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AN EULER-POISSON SYSTEM IN PLASMAS
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Abstract

A local existence and uniqueness result is proved for the three-dimensional Euler-Poisson
system without a pressure term which arises in plasma physics.

1. Introduction

For some non-viscous fluids occurring in plasma physics, pressure effects are negli-
gible with respect to charge effects. In these cases, it is physically relevant to set the
pressure to be constant. The plasma is then properly defined by the Euler-Poisson
system:

^ + V x ( p t / ) 0, (1.1)
at

! U) = pE, (1.2)
at

with the initial conditions

p(r = 0 ) = p 0 , U(t = 0)=U0. (1.3)

Here x and t are the physical space and time coordinates, p is the density, U is the fluid
velocity and E is the electric field. Equations (1.1) and (1.2) describe the conservation
of mass and momentum respectively. The electric field E is given by the elliptic-type
Poisson equation in free space

E = - V , * , -AX4> = 4np, (1.4)

with <J>(f, x) tending to 0 as \x\ tends to oo. In fact, in discussing solutions of (1.1)-
(1.3) in regions of smoothness for U, one often uses the density and the velocity as
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independent variables. In regions of smoothness, the equations can be equivalently
written in terms of the variables p and U:

^ = -pVx • U, (1.5)

DU

-57 - E- ( 1 6 >
where

is the convective derivative along the fluid flow. In the case of gas dynamics in one-
dimensional space, which leads to similar equations without the source term, Eulerian
and Lagrangian formulations have been proved to be equivalent within a specific class
of weak bounded measurable functions [10]. Moreover the one-dimensional Cauchy
problem associated with (1.1)—(1.3) without any coupling with Poisson's equation
(1.4) has been considered via two different approaches. Measure solutions defined for
all positive times are developed in [1] for two specific types of initial data, a system
of particles and the Riemann problem. Multivalued solutions, generalizing the usual
notion of weak L°° solutions, are produced in [3], and numerically studied, including
Poisson's equation, in [2]. Here the problem is set in three-dimensional space. We
consider smooth solutions for the system of gas dynamics without a pressure term
coupled with Poisson's equation. For smooth solutions, local existence must be
considered. Equations (1.1)—(1.3) can be viewed as a Cauchy problem of the form

V, + Ay (V) VXj = B(t,x, V), V(t = 0) = Vo, (1.8)

where V = (p, U). This does not match the common structure of Friedrich's sym-
metric systems, for which there is a basic local existence theorem of smooth solutions
[7]. Indeed, system (1.8) is not hyperbolic since no linear combination of Aj (V) is
diagonalizable. In this paper we obtain a local existence and uniqueness theorem for
an arbitrary large initial concentration and velocities in three-dimensional space. We
generalize a previous result (see [8]) obtained in studying a paraxial approximation
in a one-dimensional frame. The key points of the proof are a Lagrangian approach
allowed by the non-generic type of the studied PDE system, together with control of
the density and its first derivatives. We now state the main result of this paper.

THEOREM 1.1. Letr > 3. Let pobe a function with a compact supportK, belonging
to Wl°°(K) and let u0, v0 and w0 be functions of Wl00(K3) with second-order
derivatives belonging to Lr((R3). Then there exists a time T such that the Cauchy
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problem (1.1)—(1.4) has a solution (p, u, v, w, E) where

p € L°°((0, T) x K3) n Wlr((0, D x K3),

(u, v, w) e (^-"((O, T) x K3))3,

E e W2r((0, T) x R3).

Moreover p is compactly supported and the solution is unique in the class of functions
(p, u, v, w) such that the second-order derivatives of u, v and w belong to Lr((0, T)x
R3).

2. Preliminary results

It is well known that up to a multiplicative constant set equal to 1 the solution of
Poisson's equation (1.4) in 1R3 is

£, = E{(p)(t,x,y,z)

I 7 , , 2 1 2 _ L ,
{x - x')2 + (y - y')2 + (z- z'Y

= E2(p)(t,x,y,z)

-p(t,x',y',z')dx'dy'dz','Y

(x - x')2 + (y — y')2 + (z- z')2

= E3(p)(t,x,y,z)

y —p(t,x',y',z')dx'dy'dz'.

Z Z —p(t,x',y',z')dx'dy'dz'.
(x - x')2 + (y- y')2 + (z- z')

Since smooth solutions (p, u, v, w) of (1.1)—(1.2) are considered, the chain rule
applies. Taking (1.1) into account, (1.2) becomes

u, + uux + vuy + wuz = Ei(p), (2.1)

v, + uvx + vvy + wvz = E2(p), (2.2)

w, + uwx + vwy + wwz = Ei(p), (2.3)

where u, v and w denote the components of the velocity. Physically speaking, the
(u, v, w) solution is only of interest when p is not equal to 0. Hence the system of
interest is (2.1H2.3), together with

Pi + (/»")* + (pv)y + (pw)z = 0, (2.4)

supplemented with the initial conditions

0) = w0. (2.5)
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As we pointed out in the introduction, (2.1)—{2.5) provide a Cauchy problem for the
system

C(U)UZ =

where U = . This system is not hyperbolic, since for any a, 0 and y,

(au + /3v + yw ap
0 au + fiv
0 0
0 0

yw
au

fip
0

Pv
0

yw

yp
0
0

au + ywj

is not diagonalisable. But as in the classical studies of smooth solutions of hyper-
bolic systems and bounds of their lifespan (see [4—6]), estimates can be made of the
derivatives of the solution. So the bound on T in Theorem 1.1 comes from the limited
lifespan of the space derivatives of (M, V, W) which satisfy Riccati-type differential
equations. Recall a variant of a classical result on the lifespan and an L°° bound of a
smooth solution to the Riccati equation.

LEMMA 2.1. Let w be the locally defined solution of the system

I w' = ao(t)w2 + ax{t)w + a2(t),

w(0) = w0.

then w is defined on [0, T] and

1

2'

For the proof of Lemma 2.1, we refer to [11]. The following regularity result on
the electric field E will also be needed.
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LEMMA 2.2. Let p be a function with compact support K, and 1 < r < + 0 0 . If
p e L\K), then for every (i,j,k) such that 0<i+j+k<l, 3 ^ * ^ belongs to
Lr((0, T) x R3) and

d'+J+kE

for some constant ctjk.

This lemma is a consequence of Calderon-Zygmund inequalities and the theory of
singular integrals ([9]).

3. Proof of Theorem 1.1

The existence part of Theorem 1.1 is proved by applying Schauder's fixed point
theorem to the following map F. For every positive number T, let YT be the closed
convex subset of (Wloo((0, T)x R3))3 of twice-differentiable functions (u, v, w) with
second-order spatial derivatives belonging to Z/((0, T) x K3) and

Moo + M L + K U + l«zloo + \Uxx\Lr

+ \UXy\L> + \Uyy\f + | « « | L ' + \Uyz\Lr + \Uzz\Lr < —,

with analogous bounds for v and w. For every (u, v, w) in YT, let p be the solution of
the Cauchy problem

Pi + (pu)x + (pv)y + (pw)z = 0, p(0,x,y,z) = Po(x,y,z). (3.1)

F(u, v, w) is defined by F(u, v, w) = (U, V, W), where (U, V, W) solves

U(0,x,y,z) = uo(x,y,z), (3.2)

V(O,x,y,z) = vo(x,y,z), (3.3)

W(O,x,y,z) = wo(x,y,z). (3.4)

(U, V, W) is well defined for T small enough since (3.2)-(3.4) can be expressed as
an ordinary differential system with characteristics (X(t), Y(t), Z(t)) given by

X'(0= U(t,X(t),Y(t),Z(t)),
y(0= V(t,X(t),Y(t),Z(t)),
Z'(t)= W(t,X(t),Y(t),Z(t)).

Here c, c\, c2,... will denote constants independent of T and only depending on the
data p0, «o. v0, w0. If T or some exponential form of T appears in those constants, we
bound it from above by 1 and look for an existence time T smaller than 1.

First, let us study the p solution of (3.1) with (w, v, w) in YT.
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LEMMA 3.1. Denote

K = [(t, x, y, z) such that t e [0, 1] and (x, y,z) e K + B(0, 1)},

where B(0, 1) is the closed unit ball ofR3. For any (M, V, W) in YT, p is compactly
supported in K and

\p\oo + \Px\L' + \Py\L' + \Pz\L' < ~ . (3.5)

The estimates in (3.5) follow from the linear ordinary differential equations satisfied
by P, px, Py, Pz with respect to the derivative j-, + uj^ + vf~ + wj~ denoted by ' .
Indeed

so that

where (a,

p(t,x

P,Y)>

P =

,y,z) =.

is defined

a'(s)

P'(s)

Y'(s)

- ( « , -

Po(«(0

by

= u(s,

= v(s,
= w(s

f- Vy + WZ)P, f.

>),P(0), y(0))e~-

a(s), P(s), y(s)

a(s),P(s),y(s)

,a(s),P(s),y(s]

>(* = 0) =

), .«(0
), Pit)

)), y(0

= Po,

— v

= y,

= z.

(3.6)

Hence p is supported in K. Moreover, the assumptions |M |̂OO <
andlwjoo < 1/riead to the bound from above of |p loo. The results on \px\f, \Py\f
and \pz\Lr are obtained the same way, after noticing that

2ux + vv + wz

UXy + Vyy + W

where the square matrix coefficients and p are bounded in L°°, and uxx + vxy + wxz,
uxy + Vyy + WyZ, Uxz + VyZ + wzz art bounded in Z/((0, T) x K3).

In order to prove that p is bounded in WUr(K), it remains to obtain an Lr(K) bound
for p,. This comes from an equality derived from (3.1),

Pi = ~(Ux + vy + wz)p - upx - vpy - wpz,
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and the previous Lr(K) bounds of p, px, py, pz as well as the L°°{K) bounds of u, v,
w, ux, vy and wz.

Let us prove that F maps YT into YT. Thanks to the results of Lemmas 2.1 and 2.2,
we may use the same proof as in Lemma 3.1 to show that

for T small enough. If ' denotes the derivative f + C/f + V#- + Wf, the first-
w at ox ay oz

order spatial derivatives of U, V and W, denoted by X, are solutions of a differential
equation,

X'= GdX) + G2(EX, Ey,Ez),

with Gi independent of p and G2 linear. Since div Ex = px, div Ey = py, div Ez — pz

and r > 3, Lemmas 2.2 and 3.1 imply that X is bounded for T small enough. In order
to complete the proof of the inclusion of F{YT) in YT, it remains to prove that the
bounds of the second-order spatial derivatives of U, V and W hold. Denote by Y and
Z the vectors of the second-order spatial derivatives of (U, V, W) and E respectively.
Y satisfies a linear differential system,

Y' = MY + Z,

where M is a 6 x 6 matrix whose coefficients are bounded in L°° as linear combinations
of the first spatial derivatives of U, V and W. Moreover, Y(t = 0) belongs to U as
the second-order derivatives of (M0, V0, w0) must belong to U. Hence Y is bounded
in U by U bounds of Z that follow from Lemma 2.2.

Let us now prove the continuity of F for the (Whoo([0, T] x K3))3 topology. We
first observe that (U, V, W) continuously depends on (M, V, ID). If (u, v, w) is given
in YT, (U, V, W) = F(u, v, w) and ' denotes the derivative £ + U^ + V-^ + W-fz,
then for every (U, V, W) = F(u, v, w),

(U- U)' + (U- U)UX + (V- V)Uy + (W- W)Uz = E1(p-p), (3.7)

and similar equations hold for V— Vand W— W. When («, v, w) tends to (u, v, w) in
(Wloo([0, T] x IR3))3, p tends to p in L°°(K), so that the L°°([0, T] x K3) convergence
of Ei(p — p), 1 < 1 < 3 towards 0 is straightforward. Then the boundedness of the
first spatial derivatives of (U, V, W) due to the fact that (U, V, W) belongs to YT

implies the L°°-continuity of F.
Then the first spatial derivatives of (U, V, W) continuously depend on (u, v, tu)and

its first spatial derivatives in the L°° -topology. Indeed p ^ pis compactly supported
and tends to 0 in U, so that Lemma 2.2 implies that Et(p — p), 1 < i < 3 tend to 0 in
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WXr. Then the Rellich-Kondrakov continuous imbedding of Wlr([0, T] x R3) into
L°°([0, T] x K3) implies that 3,E,(P - P)> 3^ , (p - p) and 3z£,(p - p), 1 < i < 3
tend to 0 in L°°([0, T] x R3) when (M, V, W) tends to («, v, w) in (Wloo([0, T] x R3))3.
Finally

[/, = -UUx- VUy - WUZ

V, = -UVx- VVy - WVZ + E2(p),

W, = -UWx- VWy - WWZ + E3(p),

so that U,, V, and W, continuously depend on (u, v, w).
It remains to show that F is a compact map, in order to apply the Schauder fixed point

theorem. Let (un, vn, wn) be a sequence of YT bounded for the (Wloo([0, T] x K3))3

norm. Thanks to Lemma 3.1, the sequence (p") associated with (M", V", W") by (3.1)
is bounded in Whr(K). Then the Rellich-Kondrakov compact imbedding of Whr(K)
into Lr(K) for r > 3 allows us to conclude that (p") is relatively compact in U(K).
Thus arguments similar to those used for proving the continuity of F may be used to
prove that F(u\ v", w") is relatively compact in (Wl°°([0, T] x K3))3.

Hence Schauder's fixed point theorem establishes the existence of a solution of the
Cauchy problem (2.1M2.5).

Finally, let (p, M, V, W) and (p, u, v, w) be two solutions to (2.1)-{2.5) such that
the second-order spatial derivatives of u, v, w, it, v, w belong to I/([0, T] x IR3). The
first spatial derivatives of u — u, v — v and w — w can be expressed in terms of the
second-order spatial derivatives of u, v, w and convolution products between p and
the first-order derivatives of the kernel arising in the solution of the Poisson equation
in K3. A contraction argument for (p — p, u — u, v — v, w — w) and the first-order
spatial derivatives of (w — u, v — v, w — u)) in L1 x (L^5)3 and (L2)9 respectively
can be used in order to prove that p = p, u = u,v = v and w = w. This proves the
uniqueness result.
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