈14,12R〉global as stated by the Central Limit Theorem (CLT)
(Evans and Rosenthal 2004; Malonda and Carles 2020). The factor

���
n

p
comes from the error

propagation of the uncertainty of n statistical samples. In Radiocarbon, Eq. 4 is the “external error”
(McNichol et al. 2001), and in this paper, it is denoted as the passes-based external error.

SEhXi; rel �
σX means

hXiglobal
���
n

p � σR means

h14;12Riglobal
���
n

p (4)

The proposed and expected relative standard error of the measurement should be calculated from the
Poisson uncertainty (σpois) of the distribution of the entire set of 14C count rates. For the count rates, the
distribution of the means is usually not performed. However, another property of the Central Limit
Theorem (Evans and Rosenthal 2004) tells that the σmeans for the count rates can be approximated by the
dispersion of the population factored by the sampling size (σpois=

��
s

p
). The approximation of σpois=

��
s

p
and definitions of μglobal from Eqs. 2 and 3 were inserted into Eq. 5 to calculate the widely accepted
Poisson relative standard error (“internal” error). We were unable to find any reference for this
demonstration except in Vogel et al. (2004) who used an abridged approach. We assume that the
inherited Poisson counting statistics have been so prevalent over time in radiocarbon AMS because of
the simplicity of Eq. 5 to quickly predict the error of the measurement.
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SE14C; rel �
σ14C means

hXi ���
n

p �
σpois��

s
p

µglobal
���
n

p �
�������������
µglobal

p
µglobal

�����
ns

p �
���������������������

1
µglobal � ns

s
� 1������

NT
p (5)

Aerts-Bijma et al. (2021) clearly defines both errors: “The internal errors are the 14C uncertainties, as
we calculate them along with the measurands, whereas the external errors are the uncertainties
observable from the spread in measurands.” The internal error is the expected uncertainty predicted
from counting statistics while the external error is the actual obtained uncertainty of 14,12R. It is
important to note that internal and external errors are both in the format of standard errors. It has been
argued in the literature that when the internal and external errors are about the same then the
measurement is dominated by counting statistics (Bonani et al. 1987; Tumey et al. 2004; Vogel et al.
2004). However, these two errors should follow a chi squared distribution and sometimes they differ
within this chi-squared framework. In short, the internal error (Eq. 5) is obtained by assuming a
stationary Poisson counting model μ = μglobal and by assuming the CLT is applicable.

The non-Poisson distribution models we employed are the quasi-Poisson (qp) and the negative
binomial (NB type 1) models, which account for overdispersion. These models are different, as reflected
by their absolute counting uncertainty shown in Eqs. 6 and 7 (Dupuy 2018; Greene 2008; Tjur 1998).
For simplicity, the general form of the non-Poisson absolute uncertainty can be seen as the product of a
dispersion parameter (D) with the root of the overall mean counts per cycle D �������������

µglobal
p� �

.

σqpois � �������
ϕqp

p �������������
µglobal

p
(6)

σNB �
�����������������������
1� ϕNB1� �

p �������������
µglobal

p
(7)

For the NB model, the stationary data is fitted by iteratively maximizing the likelihood where the
parameter φNB1 is optimized to the stationary data and the mean is assumed constant. The NB model is a
Poisson model where μi has a Gamma distribution with scale parameter φNB1. While the qp model has a
dispersion calculated from the Pearson χ2 and the degrees of freedom. The dispersion D, which is
defined here as higher or equal to 1 and decided by �������

ϕqp
p or

�����������������������
1� ϕNB1� �p

, quantifies how many times
wider the actual distribution (histogram of detrended count rates affected only by a random process)
would be relative to a Poisson distribution. Similarly to Eq. 5, the relative standard error for the models
with overdispersion can be written as Eq. 8, which is a multiplied version of the Poisson error. Thus, the
non-Poisson model is versatile and supports Poisson or non-Poisson conditions depending on the
calculated D.

SEnon�pois; rel �
D������
NT

p (8)

The dispersion D is exclusively related to the counting statistics which is the most basic error level,
and the counting error must be propagated with other uncertainty components related to δ13C correction,
standard and blank corrections to calculate the next level of error, the quoted error (Aerts-Bijma et al.
2021). Several laboratories have adopted the concept of error multiplier (Scott et al. 2007) to capture
sources of variation that appear at the replication level and are not accounted for in the quoted error. The
non-Poisson error and the error multiplier are difficult to compare, however, their magnitudes are
indirectly related. The quoted errors can be further expanded by empirical functions comparing the
replicated measurements to infer error multipliers or other top-down parameters (Salazar et al. 2021).
Examples of error expansion applications are: intercomparison studies that evaluate the quoted
uncertainty and the error multiplier. Calibration curves and age modeling use Poisson-calculated
expanded quoted errors (e.g. additive expansion) during the model construction (Blaauw et al. 2024;
Heaton et al. 2020; Scott et al. 2018). Thus, conceptually, non-Poisson quoted errors may create
differences in the expansion parameters, quoted errors, and inferences from intercomparison studies and
radiocarbon models.
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The aim of this paper is to demonstrate that radiocarbon AMS counting uncertainty is not necessarily
Poisson, and to accordingly show the advantage of using non-Poisson counting to comparably report
internal and external errors. We furthermore consider if the uncertainty or noise of the 12C current
coming from instrumental instability should be accounted for in the internal error. Our objective is to
develop a non-Poisson framework for radiocarbon AMS uncertainty estimation. A time-dependent
model Ji for the 12C current was inferred, and then a time-dependent model μi was inferred from Ji. The
count rates were detrended to obtain stationary counting data distributed around μglobal to finally
measure the non-Poisson overdispersion with Eq. 8. The core calculations were not novel but well-
established tools in the field of statistics, and an abridged code can be found in GitHub (github/oPAC).
Simulations of 14C counting were carried out to validate our equations and to explain the empirical
results. We hypothesized that non-Poisson counting statistics applied to our 14C counts would perform
better than conventional Poisson statistics by comparing their respective internal errors relative to the
external errors. This reassessment gives a more robust error calculation framework related to the AMS
instrument itself during the days of measurement in a basic level of error estimation. The broader
motivation is to show the non-Poisson error can affect the traditional quoted error and thus, as explained
previously, the potential to affect parameters of existing calibration curves, age modeling, and
interlaboratory studies.

Materials and methods

MICADAS AMS instrument

The MICADAS main ion optics were tuned before every measurement, but the range of running
conditions did not change considerably over 2.5 years of data acquisition. The main instrumental
running conditions ranges were: source cathode potential 7.146 kV (fixed); source ion potential 30.32
kV (fixed); source ionizer heating 122±10 W depending on the age of the ionizer and conditions of the
ion source, and Cs reservoir 120–130°C to keep the HE 12C beam current between 40–60 μA; extractor
potential –0.87±0.57 kV; box lens –15±1.9 kV; and accelerator 184.86 kV (fixed). The measurements
mainly were 14 passes, with a few measurements using 13 or 15 passes. The cycles were fixed at 20
seconds and 15 cycles per pass.

Data query and preprocessing

Two computer scripts written in the R language (R Development Core Team 2013) automatically
queried or simulated the variables corresponding to each measurement obtained with the MICADAS
AMS. The variables were: 12C current at the high energy side (Ii), 14C counts per cycle (Ni); 14,12R, and
13,12R ratios. The R script analysed these variables at the cycle and pass levels. In our system, the 14,12R
accuracy degrades for C masses lower than 0.4 mg when using conventional high-mass standards. Thus,
samples with C mass lower than 0.5 mg were rejected to ensure that the mass was not a variable that
affected the value and uncertainty of the ratio and counts. The models μi and Ji were inferred from the
analysis of Ni, Ii at the cycle level, which ultimately were used to calculate the internal error using the
distribution models quasi-Poisson and negative binomial type II. A more detailed description of the
calculations can be found in the online Supplementary materials.

Our shortest counting time unit was a 20-second cycle length. The count rate was the total 14C
particle counts corresponding to each cycle, while the 12C current was the mean. During each pass, the
cycles are repeated s times (e.g. s= 15) and then the graphite target is changed to the next sample in the
sequence. The passes were repeated n times (e.g. n = 14). Thus, a typical 14C AMS measurement had
210 cycles, and the datasets (Ni, Ii) each had 210 entries.
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Determination of J from the 12C current and μ from the current and count rates

Because the passes of each graphite target were measured periodically, the target heated up during
sputtering and cooled down during idling. Consequently, the trends of the 12C and 14C signals were not
continuous relative to their neighbor passes, as shown in Figure 1a, b. Therefore, individual models for
Ji and μi were inferred for each pass. The Ji model was a cubic smooth spline calculated on the 12C
current data (Ii). Ji was proportionally scaled and converted into a count model to obtain a first estimate
for μi using Eq. 9. In Eq. 9, Ji is scaled by the mean of the counts per cycle and a scalar A divided by the
mean 12C current of the pass. Each pass had its corresponding μi and Ji models.

µi � A � Ji �
hNipass
hIipass

(9)

µi � B � Ji � 14;12R (10)

If the 14,12R value was known, then, theoretically, the 14C count rate μi could be calculated with Eq. 10,
which includes the constant B, which incorporates beam transmission, electron charge, detector efficiency,
and live counting time. Eq. 10 justified our selection of Eq. 9 to model the count rate from the data. Eq. 10
was employed during the simulations to convert the ratio and current into the count rate model.

The goodness-of-fit for μi was evaluated with the Akaike Information Criterion (AIC) calculated
with Eq. 11 where P is the number of parameters and Lpois is the Poisson loglikelihood calculated with
Eq. 12. The AIC was minimized by optimizing the proportional constant A and by variating the
smoothness parameter of the Ji cubic spline which was scaled to infer μi. Graphically, the models can be
seen in the insets of Figure 1a, b corresponding to the first pass.

AIC � 2P � 2Lpois (11)

Lpois �
X

ln Pois Ni; µi� �� 	 (12)

Transforming a non-stationary model into a stationary model for counting statistics

After determining the optimum Ji and μi models for each pass, the counts per cycle (Ni) were
transformed into a stationary model. As mentioned above Poplová et al. (2017) did this by fitting a trend
model of their count rates, which is akin to our μi. Using a Z-score, they could detrend the original signal
and found the stationary transformation which is the set of scattered counts (Ni’) relative to a constant
global mean (μglobal). The Z-score for a Poisson process is

Ni � µi� 	= ����
µ

p
i � N 0

i � µglobal

� �
=

����
µ

p
global (13)

The numerator represents the detrending of the raw signal and the denominator normalizes it relative
to the Poisson uncertainty. The left side of Eq. 13 uses the non-stationary model, and the right side is the
stationary model. In our case, instead of the Z-score, our transformation (Eq. 14) was based on the
Pearson’s χ-squared: χ2 � Ni � µi� 	2=µi which is the square of the Z-score. The solution of Eq. 14 gave
the transformed counts per cycle as shown in Eq. 15 and Figure 1c where Ni’ is an integer and the root
sign is the sign of Ni – μi.

Ni � µi� 	2=µi � N 0
i � µglobal

� �
2=µglobal (14)

N 0 � µglobal 

���������������������������������������������
µglobal � Ni � µi� 	2=µi

q� �
(15)

Once the counts per cycle of a pass were transformed then the process was applied to the next pass. A
one-time Grubb’s outlier detection at a confidence level α=0.05 was applied to the transformed counts
(Alrawashdeh 2021) to ensure outliers were eliminated to avoid instabilities in the fitting calculations.
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Figure 1. Graphical representation of the AMS data and model fits. Because the simulations fit the
empirical data, simulations are only shown in Figure (a). (a) Empirical approximation of the simulation
with spline models to the empirical and simulated behavior of the HE 12C current. The inset shows the
details of the smoothness of the model and data points for the first pass which are further separated in
knots by the algorithm. (b) Non-stationary behavior of the raw 14C count rate with the model inferred by
proportionally bringing the 12C model into count rate scale. (c) Stationary transformation of the raw
14C counts (N’) at the cycle level and second type of transformation at the passes level (〈N〉”). (d)
Histogram of the stationary-transformed counts (N’) with a superimposed theoretical Poisson
distribution. (e) 14,12Ri values for each cycle i and the value of the mean ratio corresponding to each
pass 〈14,12R 〉pass. (f) Schematic explanation of the need of including the 12C current uncertainty into the
accounting of the internal error.
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The non-stationary to stationary transformation basically aligned the mean count rate of each pass to the
global mean, see black line in Figure 1c. This alignment removed any scatter or drift of the mean count
rate occurring along the passes, leaving only the dispersion of the counts. Next, we calculated the quasi-
Poisson overdispersion using the Pearson χ2 (Tjur 1998) and the degrees of freedom (df) with Eq. 16.

ϕqp �
χ2
pearson

df
� 1

df

X
ns
i�1

Ni � µi� 	2=µi �
1
df

X
N 0
i � µglobal

� �
2=µglobal (16)

The quasi-Poisson is not a real distribution but a model to which an overdispersion and quasi-
likelihood calculations have been developed to deal with overdispersion and under-dispersion (non-
Poisson situations). The application of Eq. 14 ensured that the dispersion was preserved from the non-
stationary model into the stationary model, at least, from a quasi-Poisson point of view. In both
situations, the degrees of freedom (df) were taken as ns – n.

Finally, we fitted the negative binomial distribution to the transformed stationary count rates using
the generalized linear model option “gamlss” from the package “gamlss” in R (Rigby and Stasinopoulos
2005; Stasinopoulos and Rigby 2007). The generalized linear method (GLM) is a fitting of the counts
which outputs φNB1, but φNB1 must be corrected for the right df (see Online Supplementary Materials).
Finally, we calculated the dispersion parameter D as �������

ϕqp
p or

�������������������
1� ϕNB1

p
; the internal error from the

counting statistics and the external error from the 14,12R ratios. The code in R program language to infer
the models J and μ can be downloaded from github (github/oPAC) for using csv data files.

Cycles-based external error

The conventional method for expressing external error for AMS consists of calculating the standard
error of the means 〈14,12R〉 corresponding to each pass, as depicted in Eq. 4. The conventional passes-
based external error is the scatter of 〈14,12R〉pass (red lines in Figure 1e) which contains n–1 degrees of
freedom. Furthermore, another external error is the standard error of all the 14,12Ri values corresponding
to all the individual cycles which account for ns–1 degrees of freedom as defined in Eq. 17.

SE Xh i;rel �
σR cycles

14;12R
	 


global

�����
ns

p �

�������������������������������������������������������������������������������Pns
i�1

14;12Ri � 14;12R
	 


global

h i
2
�

ns � 1

s
14;12R
	 


global

�����
ns

p (17)

The equivalency of Eq. 17 to Eq. 4 originates from the Central Limit Theorem which equates the
standard deviation of the means to the standard deviation of the population factored by the root of the
sample size σR means � σR cycles=

��
s

p
where the number of cycles per pass (s) is the sample size (Brussolo

2018; Ruggieri 2016). The same approach was applied to the counting uncertainty to deduce internal
error in Eq. 5. Here, we compared the cycles-based external error to the conventional passes-based
external error to test if the results were obeying the Central Limit Theorem.

Calculation of the 12C noise (uncertainty)

The high-energy 12C beam current (Ii) relative uncertainty, shown in Eq. 18, was the noise of the current
around a perfectly smooth model Ji. We can show that the form of Eq. 18 is similar to Eq. 17 if the value
of Ji was constant as 〈14,12R〉global then it would be possible to take Ji out and by approximating ns to ns–1
then both equations would be almost the same.

SEC12; rel �

����������������������������Pns
i�1

Ii�Ji
Ji

h i
2

r
ns� 1

(18)
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The 14,12R inset (Figure 1f) shows that a perfect ratio without scatter (horizontal red line) could be
obtained across a pass by dividing the models of the count rates and current (μi/Ji) which are also smooth
and proportional to each other in their respective scales. Therefore, the count rate scatter and the noise of
the current are both translated into the scatter on the 14,12R values. Mathematically, the ratio is a function
of the models and their uncertainties: 14;12Ri � �µi ± Δµi�= Ji ± ΔJi� �whereΔμi= μi-Ni andΔJi= Ji-
Ii. For this reason, the effect of the 12C uncertainty on the overall internal error calculation was taken into
consideration in this paper.

Novel passes-based internal error

D2
passes � ϕpasses �

s
n

X
n
pass�1

hJT ;passi
IT ;pass

hNiipass
� �

� hµiglobal
h i

2

hµiglobal
(19)

SEpasses; rel � Dpasses=
������
NT

p
(20)

The derivation of the passes-based internal error (Eq. 19) is shown in the Supplementary Materials.
In Eq. 19 and 20; NT is the total 14C counts of the whole measurement of n passes, each pass containing s
cycles. NT is the same concept defined for Eq. 2 and 5. NT � Pns

i�1 Ni. IT,pass is the accumulated 12C
current magnitude corresponding to each pass. IT ;pass �

Pi0�s�1
i�i0 Ii. Each pass is defined between i0 and

i0�s–1 cycles. For example, the first and second passes for s=15 are defined by cycles 1 to 15 and 16 to
30 respectively. 〈JT,pass〉 is the average of accumulations of the J model current corresponding to each
pass defined as hJT ;passi � 1

n

Pn
pass�1 JT;pass where the cumulative JT,pass is defined exactly as IT,pass.

Both 〈JT,pass〉 and IT,pass are accumulations at the passes level with similar magnitude, and there is no
need for conversion into electrical charge. 〈Ni〉pass is the average 14C counts per cycle for each pass
calculated as the total counts corresponding to each pass divided by the number of cycles.
hNiipass � 1

s NT;pass. 〈μ 〉global is also an average 14C counts per cycle of the model calculated as the
global accumulation relative to all the cycles (ns). hµiglobal � 1

ns µT . One IT,pass, JT,pass and 〈Ni〉pass
value is calculated for each pass. IT,pass = {IT,1 : : : IT,n}, JT,pass = {JT,1 : : : JT,n}, 〈Ni〉pass ={ 〈Ni〉1
: : : 〈Ni〉n }.

A closer inspection of Eq. 19 showed that the average counts per cycle of each pass, 〈Ni〉pass, is
weighted by a corresponding ratio 〈JT,pass〉/ IT,pass which depends on the 12C current model J and the
current data I. These ratios distribute around 1. In other words, 〈Ni〉pass is being transformed (see Eq. 21)
and consequently, Eq. 19 can be rewritten as Eq. 22. The transformation 〈N〉”pass corresponding to each
pass is illustrated in Figure 1c as horizontal red lines.

hNi00pass �
hJT;passi
IT;pass

hNiipass (21)

D2
passes � ϕpasses �

s
n

X
n
pass�1

hNi00pass � hµiglobal
� �

2

hµiglobal
(22)

Simulation of the 14C count rates

The raw counts of an AMS radiocarbon measurement, as noted above, were simulated by arbitrarily
drifting the high-energy 12C current (Ii) in a similar fashion to real measurements. The drift function
shape and magnitude were chosen from our long experience running graphite samples. The simulation
assumed the observed 14C count rates were random integers that follow a non-Poisson distribution. The
expected 14C count rate was taken as the local count rate model (μi). The expected count rate was
calculated for each cycle i multiplying the HE 12C current with or without Gaussian noise by the 14,12R
absolute value and the cycle time; dividing by the elementary charge in Coulombs and supposing 100%
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transmission from the high energy side until the counting detector (see Eq. 10). At each cycle, a random
count rate Ni was generated around the calculated expectation μi using the negative binomial random
integer generator of the R program Ni � NB µi; ϕin� �. A Poisson distribution could be simulated when
φin =1. In this way, the underlying dispersion (φin) was known. Like the empirical data, the models J
and μ were inferred from the simulated current and counts rates, which were transformed into N’i. The
GLM fitting was carried out and the dispersion D was calculated. The parameters of interest, like 12C
noise, HE 12C current, non-Poisson dispersion and other parameters, were systematically and uniformly
sampled, and the simulation was repeated in a Monte Carlo fashion. This method allowed the simulated
uncertainty of the 14,12R ratio to depend on the combination of the dispersion of the 14C counts and the
12C uncertainty or noise.

Results and discussion

Validation of the simulations

Our strategy for validating the simulations was to compare our simulated uncertainty to empirical results
from the literature and our own measurements. The studied parameters that affect the simulated
uncertainty were the sample 14,12R value, the number of passes (data points), and the beam currents.
Furthermore, we assessed how much the simulated internal error explained the external error under
Poisson conditions.

The Poisson distribution demonstrated a better fit to the count rate data and produced a more realistic
model than the Normal distribution, as shown in Figure S1 (Supplementary Materials). The symmetrical
position of the confidence intervals of the Normal distribution created a small but nonsensical
probability of negative counts for a fossil sample. The Poisson distribution shape not only changed with
the mean, but it was asymmetric, bounded at zero counts (Figure S1b), and this property gave zero
probability of negative counts. Modern samples were exempt from the Gaussian failure because their
means were far from zero, as shown in Figure 1d. Nevertheless, the Poisson distribution was chosen
because it was applicable to every type of sample.

We characterized the beam current as its maximum value at the high energy (HE) side, e.g. 12C=20
μA in Figure 1a. The error magnitudes from the simulations (Figure 2a) at 14 passes were comparable to
the empirical results extracted from our AMS database (see Figure S2). The range of errors in the
simulation, (0.5–3)×10–3 in units of absolute 14,12R (1×10–12), was a bit higher than the empirical range
(0.4–2) ×10–3, which was also in units of absolute error. In addition, the magnitude of the simulated
errors (Figure 2a) was comparable to empirical errors from the literature, Figure 5 in Salazar and Szidat
(2021). The error scale in the literature was (0.5–4) ×10–3 F14C. The conversion of our simulations
absolute errors into F14C should result in a similar range to the literature empirical range because our
oxa2 always has consistently given an absolute 14,12R of (1.45–1.5) ×10–12 and the δ13C correction is
too small to change the errors scale. It must be noted that the literature results were a compendium of
four publications. The parabolic shape of Figure 2a agrees with empirical measurements and theory
from Nadeau and Grootes (2013).

Another interesting point about our simulations was that the scatter of the measured errors depended
on the number of passes (Figure 2a, b). Every data point in Figure 2a, b came from the simulation of a
certain number of passes (everything in Figure 1). This meant that repeating the simulation for the same
conditions did not return the same measured error but a distribution of errors. This variability of the error
measurement was due to the stochastic nature of the process. The parameter output of stochastic
simulations is a distribution of values. A very simple example is generating a number of random values
around a straight line with an underlying slope. Every time the simulation is performed, a slightly
different slope is measured. In our case, when the number of simulated data groups was increased from
14 to 90 passes, then the variability of the measured errors decreased or in other words, the width of the
output distribution of the errors became narrower.
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The behavior of the absolute Poisson error showed a decaying pattern with the increase of the 12C
beam currents (Figure 2b). The decaying shape of the plot was expected because at higher beams, the
number of counts increased, and the measurement uncertainty decreased. One method to proportionally
increase the beam 12C current, empirically, is to increase the sample carbon content within a certain
range (Pearson et al. 1997). These authors showed how the error decayed by increasing the sample C
mass; thus, we can interpret that their error decayed with 12C current, giving a similar shape as our
simulations (Figure 2b).

We compared several measurement errors with the conventional passes-based external error
calculated using Eq. 4 (see Figure 2c, d). In both figures, the errors are scattered around the 1:1 line. The
fact that there was a trend between the cycles-based external error and the passes-based external error

Figure 2. Validation of the model simulations with Poisson distribution. (a) Absolute Poisson error
behavior across a range of 14,12R values (0.003–1.4) ×10–12 for two sets with different number of
passes. 12C current=20 μA max. (b) Absolute Poisson error behavior across a range of maximum 12C
currents for 14,12R=1×10–12 for two sets with different number of passes described in (a). The legends
for (a) and (b) are the same. (c) 1:1 plot of relative errors vs. relative external error for 14 passes. The
14,12R sample range was (0.003–1.0) ×10–12 and the same conditions as (a). (d) 1:1 plot of the relative
errors vs. relative external error for 14 passes and the same conditions as in (b). The legends for (c) and
(d) are the same.
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demonstrated that the Central Limit Theorem was applicable to the simulated data for these Poisson
conditions as explained in the introduction. The errors that lay exactly on the 1:1 line presented a
reduced χ2 of 1, while the distribution around the 1:1 line should reflect a χ2 distribution. This
distribution is presented in the last part of the Results section. In some papers, it had been argued that
only when the internal and external errors are about the same then the uncertainty is mostly due to
counting statistics (Bonani et al. 1987; Tumey et al. 2004; Vogel et al. 2004). However, here we argue
that because both errors obey a χ2 distribution, then sometimes these errors can differ but still the
counting statistics apply. One important condition of the simulations of Figure 2 is that they were fixed
to Poisson distributions, and the measured quasi-Poisson error was similar to the Poisson error. This
demonstrated the accuracy and versatility of the equation for the quasi-Poisson error.

As expected, the Poisson error, on average, followed the passes-based external error in Figure 2c, d.
These results reproduced the traditional equivalency of the internal and external errors in AMS which
relies on the CLT as shown in Eq. 4 and 5.

Simulated non-Poisson counting statistics

In this subsection, the simulation was carried out for count rate distributions spread away from the
Poisson distribution. The accuracy and precision of measuring the dispersion D was checked and how
this precision depended on the number of passes under non-Poisson conditions. Finally, a new passes-
based internal error was demonstrated.

Under non-Poisson conditions, the histogram of the particles of Figure 1c became wider than a
Poisson distribution (see Poisson example in Figure 1d) when the dispersion D was increased in the
simulation. This generated data (input) was fed into the statistical model calculations to output the
dispersion D and the errors. The measured dispersion D (D output) presented a good agreement with the
input dispersion D for 14 and 90 passes, as shown in Figure 3a, b. This agreement showed that our
method of calculating the non-Poisson dispersion was accurate. The uncertainty to measure the
dispersion D was quantified with the confidence interval width (σD = 0.050 and 0.021 for 14 and 90
passes, respectively) corresponding to the D input-D output plots (Figure 3a, b). The magnitude of the
scatter σD translates into higher uncertainty to measure D. The difference in scatter between Figure 3a,
and 3b was explained above in “validation of the simulations.” If more data points (passes) were
available, then the measurement of the error of the whole measurement would become more robust
(better reproducibility and accuracy of measuring the error). Figure 3a, b also showed that the Negative
Binomial method produced a similar dispersion D to the quasi-Poisson method. This is significant
because the Negative Binomial is computationally exhaustive and involves optimization of the NB
model recursively, while the quasi-Poisson just outputs the Pearson χ2 equation once. Thus, the quasi-
Poisson method is an accurate and simple equation to calculate the non-Poisson error.

The errors of Figure 3c, d corresponded to the simulations of Figure 3a, b; therefore, the increase of
the error was due to the increase of the 14C dispersion D. As expected, the measured Poisson error of the
simulations was not able to capture the increase in count rate dispersion, while the quasi-Poisson and the
cycles-based external errors (Eq. 17), to some degree, correlated with the conventional passes-based
external as shown by their slope and scatter around the dashed line on Figure 3c. The Pearson
correlation coefficient (r) of the quasi-Poisson vs. passes-based external errors was 0.47. When the
number of passes was increased from 14 to 90, then the quasi-Poisson errors showed a better agreement
with the passes-based external error with a r= 0.78. The same increase in agreement occurred for the
cycles-based external (Figure 3d). The increase in correlation was mainly due to the increase in slope
which became closer to the 1:1 line. The agreement of the cycles-based external error at higher number
of passes indicated that the CLT required more data points to be applicable under non-Poisson
conditions. In practice, to measure 14 passes, it takes 2.4 days but 90 passes would take 15 days and
consume entirely the sample target. The 90-passes results are depicted primarily for demonstration
purposes. Nevertheless, the quasi-Poisson error, to some degree, can follow the external error much
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better than the Poisson calculations under non-Poisson conditions. The uncertainty to measure the
dispersion D (σD) decreased very fast, starting at 7 passes and stabilizing at 90 passes (see Figure S3 in
the Supplementary Materials). The quasi-Poisson error correlation r with the external error increased
very fast for the same range of passes.

We suggest that the difficulty in capturing the conventional external error using the quasi-Poisson
internal error and the cycles-based external error arises because they are calculated at the level of the
cycles and conventional external errors are based on the passes. Therefore, we developed a novel
internal error which was based on the count rates analysed at the passes level (see Eq. 19, 20 and 22).
We emphasize the similarity between our novel passes-based internal error equation (Eq. 22) with the
literature quasi-Poisson equations (Eq. 16). This similarity of outcome validated Eqs. 19 and 22. The
passes-based internal error was derived from the conventional passes-based external error converted
into 14C count rates and 12C current. However, this conversion required that the models μ and J were
accurately measured. Furthermore, the passes-based internal error defined the 14,12R ratio averages at the
global and passes levels as the ratio of the total accumulation of each isotope at the respective level,
whereas the conventional external error uses true averages of the ratios.

The novel passes-based counting internal error (Eq. 22) showed excellent agreement with the
conventional passes-based external error (Eq. 4) as shown in Figure 3c, d. The passes-based counting

Figure 3. Simulated non-Poisson 14C counting statistics for 14,12R= 1.0×10–12 and 20 μA which
resulted in very similar NT counts for each dispersion D. (a) D input-D output plot is the plot of the
measured dispersion D vs. input dispersion D for 14 passes. 2σ confidence interval is shown with
dashed lines. (b) Measured dispersion D vs. input dispersion D for 90 passes, (a) and (b) shares the
same legend. (c) Diverse relative errors vs. conventional passes-based external error for 14 passes.
(d) Diverse relative errors vs. conventional passes-based external error for 90 passes. The error
increase on the x,y axis on (c) and (d) was created by increasing the dispersion D of the 14C
distribution shown in (a) and (b).
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internal error was robust and independent of the number of passes in contrast with the other errors.
Eq. 22 was back- engineered from Eq. 4 but Eqs. 19, 22 have a different definition for the global and
passes ratios. In addition, Eqs. 19, 22 only work if the counting and current models are well inferred.

Simulated effect of the 12C uncertainty on the 14,12R error

The 12C uncertainty in Figure 4a was created by adding Gaussian noise into the input 12C current
function of the simulation and then quantifying the 12C uncertainty with Eq. 18. As noted in the
“Calculation of the 12C noise (uncertainty)” of the Methods, the 12C noise or uncertainty caused the
passes-based external error to increase in the range of 0.15%–0.45% for a modern 14C sample. However,
the increase of 12C noise did not cause the same effect in a low-14C sample. The reason is the 12C
uncertainty magnitude was too low (0.05%–0.35%) for the old sample compared to the overall error of
2.5%–5.0%. This result contrasted with the effect of increasing the 14C dispersion, which is the same for
both fossil or modern samples.

As expected, neither the quasi-Poisson and Poisson internal errors accounted for the 12C uncertainty,
as shown in Figure 4b, but a simple error propagation between the quasi-Poisson and the 12C uncertainty

Figure 4. Simulated 12C noise impact on error at 20 μA. (a) passes-based external error vs. the 12C
current noise for blank sample (14,12R=0.003×10–12) and modern sample (14,12R=1.0×10–12). The
external error of the blank shows no correlation with the 12C noise and stays within the dashed lines, while
for the Modern sample there is no increase within the dash square until high 12C noise. (b) Diverse
relative errors vs. the passes-based external error, including the error propagation of the quasi-Poisson
error and 12C uncertainty. The external error increase is due to the large increase of 12C noise from
0.05% to 0.35%. (c) Diverse relative errors vs. passes-based external error for a blank sample. The
variation of the errors in (b) and (c) were due to the variation of the 12C uncertainty as shown in (a).
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showed good agreement for a modern sample. The error propagation did not work for the fossil sample
(Figure 4c) due to the magnitude of 12C uncertainty being too small to cause any perceptible increase in
the overall error. On the other hand, the passes-based internal error from Eq. 22 worked well for both
cases. Figure 4 shows the importance of accounting for the 12C uncertainty to the internal error for non-
fossil samples for the simulated conditions.

In summary, with the developed equations and demonstration plots, we propose a framework for a
modified internal error calculation that include two novel aspects to explain the external error: the non-
Poisson distribution and 12C uncertainty. It was important to infer models for the count rate and the
12C current. Afterwards, it was possible to calculate the quasi-Poisson and 12C errors. The longer version
of the simulation involved the conversion to stationary count rates and the Negative Binomial modeling.

Our simulations showed that non-Poisson dispersion did not fully mirror the external error. However,
it was still, on average, closer to the external error than the Poisson error. We also showed that if the
12C uncertainty is low, then it has no impact on the overall error. It is necessary to quantify these errors
for each 14C measurement to check if they are considerable or not because the errors depend on many
conditions, such as the sample’s 14,12R, the 12C current magnitude, the number of passes, and instrument
stability.

Empirical results

We analyzed the number of Poisson, slightly non-Poisson and strongly non-Poisson results; we
measured the degree of 12C relative noise in the empirical data; examined the agreement of the internal
errors with the passes-based external error for Poisson and non-Poisson results from the point of view of
1:1 plots and the chi-squared distribution; and how the δ13C corrections improved the agreement in
average.

The number of Poisson and non-Poisson results were recorded in the form of a histogram, shown in
Figure 5a. We selected the threshold for Poisson results at a dispersion D range of 1–1.05. This selection
was based on the uncertainty of calculating the dispersion D (σD= 0.05) shown in the 2σ confidence
interval of the D input-D output plot (Figure 3a). We were not able to find a precedent for defining the
uncertainty of measuring the dispersionD usingD input-D output simulation plots, therefore using σD is
a novel decision-making method. The proportion of Poisson results was 63% out of 7985 samples and
reference materials within the range of dispersion D of 1.0 to 1.05 (1 to 1�σD). Around 34%
corresponded to samples with slightly non-Poisson dispersion D in the range of 1.05–1.2 (1�σD to
1�4σD). The number of samples with D higher than 1.2 (>1�4σD) was 227, or 2.8%. Overall, most of
the time, our instrument produced Poisson results, but the number of highly non-Poisson results cannot
be ignored since each reported error must be independently and carefully determined for each sample.
We think that the degree of non-Poisson error must be determined for each sample case by case. A
dispersion of 1.2 or higher means that the real error is considerably high, 1.2 times the Poisson error or
even higher. We can explain the presence of non-Poisson errors to the random instability of the AMS
instrument, but this is a preconceived explanation that needs to be studied in the future.

The number of sample measurements in previous work (Vogel et al. 2004) supporting Poisson
distribution was ca. 8. In our study, we found 227 radiocarbon measurements with strong non-Poisson
behavior (D>1.2). However, we can only generalize that Poisson behavior is observed more frequently
with non-Poisson exceptions, and we recommend that counting statistics should be measured for each
sample.

Figure 5a also shows that histograms for fossil samples (black trace) were similar to the whole
population (red trace). This similar behavior meant that the degree of dispersion D was independent of
the sample 14,12R value. Otherwise, the shape of these histograms would have been different. As a
routine procedure, each magazine measurement included at least four fossil samples. If the AMS
instrument was behaving “non-Poisson” during a certain measurement, then samples and fossil samples
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would have presented non-Poisson results or Poisson results depending on the instrument condition.
The same is true for all the other sample magazines; therein, the similarity of the histogram shapes.

On the other hand, the 12C uncertainty did not exceed a low value of 0.14%, as shown in the
histogram of Figure 5b for all the 14C samples measured in our laboratory. The simulations of Figure 4a
already showed that 12C uncertainty in the range of 0–0.14% is too low to affect the external error, thus
the 12C uncertainty can be discarded from the internal error of our empirical results. A low 12C
uncertainty cannot overcome the scatter or variability of the measurement of the external error, even for
a modern sample. Nevertheless, we cannot assume that 12C uncertainty can be neglected for radiocarbon
AMS. Every laboratory should measure their 12C noise to quantify it and decide.

The Poisson and quasi-Poisson internal errors, to some degree, agreed with the passes-based external
error (see Figure 5c) when the experimental conditions favoured Poisson statistics (D<1.05). There is
agreement between the internal and external errors as predicted by the simulations in Figure 2c. While,
for non-Poisson conditions, internal errors strongly deviated from a 1:1 agreement after 4% (Figure 5d)
with the quasi-Poisson error slightly better than the Poisson. The simulations in Figure 3c predicted a
stronger deviation under non-Poisson conditions vs. less deviation under Poisson conditions. The reason
that the internal and external errors, on average, agree is that their underlying relationship is the chi-
squared distribution which allows for many data points to strongly differ within a chi-squared range.

Figure 5. Empirical results for 14C non-Poisson dispersion and 12C uncertainty. (a) Histogram of
dispersion D for all the samples and standards in our database and for fossil samples. (b) Histogram of
12C uncertainty (noise) for all the samples. (c) 1:1 plot of relative errors vs. passes-based external error
at Poisson conditions: 1<D≤1.05, 12C uncertainty>0%, 20 μA <12C current<25 μA. (d) 1:1 plot of
relative errors vs. passes-based external error at non-Poisson conditions. Same conditions as (c) but
D>1.05.
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Empirical internal vs. external errors chi-squared relationship

The Central Limit Theorem tells us that the average ratios, corresponding to each pass (14,12R values) are
normally distributed because each pass is a statistical sample. Therefore, from the theory of the chi-
squared distribution (Anderson et al., 1994), the quotient Q should follow a chi-squared distribution
(Eq. 23) because Q is the sum of squared normally distributed values standardized by the proposed error
or expectation error (internal error). The proposed error is the hypothetical uncertainty that the data
should follow along the measurement, and we take the proposed error as a constant value over n passes.
For radiocarbon, the proposed error comes from the internal error shown in Eq. 5
(proposed err: � σpois=

��
s

p
). If the numerator of Q is multiplied and divided by n–1, the numerator

becomes the squared standard deviation (σR means)2 explained in Eq. 4. If we divide the numerator and
denominator by their mean values to set the errors in relative form and divide both sides by
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Over a 2.5-year period, many target samples were consistently measured using 14 passes (n = 14),
and a reduced Q value was calculated for each sample (Figure 6). The reduced Q value is Q divided by
n – 1. The theoretical reduced chi-squared distribution was also calculated for n= 14 and its distribution
shape was similar to that reported in the literature (Wendt and Carl 1991). Most of the reduced chi-
squared values are near to 1.0, but other values are higher or lower. This variability is due to normal
random events. If the histogram of the reduced Q values was different than the theoretical reduced chi-
squared distribution, then other sources of errors were affecting the results, outliers were present, or the
expectation error was incorrectly selected.

Both reduced Q histograms calculated with the raw 14,12R and the Poisson and quasi-Poisson errors
did not produce good chi-squared distributions (Figure 6a). Both reduced Q histograms had a tail to the
right side because the reduced Q values were higher than they should have been. In contrast, the
histograms of reduced Q values with the numerator calculated with the 14,12R values corrected by the

Figure 6. Reduced Q values histograms and reduced χ2 distribution. The area of the χ2 distribution
was approximately equal to the area of the histograms. The reduced χ2 distribution was generated by
generating the χ2 distribution for n=14 and then dividing by n–1. The reduced Q values were
calculated using two types of external errors relative to several proposed errors shown in the legends.
a) reduced Q values calculated with external error with raw ratios. b) reduced Q values calculated with
external error corrected with the δ13C information.
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δ13C presented a shape very similar to the chi-squared distribution (Figure 6b). Moreover, the quasi-
Poisson error produced a better distribution than the Poisson error. The quasi-Poisson error almost
mirrored the chi-squared distribution. As the internal errors were the same in Figure 6a and 6b, there is
an indication that the δ13C-uncorrected external errors were too high and not representative of the
variability of the measurement in Figure 6a. The uncorrected external errors were too high because
during the analysis, the measured 14,12R values were not constant but usually drifted. This 14,12R drift or
fractionation caused by machine instability or ion source sputtering was another error source or
uncounted error that was corrected by δ13C. The δ13C correction for carbon isotope fractionation,
including machine-derived fractionation was demonstrated by (Steier et al. 2004). The empirical
evidence of the δ13C-corrected external error agreeing with the internal error in a reduced χ2 fashion,
statistically, showed why the external error should be a realization of the expectation error or proposed
internal error.

The reduced Q values represent the ratio of external to internal error squared. Therefore, examining
the distribution of the reduced Q values offers another perspective on the data shown in the 1:1 plots of
internal error versus external error in Figure 5c and 5d. The reduced Q histograms show more detail and
clearer patterns than the 1:1 plots. All data pairs with reduced Q values close to 1.0 fell on the 1:1 line in
Figure 5. Figure 6a shows the same data of Figure 5c, d; however, the difference between the quasi-
Poisson and Poisson errors can only be realized in the reduced Q histograms. The ideal behavior of the
δ13C-corrected external error versus internal error in Figure 6b cannot be easily seen in a 1:1 plot. The
mechanism of δ13C correction consists on supposing that the raw 14,12R suffers the same drift shape but
twice in magnitude as the 13,12R along the passes, so the δ13C drifts from a universal constant value, –
25‰, decided by international convention (Steier et al. 2004). The magnitude of the δ13C drift is used to
push the raw 14,12R in the opposite direction, correcting the drift and leaving the scatter of the ratios. On
the other hand, as explained in the methods section, the non-stationary to stationary transformation
eliminates the drift of the count rates from an absolute constant value, its global mean. The drift is
eliminated by aligning the mean count rate of each pass to the global count rate; thus, doing a similar job
to the δ13C correction. For this reason, the δ13C-corrected external error is more compatible with the
internal error, being the non-Poisson error a slightly better representative of the count rate dispersion
from a chi-squared perspective.

Another important takeaway from Figure 6b is that sometimes, the internal and external errors can
differ as long as their squared ratios stay within the confidence region of a reduced chi-squared
distribution and the system is still governed by counting statistics. This chi-squared confidence region is
between 0.38 and 1.9 for degree of freedom of 13 and a significance level of 0.05. This takeaway
contradicts claims that both errors should be similar if artifacts and drift effects are well corrected
(Bonani et al. 1987; Tumey et al. 2004; Vogel et al. 2004). Furthermore, we propose that the definition
of internal and external errors should be extended to include the 12C uncertainty for completeness as
follows: “The internal errors are the propagated 14C and 12C uncertainties, as we calculate them along
with the measurand 14,12R, whereas the external errors are the uncertainties observable from the spread
in measurands.” In practice, the 14C counting uncertainty will continue dominating the internal error
with the expectation that the 12C uncertainty is, in general, too small as demonstrated in this work in
Figure 5c.

On the other hand, the reduced Q values corresponding to our passes-based internal error produced a
narrow histogram. The passes-based internal error ultimately failed to match the chi-squared distribution.
Therefore, the passes-based internal error is not independent of the conventional passes-based external
error. However, the novel passes-based internal error is an extremely good predictor of the passes-based
external error, as shown by the empirical data in Figure 5 and simulations (Figures 3, 4). The extremely
good agreement of the novel passes-based internal error with the conventional external error is indirect
evidence that the models Ji, μi were accurately estimated.
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Real-world applications

The quoted error absolute values were calculated with the equation proposed by Aerts-Bijma et al.
(2021) using Poisson or non-Poisson internal errors and converted to 14C years rounded to the nearest
integer (see Figure 7a). The subtraction between the non-Poisson quoted error and the Poisson quoted
error are shown in Figure 7b, c and this difference was considerable. Some specific examples with high
dispersion D (D>1.2) are written below in the format 14C of age ± Poisson quoted error, non-Poisson
quoted error: 49869 ± (437, 456) years BP; 40066 ± (134, 147) years BP; 29986 ± (73, 79) years BP
and 20112 ± (39, 43) years BP. The respective differences in the quoted errors are: 19, 13, 6 and 4 in
years BP. The respective ratios of the non-Poisson to Poisson quoted errors are: 1.04, 1.10, 1.08 and
1.10 which is a non-Poisson factor of 1.1 on average. These differences are representative values from
Figure 7b, c, but higher and lower values can also be expected.

As described in the introduction, it is usually observed that, at a higher processing level, the actual
uncertainty of replicates turns out to be higher than the quoted error due to unknown errors. The quoted
error has been an essential parameter for calculating expanded errors (by addition or by multiplication)
for many applications. Therefore, the usage of non-Poisson quoted errors should decrease the existing
known expansion parameters (e.g. error multipliers), helping to close the gap of unknown uncertainties.
For example, previously for Figure 7b, c; we showed that on average the non-Poisson quoted error with
high dispersion D was 1.1 times larger than the Poisson quoted error. While Aerts-Bijma et al. (2020)

Figure 7. Non-Poisson error translation into radiocarbon age quoted error. (a) Quoted error was
calculated from Poisson and non-Poisson counting statistics for different ages with dashed lines
indicating representative examples. (b) Difference between the non-Poisson and Poisson quoted errors
in radiocarbon years BP for the radiocarbon age range of 0–30,000 years BP. The differences are
divided in two groups: differences calculated including quoted errors that included non-Poisson errors
with dispersion D between 1 and 1.1 (black) and for dispersion D between 1.1 and 1.5 (red) (c)
Difference between the non-Poisson and Poisson quoted errors in radiocarbon years BP for the
radiocarbon age range of 30,000–50,000 years BP.

18 G. Salazar and L. I. Wassenaar

https://doi.org/10.1017/RDC.2025.10115 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2025.10115


found errors multipliers for graphitization, graphite�combustion and graphite�combustion�pretreat-
ment combinations to be 1.1, 1.4 and 1.6 respectively using Poisson quoted errors. Therefore, for this
specific example, the non-Poisson quoted error explains 100% of the graphitization error multiplier,
25% for the graphite�combustion combination and 17% for the graphite�combustion�pretreatment
combination. The apportionment explanation was calculated as non Poisson factor�1

error multiplier�1 × 100. The non-
Poisson error seems to be more realistic than the Poisson, but it is more complicated to calculate. In
contrast, the Poisson error is simpler to calculate for a quick and rough prediction of the error of the
measurement. Finally, the non-Poisson cannot explain all the systematic effects of replications at high
sample treatment level. These effects must be studied using a different method, top-down approach, in
future.

Conclusions and outlook

A new mathematical framework has been developed to quantify two novel parameters that affect the
internal error of radiocarbon AMS. These are the non-Poisson uncertainty of the 14C count rate and the
12C uncertainty or the noise of the 12C beam. Simulations were developed based on inferring
proportional models for the 14C count rate and 12C current and calculating the quasi-Poisson and 12C
errors.

These simulations were verified to examine how these two new parameters were affected by the
14,12R value of the sample, the 12C current magnitude, and the number of passes. Besides the nature of
the sample, the stability of the AMS instrument is primarily what controls these two parameters. The
simulations produced results similar to those of the literature and our empirical results. The simulations
helped to explain better the following relationships: internal and external error vs. sample 14,12R value
and vs. HE 12C current magnitude; and the 1:1 correspondence, on average, between the internal error
and external error for Poisson and non-Poisson conditions.

The analysis of more than two years of empirical radiocarbon results (7985 samples and reference
materials) indicated that most of the results (63%) showed Poisson characteristics, 34.2% were slightly
non-Poisson, and 2.8% had strongly non-Poisson characteristics. The 12C uncertainty ranged between
0% and 0.15%, which was too small to affect the external error of any 14C sample.

The comparison between the reduced Q value histograms and the reduced chi-squared distribution
showed the importance of the δ13C correction and within this frame of chi-squared distribution, we
showed that the quasi-Poisson error is slightly better than the Poisson, in general, to explain the
external error.

We emphasize that these results reflected the behavior of our MICADAS instrument. However, we
have clearly demonstrated that radiocarbon AMS cannot be assumed to be a Poisson process. While we
cannot generalize about how much non-Poisson behavior occurs on other Radiocarbon AMS
instruments or that the 12C uncertainty can be neglected, it would be fascinating to see these calculations
applied to other laboratories results.

Specifically, we hope our work encourages interest in radiocarbon laboratories evaluating:

• Non-Poisson statistical models, such as quasi-Poisson and negative binomial models, to better
account for internal error in radiocarbon AMS quoted errors, as traditional Poisson assumptions
cannot be assumed always to be valid.

• The 12C current noise, as it could significantly affect the measurement error, especially in modern
samples.
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Definition of concepts. Statistical sample: sometimes referred as sample is a set of data observations that should represent the
characteristics of the whole population. The population is an ideal concept, and it is the set of all possible data observations. In our
context, the set of all possible observations (e.g. ratios) from a graphite target. n is the number of passes in a measurement and s is
the size of the sample or the number of cycles per pass.
Internal error (cycles-based): uncertainty or error due to variability of the 14C counting.
Passes-based internal error: novel error of the counting means corresponding to each pass.
External error: Normal distribution uncertainty of the 14C/12C ratios.
Passes-based external error: conventional error of the ratio means corresponding to each pass.
Cycle-based external error: error of the ratios corresponding to all the cycles.
14,12R, 13,12R : variables that represents the 14C/12C or 13C/12C ratios.
Ii, Ni data: set of HE 12C and 14C count rate data respectively evaluated at each cycle i.
Ji, μi models: set of values of the mathematical models for the HE 12C and 14C count rate data respectively evaluated at each cycle i.
There is a single model for each parameter for each pass.
Dispersion D: model-dependant parameter that represents how many times the actual distribution of the count rates is wider than a
Poisson distribution. D is root of the quasi poisson φ (φqp) or could be the root of 1�φNB1.
φqp : the parameter of the quasi-Poisson model and comes from the Pearson χ2 of the count rates.
φNB1 : the parameter of the negative binomial model which is obtained from fitting the count rate data to the model. φNB2 is higher
than zero.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/RDC.2025.10115
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BlaauwM, Aquino-LópezM and Christen JA (2024)Modelling chronologically ordered radiocarbon dates in R. Radiocarbon, 1–11.
https://doi.org/10.1017/RDC.2024.56

Bonani G, Beer J, Hofmann H, Synal H-A, Suter M, Wölfli W, Pfleiderer C, Kromer B, Junghans C and Münnich KO (1987)
Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 29(1–2), 87–90. https://doi.org/10.1016/0168-583X(87)90210-2

Brussolo ME (2018) Understanding the central limit theorem the easy way: A simulation experiment. In The 2nd Innovative and
Creative Education and Teaching International Conference, Basel, Switzerland: MDPI, 1322.

Burr GS, Donahue DJ, Tang Y and Jull AJT (2007) Error analysis at the NSF-Arizona AMS facility. Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1), 149–153.

Currie LA, Eijgenhuijsen EM and Klouda GA (1998) On the validity of the Poisson hypothesis for low-level counting;
investigation of the distributional characteristics of background radiation with the NIST individual pulse counting system.
Radiocarbon 40(1), 113–127.

Dupuy J-F (2018) Statistical Methods for Overdispersed Count Data. Amsterdam: Elsevier.
Evans M and Rosenthal JS (2004) Probability and Statistics: The Science of Uncertainty, 2nd edn. New York and Basingstoke:

W.H. Freeman and Co.
GitHub (2025) Online project for AMS coding (oPAC). https://github.com/oPAC-2025/non-Poisson-calculations
Greene W (2008) Functional forms for the negative binomial model for count data. Economics Letters 99(3), 585–590.
Heaton TJ, Blaauw M, Blackwell PG, Bronk Ramsey C, Reimer PJ and Scott EM (2020) The IntCal20 approach to radiocarbon

calibration curve construction: A new methodology using Bayesian splines and errors-in-variables. Radiocarbon 62(4), 821–
863. https://doi.org/10.1017/RDC.2020.46

Litherland AE, Paul M, Allen KW and Gove HE (1987) Fundamentals of accelerator mass spectrometry. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 323(1569), 5–21.

Malonda AG and Carles AG (2020) Radioactivity counting statistics. In L’Annunziata M (ed), Handbook of Radioactivity
Analysis: Volume 2, 4th edn. Academic Press, 627–667.

McNichol AP, Jull AJT and Burr GS (2001) Converting AMS data to radiocarbon values: Considerations and conventions.
Radiocarbon 43(2A), 313–320.

NadeauM-J and Grootes PM (2013) Calculation of the compounded uncertainty of 14C AMSmeasurements. Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 420–425.

Pearson A, McNichol AP, Schneider RJ, Von Reden KF and Zheng Y (1997) Microscale AMS 14C measurement at NOSAMS.
Radiocarbon 40(1), 61–75.

Pinsky MA and Karlin S (2011) An Introduction to Stochastic Modeling, 4th edn. Amsterdam: Academic Press Elsevier.

20 G. Salazar and L. I. Wassenaar

https://doi.org/10.1017/RDC.2025.10115 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2025.10115
https://doi.org/10.1017/RDC.2020.101
https://doi.org/10.1017/RDC.2020.101
https://doi.org/10.1515/dema-2021-0041
https://doi.org/10.1017/RDC.2024.56
https://doi.org/10.1016/0168-583X(87)90210-2
https://github.com/oPAC-2025/non-Poisson-calculations
https://doi.org/10.1017/RDC.2020.46
https://doi.org/10.1017/RDC.2025.10115


Poplová M, Sovka P and Cifra M (2017) Poisson pre-processing of nonstationary photonic signals: Signals with equality between
mean and variance. PloS One 12(12), e0188622.

Povinec PP, Litherland AE and von Reden KF (2009) Developments in radiocarbon technologies: From the Libby counter to
compound-specific AMS analyses. Radiocarbon 51(1), 45–78.

R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for
Statistical Computing. Retrieved from http://www.R-project.org/

Rigby RA and Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). Journal of
the Royal Statistical Society: Series C (Applied Statistics) 54(3), 507–554.

Ruggieri E (2016) Visualizing the central limit theorem through simulation. PRIMUS 26(3), 229–240.
Salazar G and Szidat S (2021) Reassessment of uncertainty expansion by linear addition of long-term components from top-down

information. Radiocarbon 63(6), 1657–1671.
Scott EM, Cook GT and Naysmith P (2007) Error and uncertainty in radiocarbon measurements. Radiocarbon 49(2), 427–440.

https://doi.org/10.1017/S0033822200042351
Scott EM, Naysmith P and Cook GT (2018) Why do we need 14C inter-comparisons?: The Glasgow - 14C inter-comparison series,

a reflection over 30 years. Quaternary Geochronology 43, 72–82. https://doi.org/10.1016/j.quageo.2017.08.001
Stasinopoulos DM and Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of

Statistical Software 23(7). https://doi.org/10.18637/jss.v023.i07
Steier P, Dellinger F, Kutschera W, Priller A, RomW and Wild EM (2004) Pushing the precision limit of 14C AMS. Radiocarbon

46(1), 5–16.
Stuiver M and Becker B (1986) High-precision decadal calibration of the radiocarbon time scale, AD 1950–2500 BC.

Radiocarbon 28(2B), 863–910.
Stuiver M and Polach HA (1977) Discussion reporting of 14C data. Radiocarbon 19(3), 355–363.
Tjur T (1998) Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. The American Statistician

52(3), 222–227.
Tumey SJ, Grabowski KS, Knies DL and Mignerey AC (2004) Radiocarbon data collection, filtering and analysis at the NRL

TEAMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms 223–224, 216–220. https://doi.org/10.1016/j.nimb.2004.04.044

Vogel JS, Ognibene T, Palmblad M and Reimer P (2004) Counting statistics and ion interval density in AMS. Radiocarbon 46(3),
1103–1109.

Wendt I and Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope
Geoscience Section 86(4), 275–285.

Cite this article: Salazar G and Wassenaar LI. Reevaluation of radiocarbon counting statistics on the MICADAS AMS system:
Evidence and implications of non-Poisson distributions on robust uncertainty calculation. Radiocarbon. https://doi.org/10.1017/
RDC.2025.10115

Radiocarbon 21

https://doi.org/10.1017/RDC.2025.10115 Published online by Cambridge University Press

http://www.R-project.org/
https://doi.org/10.1017/S0033822200042351
https://doi.org/10.1016/j.quageo.2017.08.001
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1016/j.nimb.2004.04.044
https://doi.org/10.1017/RDC.2025.10115
https://doi.org/10.1017/RDC.2025.10115
https://doi.org/10.1017/RDC.2025.10115

	Reevaluation of radiocarbon counting statistics on the MICADAS AMS system: Evidence and implications of non-Poisson distributions on robust uncertainty calculation
	Introduction
	Materials and methods
	MICADAS AMS instrument
	Data query and preprocessing
	Determination of J from the 12C current and &micro; from the current and count rates
	Transforming a non-stationary model into a stationary model for counting statistics
	Cycles-based external error
	Calculation of the 12C noise (uncertainty)
	Novel passes-based internal error
	Simulation of the 14C count rates

	Results and discussion
	Validation of the simulations
	Simulated non-Poisson counting statistics
	Simulated effect of the 12C uncertainty on the 14,12R error
	Empirical results
	Empirical internal vs. external errors chi-squared relationship
	Real-world applications

	Conclusions and outlook
	References


