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Abstract

The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional
processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the
limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but
adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based
Al interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language
Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models
remains resource-intensive, and there is a growing demand for Al systems that can reason over both visual and textual data in astronomical
analysis.

This study explores small-scale Vision-Language Models (VLMs) as Al assistants for radio astronomy, combining LLM capabilities with vision
transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs
from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains
in extended source detection, but they underperform vision-only classifiers and exhibit ~20% drop on general multimodal tasks. Inclusion
of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on multimodal benchmarks (e.g.,
ChartQA/DocVQA).

This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better
multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.

1. Introduction 2022; Mesarcik et al., 2023; Lochner et al., 2023; Riggi et al.,
2024b), fast radio burst detection (Connor & van Leeuwen,
2018; Agarwal, 2020), radio imaging (Schmidt et al., 2022;
Geyer et al., 2023; Chiche et al., 2023), synthetic data genera-
tion (Rustige et al., 2023; Sortino et al., 2024; Martinez et al.,
2024), and many others. The full potential of developed mod-
els, especially those using supervised learning techniques, is
often hampered by the scarcity of large and balanced annotated
radio datasets. Additionally, existing radio models typically
employ data labelling schemes that vary widely across different
analysis cases, hindering the integration of individual datasets
into larger collections and restricting model usability beyond
their initial applications.

The upcoming Square Kilometer Array (SKA) (Dewdney et
al., 2016) and its precursor telescopes (e.g., MeerKAT, ASKAP,
LOFAR) are revolutionizing radio astronomy, enabling to
probe the radio sky at unprecedented sensitivities and angular
resolutions. SKA, once operational, is expected to produce ex-
abytes of data annually. The immense volume and complexity
of the generated data will challenge traditional data-processing
methods, necessitating advanced computational and Al tech-
niques to automate repetitive, resource-intensive tasks.

In this context, deep-learning methodologies have already
shown promising results in various analysis tasks including:
source detection in 2D radio maps (Mostert et al., 2022; Zhang

et al., 2022; Yu et al., 2022; Riggi et al., 2023; Lao et al., 2023; Recent studies (Slijepcevic et al., 2024; Riggi et al., 2024b;

Cornu et al., 2024; Stuardi et al., 2024), source and host galaxy
detection from 2D radio+IR maps (Wu et al., 2019; Gupta et
al, 2023) or radio+optical maps (Lou et al., 2023), source de-
tection in HI cubes (Liang et al., 2023; Hakansson et al., 2023;
Barkai et al., 2023), source classification (Aniyan & Thorat,
2017; Tang et al., 2019; Ma et al., 2019; Maslej-Krestidkovi
et al., 2021; Tang et al., 2022; Nair et al., 2022; Riggi et al.,
2024a), search for objects with peculiar morphology (Ralph et
al., 2019; Galvin et al., 2020; Mostert et al., 2021; Gupta et al,

Lastufka et al., 2024) have sought to address the challenges
posed by limited annotated training datasets by applying self-
supervised learning (SSL) techniques, which utilize the exten-
sive collections of unlabelled radio images available in current
and past surveys. Several foundational radio models have been
developed to effectively enable feature extraction from radio
maps for a variety of tasks, such as data inspection, source
extraction and classification, anomaly detection, and image
retrieval. Pretrained SSL models have also been fine-tuned on
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smaller annotated datasets and specialized for these applications.
Ongoing research is focusing on various areas: comparing al-
ternative SSL methods on radio data (Cecconello et al., 2024),
assessing the performance of SSL models pretrained on non-
radio data (such as natural or optical images) for radio-specific
tasks and vice versa (Riggi et al., 2024c; Lastufka et al., 2024b),
exploring optimized dataset curation strategies, scaling up
model training to larger architectures and millions of radio
images, and defining more constraining downstream datasets
and tasks.

While existing SSL models can be adapted or expanded
for new use cases, their accessibility is often limited by the
need for astronomers to write code for adaptation to similar or
entirely new tasks. This requirement could hinder widespread
adoption, as many astronomers may prefer more intuitive,
user-friendly interfaces. An Al assistant with a more accessible,
text-based interface would allow researchers to interact with
the model by providing examples, querying specific tasks, and
customizing output formats to suit their needs.

Large Language Models (LLMs) like GPT-4 (OpenAl,
2023), Claude3 (Anthropic, 2024), and open-source alterna-
tives such as LLaMA (Touvron et al., 2023) or InternLM (Cai
et al., 2024) have proven effective as Al assistants, showing
remarkable zero-shot learning capabilities when prompted
unseen data or tasks across a wide array of fields, including
astronomy (Tanoglidis & Jain, 2024). Specializing and de-
ploying very large open-source models is, however, currently
prohibitive in terms of the required computing resources (high
GPU requirements, memory demands, and power consump-
tion). Furthermore, in addition to textual interaction, there is
an increasing demand for models capable of processing visual
data, facilitating multimodal reasoning for tasks like analysing
complex astronomical images. Some initiatives, such as As-
troLLaMA (Nguyen et al., 2023; Perkowski et al., 2024), have
started to address this by developing astronomy-specific mid-
size LLMs, though these efforts are still limited to text-based
inputs. Commercial solutions add additional cost concerns,
particularly in inference and fine-tuning expenses, as demon-
strated by Sun et al. (2024) in the context of interpreting
multi-band galaxy observations. Furthermore, while large
models are well-suited for tasks requiring extensive general
knowledge, this scope may be more than what is needed in
astronomy, where specialized knowledge is essential. Given
these considerations, current research has increasingly turned
to adapting smaller LLMs (i.e., those with fewer than 10 billion
parameters) for specific domains, as well as investigating multi-
modal models capable of processing combined data inputs,
such as text, images, and videos.

In this context, we aim to explore recent, state-of-the-art,
small-scale vision-language models (VLMs) to develop Al as-
sistants tailored to radio astronomy. These models combine
both visual and textual comprehension by integrating LLM
capabilities with vision transformers (Dosovitskiy et al., 2021)
for image processing. Typically, VLMs comprise two main
components: a vision encoder transformer that extracts fea-
tures from input images, and an LLM that generates textual re-
sponses from combined visual and textual input representations.
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VLMs offer promising solutions to the outlined challenges in
two ways. First, they can manage tasks through a text-based
interface, allowing astronomers to specify task details and ex-
pected response formats in natural language. This flexibility
enables the use of contextual image-text examples, making
VLMs more adaptable than traditional vision models that are
limited to predefined label outputs for specific tasks. Second,
VLMs potentially support the integration of specialized vision
encoder models that have been trained on unlabelled radio
data through self-supervised learning (SSL) methods. This ap-
proach bridges the gap with ongoing SSL research, facilitating
the reuse of existing radio SSL models and enabling the full
utilization of extensive unlabelled image datasets from recent
and past radio surveys. These smaller models offer a promising
alternative, with lower computational costs and more manage-
able deployment requirements. Moreover, their specialized
capabilities could be more than sufficient for the specific needs
of radio astronomy, without the added complexity and re-
source demands of larger models. However, the suitability
of these smaller models for astronomical tasks remains largely
unexplored, particularly in radio source analysis.

This paper seeks to evaluate the current state of small mul-
timodal language models as Al assistants for radio astronomy.
By investigating their strengths, limitations, and applicabil-
ity to radio astronomical source analysis tasks, we hope to
familiarize the community with this emerging technology
and its potential, as well as to highlight the challenges that
need to be addressed in future developments. A tailored VLM
for radio astronomy could eventually assist astronomers in ef-
ficiently analysing radio images without requiring extensive
technical expertise in Al models. By leveraging a text-based
interface, astronomers can perform complex and diverse image
analysis tasks, even guiding the model using image-based ex-
amples. Key applications include the automated identification
and retrieval of specific classes of radio sources in survey image
data, as well as data quality assessment - enhancing the effi-
ciency and accessibility of radio survey analysis. Additionally, a
VLM-based assistant could be deployed to support less experi-
enced users (e.g., students, citizens) in ongoing crowdsourcing
projects like the EMU Radio Galaxy Zoo'. By providing real-
time guidance and explanations, the model could help users
classify radio sources, identify peculiar objects, and improve
the reliability of crowdsourced annotations.

Multi-modal models have only very recently begun to gain
traction in astronomy - with most developments emerging
within the past year - as a means to bridge heterogeneous
data modalities such as images, spectra, and natural language.
These efforts have primarily focused on adapting the CLIP
(Contrastive Language—-Image Pretraining) model (Radford
et al., 2021) and its derivatives to astronomical tasks, leverag-
ing their ability to align visual and textual representations in a
shared latent space. For instance, Gupta et al (2025) introduced
EMUSE, a tool built on a fine-tuned OpenCLIP2 model that

1 https://www.zooniverse.org/projects/hongming— tang/
radio-galaxy-zoo-emu
Zhttps://github.com/mlfoundations/open_clip
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enables users to search EMU survey data using either textual
queries or template image similarity. A similar application is
PAPERCLIP (Mishra-Sharma et al., 2024), a CLIP-based model
fine-tuned on Hubble Space Telescope (HST) proposal data —
including image observations and proposal abstracts — which
enables cross-modal retrieval based on image content or textual
queries such as object names or scientific use cases. AstroCLIP
(Parker et al., 2024) presents a powerful CLIP-style foundation
model for galaxies in the optical domain, where the textual
modality in the original CLIP framework is replaced by galaxy
spectra. The model aligns image and spectrum modalities in
a shared embedding space after self-supervised pre-training
of each modality independently, and demonstrates impres-
sive performance on tasks such as morphology classification,
redshift estimation, and property inference.

Unlike these studies, our approach focuses on instruction-
following vision-language models like LLaVA (Large Language
and Vision Assistant) (Liu et al., 2023) to enable open-ended
captioning, visual question answering, and multi-turn scien-
tific dialogue grounded in domain-specific radio astronomy
data. These tasks go beyond the static alignment capabilities
of CLIP models, which lack generative, reasoning, and con-
versational abilities. Our model is thus particularly suited for
exploratory analysis, educational interfaces, and assistant-style
tools that can explain, summarise, or discuss diagnostic plots
and observational data. Meanwhile, CLIP-based models re-
main better suited for scalable retrieval, zero-shot classification,
and semantic similarity search over large datasets.

The paper is organized as follows. Section 2 provides an
overview of vision-language models, with a focus on the ar-
chitecture of a prominent model, LLaVA, which we aim to
adapt for radio-astronomical data. In Section 3, we describe
our adapted model, termed radio-llava, including the training
datasets and methodology. Section 4 presents the evaluation of
the specialized model across several radio-astronomy tasks. Fi-
nally, Section 5 summarises the results and discusses directions
for future research.

2. Vision-Language Models

Multi-modal large language models (MLLMs) are designed
to process and integrate data from multiple modalities, such
as text, audio, images, and video. Vision-language models
(VLMEs) are a specific type of multi-modal system that focuses
on combining visual and textual information. These models
leverage large language models and vision transformers to align
visual and textual representations, enabling them to perform
complex tasks like image captioning, visual question answering
(VQA), and object recognition in a descriptive context. A
comprehensive review of MLLMs and VLM s is provided by
Li et al. (2023b); Bordes et al. (2024); Yin et al. (2024). In this
section, we focus on describing the current state, architecture,
and training strategy of the VLM model LLaVA, which we
have adapted for use with radio astronomical data in this work.

2.1 The LLaVA model
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2.1.1 Model overview

LLaVA (Large Language and Vision Assistant) (Liu et al., 2023) is
a state-of-the-art multimodal model that integrates both visual
and textual understanding, combining the capabilities of large
language models (LLMs) with vision processing abilities. Its
primary function is to interpret and generate responses to input
that includes both images and text, making it ideal for tasks
like visual question answering (VQA), image captioning, and
other vision-language tasks. Since the first release, the model
demonstrated exceptional multimodal conversational skills, of-
ten displaying behaviour comparable to GPT-4V when tasked
with interpreting novel images and following new instructions
for the first time.

Following releases (LLaVA 1.5, Liu et al. 2024a) greatly
enhanced model capabilities by integrating a larger set of
academic-focused instructional data, achieving state-of-the-art
results on numerous benchmarks while utilizing a highly data-
efficient strategy. Recent advancements in the LLaVA series,
including models like LLaVA-NeXT (Liu et al., 2024b) and
LLaVA-OneVision (Li et al., 2024), have significantly broad-
ened the scope of input modalities they can handle, support-
ing both single or multiple images as well as video content.
These improvements were driven by three key innovations:
the AnyRes technique for processing high-resolution images,
the expansion of high-quality instruction datasets, and the
integration of the most advanced open-source LLMs available
at the time, further enhancing model capabilities across di-
verse tasks. Various variants or specialization of the first LLaVA
models have been produced so far. For example, TinyLLaVA
(Zhou et al., 2024; Jia et al., 2024) is a compact refactored
variant of the original LLaVA 1.5 model, designed to enable
easier inclusion of alternative light vision and LLM models,
thus significantly reducing overall model size and resource
requirements. LLaVA-Med (Li et al., 2023a) is a specialized
variant of the LLaVA model designed to assist in medical image
analysis and diagnostics by fine-tuning its multimodal capa-
bilities on medical datasets such as X-rays, MRIs, and other
healthcare-related visual data.

2.1.2 Model architecture

The LLaVA model, schematically represented in Figure 1, con-
sists of these components:

* Vision Encoder: Processes image data using a pre-trained
Vision Transformer (ViT) model with multiple transformer
layers, such as CLIP (Radford et al., 2021) or SigLIP (Zhai
et al., 2023). It extracts visual features from input images;

* Language Model: Handles text processing, typically an LLM
such as Qwen (Bai et al., 2023), capable of understanding,
generating, and reasoning with natural language;

* Projector: Since the vision encoder and language model
operate in different feature spaces, the projector transforms
visual embeddings into a format compatible with the lan-
guage model input space. This enables effective integration
of visual and textual information. LLaVA employs a two-
layer Multi-Layer Perceptron (MLP) trained to align the
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Figure 1. A schematic representation of the LLaVA model architecture.

modalities, ensuring that the visual embeddings can be
seamlessly used by the language model;

* Multimodal Fusion Layer: It aligns and fuses the visual fea-
tures from the vision encoder with the text embeddings
from the language model, enabling the model to process
both modalities jointly through self-attention mechanisms.

The model processes multimodal image-text inputs as follows:

1. The input text (instruction or query) is tokenized into
numerical tokens using a predefined vocabulary.

2. The input image is divided into patches and passed through
the vision encoder, which extracts key features such as
objects, colours, textures, and spatial relationships. The
projector then converts these visual representations into
language-compatible embeddings;

3. The multimodal fusion layer integrates the visual embed-
dings into the input sequence of the language model, al-
lowing it to process both visual and textual data jointly.
The model then generates an output response based on the
given task, such as answering questions about the image
(VQA) or generating a descriptive caption (image caption-

ing).

2.1.3 Model training

The LLaVA model series is trained from pre-existing language
and vision encoders through instruction fine-tuning on large-
scale datasets. These datasets consist of image (or video) and
text pairs, including captions, descriptions, and questions, en-
abling the model to learn associations between visual elements
and natural language. The training process typically involves
multiple stages, each potentially using different datasets, includ-
ing pretraining on unimodal visual and textual data, aligning
vision and language features, and fine-tuning with instruc-
tional data to address diverse visual tasks. Further details on
training datasets and methodology can be found in the original
model publications.

https://doi.org/10.1017/pasa.2025.10082 Published online by Cambridge University Press

S. Riggietal.

During instruction tuning, the model is optimized by min-
imizing a cross-entropy loss, which quantifies how closely the
predicted text output matches the ground truth. The model
generates text auto-regressively, predicting one token at a
time based on previously generated tokens. At each step, it
outputs a probability distribution over possible next tokens and
is trained to minimize the difference between its prediction
and the actual token. The cross-entropy loss is computed for
each token while conditioning on prior tokens, accumulating
over the entire sequence and penalizing incorrect predictions
at each step. This iterative process ensures the model learns to
generate coherent text in a structured manner.

3. Theradio-llava model

The radio-llava model is a small multi-modal model fine-tuned
from a base LLaVA model using radio astronomical image-text
data. This section describes the training dataset, and the model
fine-tuning procedure.

3.1 Training dataset

The training dataset consists of multiple conversations between
a virtual assistant and a user regarding a given radio image.
The dataset follows the standard JSON format required by
multi-modal models:
[
{
"id": "image id",
"image": "image path",
"conversations": [
{
"from": "human",
"value": "<image>\n Provide a brief description of the
given image."
o
{
"from": "gpt",
"value": "The image is a radio astronomical cutout ..."
¥
]

We constructed two training datasets. The first, referred to
as the Q& A dataset, consists of a series of question-answer
interactions related to the content of radio images, all extracted
from radio continuum surveys. The second dataset, termed
the caption dataset, contains a single user-assistant exchange
per image, in which the assistant provides a description of the
image content. In this case, images and their corresponding
captions were sourced from a collection of scientific papers
on radio astronomical topics available in the arXiv database.
Details on both datasets are provided in the following sections.

3.1.1 Q&Adataset

This dataset was assembled from multiple annotated radio
datasets, each designed for different radio source classification
or detection tasks:

* Fine-Grained Datasets: These datasets, typically used for
training radio object detection and segmentation models
like YOLO (Redmon et al., 2016) or Mask R-CNN (He
et al, 2017), contain wide-field images (a few arcminutes
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in size) with region- or pixel-level annotations, including
object positions (centres, bounding boxes, segmentation
masks), classification labels, and confidence scores.

* Coarse-Grained Datasets: Commonly used for radio source
classification models, these datasets contain either zoomed-
in source images or wide-field images with one or more
assigned classification labels.

Details regarding the number of images and available classes
for each dataset are provided in Appendix A.

It is important to note that classification schemes vary
across datasets. Some provide astrophysical source-type labels
(e.g., HII, SNR, GALAXY), while others focus on morphological
classifications (e.g., FR-I vs. FR-II, COMPACT vs. EXTENDED
vs. DIFFUSE). Before generating the conversational Q&A
dataset, we aimed to standardize terminology whenever possi-
ble. In some cases (e.g., see Section A.2), we performed cross-
matching and relabelling to augment the original datasets by
adding additional labels to certain images or objects. How-
ever, variations in labelling schemes remain unavoidable due
to the lack of annotation standards in the radio astronomy
community. In this respect, our goal is to fine-tune an LLM
model that is exposed to diverse classification schemes, making
it potentially adaptable to different user domains.

The Q&A dataset was constructed from annotated datasets
through the following steps:

1. Automated Template-Based Descriptions: For each image, we
programmatically generated a template description based
on the available annotations?.

Example: An image from the radioimg-dataset (see Sec-
tion A.1) with the assigned labels COMPACT, EXTENDED,
RADIO-GALAXY, ARTIFACT would be described as:

The image is a radio astronomical image cutout exztracted from

a larger radio-continuum Stokes-I map produced by an
interferometer telescope. The image contains various point-
like or compact radio sources superimposed over the sky
background noise. It also contains one or more extended Tadio
sources. Some of them are likely exztended radio galazies. Some

radio sources present in the image are poorly imaged and
surrounded by imaging artefacts having a ring pattern.

Fine-grained datasets include richer descriptions, specify-
ing source positions and sizes.

2. Automated Q&A Generation Using a Pretrained VLM: We
generated multiple Q&A interactions per image using a
InternVL VLM model* (Chen et al., 2024). The model
was fed with the image, template caption, and structured
prompts to ensure that the generated conversations re-
mained faithful to the original image and annotation con-
tent, and included at least the following questions:

* Can you describe the image content?

* Can you provide the bounding box coordinates of all radio
sources with class X ( e.g, compacl, extended, etc.) present in
the image?

3These descriptions are statically defined, meaning two images with iden-
tical annotations will have the same description.

*We used InternVL2_5-8B-MPO model version, available here: https:
//huggingface.co/OpenGVLab/InternVL2_5-8B-MPO, https://github.com/
OpenGVLab/InternVL
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* Do you see any likely radio galaxy with an extended mor-
phology in the image?

* Which of these morphological classes of radio sources do you
see in the image?

* Do you see any imaging artcﬂzct around bn:ght sources in
the presented image?

* Is there any blank pixel region at the edges of the image?

* Is the image content ordinary or peculiar in terms of the
objccts it contains?

To prevent excessive generalization, we constrained the
VLM’s output by using an intermediate temperature setting
(0.5).

Overall, the final training dataset comprises 59,331 images and
1,590,202 user-assistant conversations.

Despite these efforts, the current annotated radio data —
which primarily provide classification labels or bounding boxes
— still limit the diversity and richness of generated image-based
conversations. This constraint directly impacts model perfor-
mance and its instruction-following capabilities, as discussed
in Section 4.

3.1.2 Caption dataset

This dataset was compiled by extracting figures and their cor-
responding captions from a broad collection of arXiv scientific
papers containing radio astronomy-related keywords, pub-
lished between 2000 and 2025. To classify the image format
and assess caption quality, we processed the extracted raw
image-caption data using the same InternVL VLM model
employed for generating the Q&A dataset. Specifically, we
computed the following parameters for each image-caption
pair:

* n_words: number of words in the caption;

* has_multiplot: binary flag set to true if the image con-
tains multiple plots/frames, either as insets, side by side,
stacked, or arranged in a grid layout;

* is_astromap: binary flag set to true if the image and
caption depict an astrophysical map with one or more
sources superimposed on the sky background;

* is_corrupted: binary flag set to true if the caption con-
tains incomplete sentences or corrupted text;

* caption_score: integer score assessing caption quality
on a scale from 0 (low) to 10 (high), based on coherence,
informativeness, completeness, clarity, and correctness of
English style.

Only highly rated single-plot images were included in
the training sample, applying the following selection crite-
ria: n_words>5, has_multiplot=0, is_corrupted=0, and
caption_score>7. This resulted in a final training sample of
38,545 images. The has_multiplot criterion had a signifi-
cant impact, removing approximately 62% of the images from
the initial dataset. We opted not to apply the is_astromap
filter, as doing so would have further reduced the dataset size
to approximately 8,700 images.
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3.2 Model fine-tuning
The radio-llava model was trained using instruction fine-tuning
on the Q&A radio dataset alone, as well as on the com-
bined Q&A and caption datasets, starting from the pre-trained
LLaVA-OneVision 7B model®. Keeping the vision encoder
(siglip-s0400m-patch14-384) frozen, we fine-tuned both
the LLM (qwen2) and adapter (mlp2x_gelu) components
using either full fine-tuning or the Low-Rank Adaptation
(LoRA) (Hu et al, 2021) fine-tuning strategy®. We set the
LoRA rank and alpha scaling parameters to 64 and 128, re-
spectively. The model was trained for either 1 epoch (shallow
fine-tuning) or 3 epochs (deep fine-tuning). In all training
runs, we used default hyperparameters, with a batch size of 1,
a gradient accumulation step of 2, and a learning rate of 1075.
On single-GPU servers with medium GPU memory (e.g.,
NVIDIA A30 24 GB or RTX6000 48 GB), we were only
able to train the model using LoRA fine-tuning on the Q&A
dataset, while full fine-tuning required more extensive com-
putational resources. Consequently, all fine-tuning runs were
conducted on a single node of the CINECA LEONARDO
Booster infrastructure’, utilizing 4 GPUs (NVIDIA A100 64
GB) and 8 CPUs (Intel Xeon Platinum 8358, 2.60GHz) with
32 GB of memory allocated per CPU. Full fine-tuning re-
quired approximately 15 hours per epoch on the combined
training dataset.

3.3 Implementation details

For training the LLaVA model, we utilized software and re-
sources available in the LLaVA-NeXT repository®. Only mi-
nor modifications were applied to the original software to load
our dataset and enable the loading of LoRA fine-tuned models
using the Qwen LLM.

Inference scripts developed for LLaVA and other VLM
models tested in this study are provided in the following repos-
itory: https://github.com/SKA-INAF/radio-1lava. This reposi-
tory also includes a Streamlit? application (see Figure C.1 in the
Appendix), allowing users to load a LLaVA model, upload an
image, and interact with the assistant via a web interface. Ta-
ble C1 in the Appendix provides an example of user-assistant
conversations for two sample radio images, comparing re-
sponses from the base and fine-tuned LLaVA-OneVision 7B
models.

The fine-tuned models are publicly available in the Hugging
Face repository: https://huggingface.co/inaf-oact-ai.

4. Model evaluation

Using independently annotated datasets, we defined six eval-
uation benchmarks (B1-B6) to assess the model’s reasoning
capabilities on radio image data. The benchmark datasets and

5lmms-lab/llava-onevision- qwen2-7b-ov

SLoRA is a lightweight training method that updates only small, low-rank
matrices within the model instead of fine-tuning the entire model. This
significantly reduces computational overhead and storage requirements while
maintaining high performance

7https://www.hpc.cineca.it/systems/hardware/leonardo/

Sheeps://github.com/LLaVA-VL/LLaVA-NeXT

“https://streamlit.io/
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inference prompts are detailed in Section 4.1.1. Additionally,
we evaluated our models on various standard non-astronomical
benchmarks, listed in Section 4.1.2, to quantify the impact of
fine-tuning on tasks previously learned by the base model.

Section 4.2 presents the zero-shot performance of the
LLaVA base model, comparing it with alternative VLMs. The
evaluation results for the fine-tuned radio-llava models are re-
ported in Section 4.3.

We will consistently use these widely adopted metrics in
classification problems:

* Recall (R): The fraction of sources (images) from a given
class that are correctly identified by the model, out of all
sources (images) that truly belong to that class:

TP
R= TP + FN

* Precision (P): The fraction of sources (images) correctly
predicted to belong to a given class, out of all sources
(images) the model assigned to that class:

TP
P= o+ Fp
* Fl-score: The harmonic mean of precision and recall, of-
fering a balanced measure of a model’s performance:

P xR

F1- =2 X
score iR

(1)

* Accuracy (A): The overall fraction of correctly classified
sources (images), regardless of class, over the total number
of instances:

. TP+ TN
TP+ TN +FP+FN

Here, TP, FP, TN, and FN represent the number of true
positives, false positives, true negatives, and false negatives,
respectively.

4.1 Evaluation benchmarks
4.1.1 Radio benchmarks
Bl - Extended/Diffuse Source Detection We used the
radioimg-multilabel test dataset (5,718 images) to eval-
uate the models’ ability to detect extended or diftuse radio
sources in input images.

For this task, we applied the following prompt:

### Context: Consider these morphological classes of radio
astronomical sources, defined as follows:
EXTENDED: This class comprises either single-island compact
objects with sharp edges, having a morphology and size dissimilar
to that of the image synthesised beam (e.g. 10 times larger than
the beam size or with elongated shape), or disjoint multi-island
objects, where each island can have either a compact or extended
morphology and can host single or multiple emission components.
Typical examples are extended radio galaxies formed by a single
elongated island or by multiple islands, hosting the galaxy core
and lobe structures
DIFFUSE: a particular class of single-island extended objects with
small angular size (e.g. smaller than few arcminutes), having
diffuse edges and a roundish morphology;


https://github.com/SKA-INAF/radio-llava
https://huggingface.co/inaf-oact-ai
lmms-lab/llava-onevision-qwen2-7b-ov
https://www.hpc.cineca.it/systems/hardware/leonardo/
https://github.com/LLaVA-VL/LLaVA-NeXT
https://streamlit.io/
https://doi.org/10.1017/pasa.2025.10082

Publications of the Astronomical Society of Australia

DIFFUSE-LARGE: large-scale (e.g. larger than few arcminutes and
covering a large portion of the image) diffuse object with
irregular shape.

An island is a group of 4-connected pixels in an image under
analysis with intensity above a detection threshold with respect
to the sky background level.

### Question: Which of these morphological classes of radio
sources do you see in the image?

EXTENDED

DIFFUSE

DIFFUSE-LARGE

Answer the question using the provided context (and examples).
Report the identified class labels separated by commas, without
any additional explanation text. Report just NONE if you cannot
recognise any of the above classes in the image.

B2 - Source Morphology Classification We considered the
rgz-smorph test dataset, containing ~3,835 images from the
VLA FIRST survey, each zoomed and centred around radio
sources belonging to six distinct morphological classes: 1C-1P,
1C-2P, 1C-3P, 2C-2P, 2C-3P, 3C-3P.

The model was evaluated using a single-label multi-class
classification task with the following prompt:

### Context: Consider these morphological classes of radio
astronomical sources:

1C-1P: single-island sources having only one flux intensity peak;
1C-2C: single-island sources having two flux intensity peaks;
1C-3P: single-island sources having three flux intensity peaks;
2C-2P: sources consisting of two separated islands, each hosting a
single flux intensity peak;

2C-3P: sources consisting of two separated islands, one containing
a single peak of flux intensity and the other exhibiting two

distinct intensity peaks;

3C-3P: sources consisting of three separated islands, each hosting
a single flux intensity peak.

An island is a group of 4-connected pixels in an image under
analysis with intensity above a detection threshold with respect

to the sky background level.

### Question: Which of these morphological classes of radio
sources do you see in the image?

1C-1P

1C-2C

1C-3P

2C-2P

2C-3P

3C-3P

Answer the question using the provided context (and examples).
Report only the identified class label, without any additional
explanation text.

B3 - Extended Radio Galaxy Detection We used the
radioimg-multilabel test dataset (5,718 images) to assess
the models’ ability to identify radio sources with morphologies
characteristic of extended radio galaxies.

For this task, we applied the following prompt:

Do you see any likely radio galaxy with an extended morphology in
the image?
Answer concisely: Yes or No.

B4 - Imaging Artefact Detection We used the
radioimg-multilabel test dataset (5,718 images) to
evaluate the models’ ability to detect imaging artefacts in
input images.

For this task, we considered the following prompt:

Do you see any imaging artefact with a ring pattern around bright
sources in the image?
Answer concisely: Yes or No.
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B5 - Source Peculiar Morphology Classification We used the

radioimg-multilabel test dataset (5,718 images) to evalu-

ate the models’ ability to detect radio sources with complex or

anomalous morphologies in input images. These sources were

previously classified into three categories: PECULIAR (150 im-

ages), COMPLEX (1,978 images), and ORDINARY (3,590 images).
For this task, we applied the following prompt:

### Context: Consider these radio image peculiarity classes,
defined as follows:

ORDINARY: image containing only point-like or slightly-resolved
compact radio sources superimposed over the sky background or
imaging artefact patterns;

COMPLEX: image containing one or more radio sources with extended
or diffuse morphology;

PECULIAR: image containing one or more radio sources with
anomalous or peculiar extended morphology, often having diffuse
edges, complex irregular shapes, covering a large portion of the
image.

### Question: Can you identify which peculiarity class the
presented image belongs to?

ORDINARY

COMPLEX

PECULIAR

Answer the question using the provided context (and examples).
Report only the identified class label, without any additional
explanation text.

B6 - Radio Galaxy Morphology Classification We used the
Mirabest (Porter & Scaife, 2023) confident sample dataset,
which contains 833 images from the VLA FIRST survey, each
zoomed and centred around radio galaxies belonging to two
distinct morphological classes: FR-I (397 images) and FR-II
(436 images).

For this task, we applied the following prompt:
### Context: Consider these morphological classes of radio
galaxies:
FR-I: radio-loud galaxies characterised by a jet-dominated
structure where the radio emissions are strongest close to the
galaxy’s centre and diminish with distance from the core;
FR-II: radio-loud galaxies characterised by an edge-brightened
radio structure, where the radio emissions are more prominent in

lobes located far from the galaxy’s core, with hotspots at the
ends of powerful, well-collimated jets.

### Question: Which of these morphological classes of radio galaxy
do you see in the image?

FR-I

FR-II

Answer the question using the provided context (and examples).

Report only the identified class label, without any additional
explanation text.

4.1.2 Image standard benchmarks

We evaluated all radio-llava fine-tuned models on 11 im-
age benchmarks (AI2, ChartQA, DocVQA, InfoVQA, MME,
MMMU, MMStar, OCRBench, SEED-Bench, ScienceQA-IMG,
RealWorldQA), which are widely used to assess multimodal
model performance across various tasks, ranging from diagram,
chart, and scene understanding to text extraction. Further de-
tails on each benchmark are provided in Appendix B.

4.2 Zero-shot performance

We evaluated the zero-shot performance of LLaVA models
of varying sizes on radio benchmarks, comparing with alter-
native open-weight VLMs and a representative commercial
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Figure 2. Classification F1-scores obtained with VLMs of different sizes (0.5B, 2B, 3.1B, 7B, 8B, 72B) in zero-shot mode over B1-B6 evaluation benchmarks. We
report the F1-score for individual classes, as well as the class-averaged F1-score (labelled as 'AVG’). LLaVA, TinyLLaVA, Qwen2VL, and InternVL models are
respectively shown with blue, green, red, and orange histograms. OpenAl GPT4.1 model is shown with black histograms.

model (OpenAl GPT 4.1). Results are reported in Figure 2 and
discussed in the following paragraphs. For each benchmark,
we report the classification F1-score for individual classes, as
well as the average F1-score across all classes (labelled as "AVG’
in the plots).

4.2.1 Open-weight models

In Figure 2, we present the benchmark evaluation results for
the base LLaVA-OneVision models (0.5B, 7B, 72B), shown in
blue histograms, compared against alternative open-weight
VLM models: TinyLLaVA 3.1B (green histogram), Qwen2VL
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models (2B, 7B, 72B) (red histograms), and InternVL models
(2B, 8B) (orange histograms).

As expected, smaller models (0.5B-3.1 B) perform con-
sistently worse across most benchmarks, while larger mod-
els (Qwen2VL 72B, InternVL 8B, and LLaVA 72B) tend to
achieve the best performance, particularly in B3 (radio galaxy
detection), B4 (artifact detection), and B6 (FR-I vs. FR-II
classification). In B1 (extended/diffuse source detection) and
B2 (morphology classification), performance remains gener-
ally low across all models, with no significant advantage for
any specific one. The best results are observed in B3 and B4,
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where LLaVA 7B/72B models achieve competitive or slightly
better performance compared to recently released VLMs. For
instance, in artifact detection (B4), they attain a respectable
50-60% F1-score in a zero-shot setting. B5 (peculiar/complex
morphology classification) and B6 (FR-I vs. FR-II classifica-
tion) present significant challenges for all models, including
the largest ones. Overall, the results indicate poor performance
across all benchmarks, underscoring the need for models spe-

cialized in astronomical data.

4.2.2 Commercial closed-weight models

Performing a comprehensive end-to-end benchmark evalu-
ation across major proprietary solutions (e.g. OpenAI GPT,
Google Gemini,Anthropic Claude) isnot straightforward,
as it would require academic institution to enter into contrac-
tual agreements with private providers to cover the cost of
executing benchmarks via their APIs. Unlike public user inter-
faces, these APIs typically operate under separate pricing and
access tiers. Nonetheless, we recognise the value of such an
analysis for understanding the feasibility and cost-effectiveness
of commercial LLM APIs in scientific benchmarking. There-
fore, we made an effort to evaluate at least one commercial

model - GPT-4.1 via the OpenAl API platform.

Benchmarks were split into multiple sub-tasks of approx-
imately 500 images each to stay within the maximum batch
file size limit (200 MB), with each mini-batch consisting of
80K—-230K input tokens, costing around 0.23$ - implying a
total of ~2.5$ per benchmark and under 208 for the full suite.
As Tier 1 users, we were able to run one or two mini-batches
per day without exceeding the token-per-day (TPD) limit of

900,000 tokens.

The GPT-4.1 benchmark results, shown in Figure 2 as
black histograms, indicate superior performance in tasks B1-
B3 and B6. In tasks B1 and B6, GPT-4.1 outperforms all
open-weight models by a substantial margin — approximately
20% in average classification score. For tasks B2 and B3, the
improvement is more modest, generally below 10%. Interest-
ingly, GPT-4.1 underperforms in tasks B4 and B5, where its
classification metrics fall below those of several open-weight
models. These results may reflect both the advantage con-
ferred by GPT-4’s significantly larger parameter count!'” and
broader pretraining corpus, as well as limitations in its exposure
to domain-specific astronomical concepts or visual patterns.
While GPT-4.1 currently achieves the best overall perfor-
mance in our benchmarks, the relatively small gap in several
tasks — combined with the flexibility, transparency, and lower
deployment costs of open-weight models — suggests there re-
mains meaningful room for their development and application

in specialized astronomical workflows.

4.3 Fine-tuning performance

10Notably, GPT-4 models are estimated to have approximately 25 times
more parameters (around 1.8 trillion parameters from various sources) than

the largest open-weight models evaluated in this work
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4.3.1 Radio benchmarks

In Figure 3 we report the classification F1-score of radio-llava
fine-tuned models obtained on radio benchmarks for each class
and overall (labelled as ’AVG’), compared to the base LLaVA-
OneVision 7B model (solid red histograms). Blue histograms
represent models fine-tuned on the Q&A dataset, using either
deep/shallow full fine-tuning or LoRA fine-tuning. Orange
histograms correspond to models fine-tuned on the combined
Q&A and caption datasets. For comparison, we also report
baseline metrics (shown as black histograms) obtained using
a vision-only classifier that shares the same vision encoder
as the LLaVA model (siglip-s0400m-patch14-384). This
classifier was fine-tuned and evaluated on the same training
and test datasets.

With the exception of B6, we observe a general improve-
ment in performance when fully fine-tuning the base model.
The performance boost is particularly notable for B1 (extend-
ed/diffuse source detection) and B3 (radio galaxy classifica-
tion), where average classification scores improve by more
than 20-30%. For the remaining tasks, the improvement is
more moderate (~10%). In contrast, LoRA fine-tuning leads
to a clear improvement only in B3 and B5 tasks, with lim-
ited gains elsewhere. Deeper fine-tuning results in a modest
improvement of only a few percentage points across all tasks,
for both full and LoRA fine-tuning strategies. Fine-tuning
on caption data (orange histograms) is observed to slightly
decrease performance on radio benchmarks. This is somewhat
expected, as all radio benchmarks are based on Q&A tasks
rather than descriptive tasks. Caption data, on the other hand,
have a positive impact on non-radio benchmarks, as discussed
in the next section.

Overall, the achieved metrics remain well below those
obtained using a vision-only model specialized for each task,
which consistently reaches over 80-85% accuracy across all
benchmarks - even after just 10 training epochs. The perfor-
mance gap is especially notable in task B1, where the vision-
only model attains an Fl-score of approximately 60% for dif-
fuse sources — class that multimodal models tend to struggle
with, likely due to their underrepresentation in the training set
(only 534 images). Similarly, in task B2, the model achieves
over 80% accuracy across all morphological classes. These
results also surpass our previous baseline of 74% average F1-
score (Riggi et al., 2024c), which was obtained by training
a LightGBM classifier on features extracted solely from the
SigLIP vision encoder. At present, a fair comparison between
the vision-only and LLaVA models cannot be provided for
benchmark B6 due to the lack of a shared training dataset.
Specifically, the FR-I/FR-1I labels used in the LLaVA training
were derived from object detection conversations on wide-field
images, whereas training a vision-only classifier would require
centred cutouts around FR-I/FR-II sources. Previous FR-I1/FR-
11 classification studies (Cecconello et al., 2024; Slijepcevic et
al., 2024) have achieved over 90% classification accuracy using
smaller fine-tuned encoders (ResNet18/ResNet50). However,
those models were trained on an independent subset of the
same survey data (MiraBest dataset, VLA survey) used for test-
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ing. In contrast, our work trained on different survey data with
varying source/image size ratios — specifically, using ASKAP
EMU pilot data for training and VLA zoomed-in source im-
ages for testing. This difference likely contributes to the poor
results observed on B6. We plan to update the dataset accord-
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Figure 3. Classification F1-scores obtained with the radio-llava model on B1-B6 radio benchmarks, comparing fine-tuning on the Q&A training dataset (blue
histograms) and the combined Q&A and caption datasets (orange histograms). For each training set, results are reported for different training strategies (full vs.
LoRA fine-tuning) and training depths (shallow vs. deep). Results from the base model are shown as filled red histograms. Results obtained with a fine-tuned
vision-only model (siglip-so400m-patch14-384 encoder) are shown as filled black histograms. The class-averaged F1-scores are labelled as 'AVG’.

ingly in future work to enable a consistent evaluation across

bot

h models.

These findings suggest that the visual encoder provides a
strong data representation, even for radio data, justifying our
decision to keep it frozen during radio-llava fine-tuning. This
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also indicates that the suboptimal performance of our multi-
modal models is likely due to visual-language misalignment
and the limited size and quality of the training dataset. Indeed,
when we attempted to fully fine-tune radio-llava, including
the vision encoder, we observed only a minor performance
improvement (~2%). However, it is important to note that, un-
like specialized vision encoder models, radio-llava was trained
to learn multiple radio tasks simultaneously.

4.3.2 Standard benchmarks
For comparison, Figure 4 reports performance on non-radio
benchmarks, using the same colour labelling scheme of Fig-
ure 3. Consistent with previous studies (Pan et al., 2024) spe-
cializing LLMs for astronomy, we observed a notable decline
in model performance on previously learned tasks compared
to the base model (solid red histograms). This task forgetting
effect is particularly pronounced in full fine-tuning, becom-
ing significant (more than a 20% accuracy drop) in deeper
training runs. In line with findings by Biderman et al. (2024),
LoRA fine-tuned models achieve lower performance on radio
benchmarks but are more robust against task forgetting.
Catastrophic forgetting remains a critical challenge when
fine-tuning LLMs. Recent studies (Zhai et al., 2023; Zhang et
al., 2024) have analysed this effect in multimodal models and
proposed various strategies to mitigate it. One promising ap-
proach, successfully explored for language models by de Haan
et al. (2024), involves expanding and curating the instruction-
tuning dataset, followed by merging fine-tuned models with
base models, using customizable balancing Weights“. In this
work, we nearly doubled the size of our initial Q&A dataset,
enriching it with more diverse image captions extracted from
a large collection of scientific papers. As shown in Figure 4,
incorporating caption data (orange histograms) helped recover
approximately 10 accuracy points across all standard bench-
marks. This confirms trends observed in previous studies and
underscores the importance of further curating our training
dataset to enable future improvements.

4.3.3 Diagnostic analysis

To assess the impact of the default training configuration on
model performance, we fine-tuned the model on the Q&A
dataset with alternative choices of selected hyperparameters,
resulting in various model variants, which are labelled and
summarised in Table 1.

* Model v1 and v2 were trained with alternative learning
rates (5x 1072, 5% 10_6) compared to the default 1072,

* Model v3 and v4 explored alternative learning schedulers:
v3used a "faster" warmup phase with warmup_ratio=0.01
(compared to the 0.03 default), while v4 employed a
cosine_with_min_1r scheduler with a minimum learn-
ing rate of 5x 1079, instead of the unconstrained cosine
scheduler;

'The merging tool used in de Haan et al. (2024) — MergeKit heeps://
github.com/arcee-ai/mergekit — currently supports merging only the LLM
components and requires extension to also include the LLaVA adapter and
vision components.
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* Model v5 was trained on 32 4 GPU nodes (batch_size=1,
gradient_accumulation_step=2) to obtain a larger ef-
fective batch size of 256 (compared to the default 8);

* Model v6 used LoRA fine-tuning with larger ranks (r=128,
alpha=256) instead of the previously tested r=64, alpha=128.

Additionally, we examined the impact of the user prompt by
repeating the benchmark evaluation with a more structured
prompt version.

Figure C.2 in the Appendix compares average metrics
across all radio tasks for the original and variant models: the
black solid histogram represents the original model, the black
dashed histogram represents the original model with the al-
ternative prompt, and the coloured histograms correspond to
the model variants. From the results, we conclude that the
alternative configurations tested do not lead to performance
improvements. Thus, the suboptimal performance is unlikely
due to non-optimal hyperparameter selection but rather to
dataset quality limitations. Furthermore, the reported metrics
show minimal variation with the adopted prompt.

To assess the impact of using automated data curation via
InternVL, we initially conducted experiments using a fully tem-
plated, uncurated dataset without InternVL-generated varia-
tion. While benchmark performance metrics remained broadly
similar, we observed a marked degradation in the model out-
puts, with responses frequently mirroring the rigid structure of
the templates. This motivated us to setup an automated data cu-
ration to enhance linguistic diversity and model conversational

ability.

Table 1. Summary of fine-tuned models with alternative hyperparameter
configurations.

Model variant Parameters

vi Ir=5x107

v2 lr=5x107°

v3 warmup_ratio=0.01

vé cosine_with_min_lr (Ir=5x107°)
v5 effective_batch_size=256

v6 LORA rank=128, alpha=256

5. Summary

In this work, we investigated the feasibility of using small-scale
Vision-Language Models (VLMs) as Al assistants for analysing
radio images, enabling tasks such as source classification, identi-
fication of specific object classes, and data exploration for qual-
ity assessment. Unlike conventional deep learning approaches,
VLMs offer a more flexible, natural-language-driven interac-
tion, reducing the need for complex coding or task-specific
model adaptation. To this end, we fine-tuned LLaVA, a state-of-
the-art VLM, on a custom dataset of over 59,000 radio images
paired with instruction-based queries, along with an additional
38,000 image-caption pairs extracted from a large corpus of
radio astronomical papers. The fine-tuning process leveraged
both Q&A interactions and descriptive captions, enabling the
model to handle a variety of radio analysis tasks, including
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Figure 4. Classification accuracy obtained with the radio-llava model on standard non-radio benchmarks (Section 4.1.2), comparing fine-tuning on the Q&A
training dataset (blue histograms) and the combined Q&A and caption datasets (orange histograms). For each training set, results are reported for different
training strategies (full vs. LoRA fine-tuning) and training depths (shallow vs. deep). Results from the base model are shown as filled red histograms.

source morphology classification, extended source detection,
and artifact identification. The resulting radio-llava model was
evaluated across six radio-specific benchmarks (B1-B6) and
compared against baseline VLMs on non-astronomical multi-
modal tasks. Fine-tuned models and the developed software
have been publicly released.

Our key findings can be summarised as follows:

* Fine-tuning improves performance: Compared to the base
model, radio-Ilava exhibits significant performance gains
on radio benchmarks, particularly in extended source detec-
tion (B1) and radio galaxy classification (B3), with F1-score
improvements exceeding 20-30%;

* Challenges in multimodal alignment: Despite fine-tuning,

pure vision models still outperform VLMs, suggesting that

visual-language alignment remains a limiting factor. Full
fine-tuning of both vision and language components re-
sulted in only marginal improvements (~2%);

Task forgetting effect: While fine-tuned models improve in

radio-specific tasks, they suffer from catastrophic forget-

ting when evaluated on general multimodal benchmarks.

This effect is more severe for full fine-tuning (~20% accu-

racy drop), while LoRA fine-tuned models exhibit better

https://doi.org/10.1017/pasa.2025.10082 Published online by Cambridge University Press

retention of prior knowledge. Fine-tuned models were also
observed to exhibit degraded conversational capabilities;

* Impact of caption data: Incorporating descriptive captions
from scientific literature into the training set enhances
model generalization, helping recover ~10 accuracy points
on standard multimodal benchmarks while also improving
instruction-following abilities.

These findings highlight the potential of compact multimodal
models for radio astronomy while also revealing key limitations
that require further research to fully match the performance
of specialized vision models. Future efforts should focus on
improving vision-language alignment, curating larger, high-
quality training datasets, and exploring hybrid fine-tuning
strategies also for larger models (~70B) to mitigate task for-
getting while maximizing domain-specific performance. Ad-
ditionally, we plan to leverage the multi-image processing
capabilities of the LLaVA-OneVision model for in-context
learning of analysed tasks. Future investigations will also ex-
plore its performance on new tasks requiring comparative anal-
ysis across multiple images, such as image retrieval of known
source classes.
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A. Training Datasets

A.1 Coarse-grained radio datasets

We describe below the annotated datasets used to create the
conversational train dataset.

radioimg-multilabel dataset

The dataset currently includes a collection of 19,060 annotated
radio images taken from multiple radio surveys, carried out
both in the Galactic Plane and outside:

* SARAO MeerKAT Galactic Plane Survey (SMGPS) (Goed-
hart et al., 2024): 2,704 images (14.2%)

* ASKAP EMU main survey (Hopkins et al., 2025): 4,456
images (23.4%)

+ ASKAP EMU pilot survey (Norris et al., 2021): 5,860
images (30.7%)

* ASKAP EMU pilot Galactic Plane surveys (Umana et al.,
2021): 6,040 images (31.7%)

We manually assigned the following labels to each image:

* BACKGROUND: If the image is purely background noise, e.g.
no sources are visible. Typically, this label is set for frames
located at the map borders;

COMPACT: if point sources or compact sources comparable

with the synthesized beam size (say <10 times the beam)

are present. Double or triple sources with point-like com-
ponents also fall into this category;

EXTENDED: if any extended source is visible, e.g. a compact

source with extension >10 x beam;

* RADIO-GALAXY: if any extended source is visible with a
single- or multi-island morphology, suggesting that of a
radio galaxy (e.g. core + lobes);

* DIFFUSE: if any diffuse source is visible, typically having
small-scale (e.g. <few arcmin) and roundish morphology;

* DIFFUSE-LARGE: if any large-scale (e.g. covering half of

the image) diffuse object with irregular shape is visible;

FILAMENT: if any extended filamentary structures is visible;

ARTIFACT: if any ring-shaped or ray-like artefact is visible,

e.g. typically around bright resolved sources;

PECULIAR: if any object is found with peculiar/anomalous

morphology;

MOSAICKING: if any residual pattern of the mosaicking

process used to produce the image is present;

* BORDER: if the image contains blank/NaN regions along
its borders.

More than one label can be assigned to each image, depending
on the object/features the user recognises in the image. The
number of images that have been assigned each specific label
is reported in Table Al.

The dataset was split into two samples. The first sam-
ple, containing 13,342 images, was used to generate the user-
assistant conversations for the training Q&A dataset starting
from the template image description created from assigned
class labels, as described in Section 3.1.1. The rest of the dataset,
consisting of 5,718 images, was used to evaluate the perfor-
mance of trained models.
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Table A1. The number of images in the radioimg-multilabel dataset that have
been assigned each specific label. Multiple labels can be assigned to a single
image, as they are not mutually exclusive.

label #images
BACKGROUND 116
COMPACT 18,671
EXTENDED 3,279
RADIO-GALAXY 3,269
DIFFUSE 757
DIFFUSE-LARGE 1438
FILAMENT 50
ARTIFACT 1283
PECULIAR 439
MOSAICKING 260
BORDER 453

rgz-smorph dataset

The dataset currently includes a collection of 9,570 radio im-
ages extracted from the VLA FIRST survey (Becker et al.,
1995) and annotated in the Radio Galaxy Zoo (RGZ) crowd-
sourced project (Banfield et al., 2015). Each image is centred
and zoomed on radio sources of 6 different morphological
classes, defined on the basis of the observed number of com-
ponents (C) and peaks (P) as follows: 1C-1P, 1C-2P, 1C-3P,
2C-2P, 2C-3P, 3C-3P. The entire dataset was split into two
samples. The first one, containing 5,735 images (~1000 per
class), was used to create the conversational dataset, while the
remaining sample (3,835 images, ~600 per class) was reserved
for model evaluation scopes.

smgps-extcat dataset

The dataset currently includes a collection of 17,062 radio
images extracted from the SMGPS survey (Goedhart et al.,
2024), each centred and zoomed'? on radio sources listed in the
SMGPS extended source catalogue (Bordiu et al., 2025). This
includes single- or multi-island sources with morphologies
classified as: EXTENDED or DIFFUSE. Furthermore, a fraction
of the catalogued sources also have an astronomical class la-
bel obtained either through morphological considerations or
cross-matching with various Galactic source catalogues (see
Bordiu et al. 2025 for details). Available class labels are: GALAXY
(radio galaxy), HII (Hu region), PN (planetary nebula), SNR
(supernova remnant), PULSAR (pulsar), STAR (generic radio
star), YSO (young stellar objects), LBV (luminous blue variable
star), WR (Wolf-Rayet star), HMXB (high-mass X-ray binary),
LMXB (low-mass X-ray binary). Sources cross-matching to
multiple catalogues have more than one label assigned. All the
above source annotations are taken into account to generate
the conversational dataset.

A.2 Fine-grained radio datasets
We describe below the annotated datasets used to create con-
versational train datasets that contain precise object localization

13The original image crop size is set to 1.5 times the size of the source
bounding box.
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information.

caesar-mrcnn dataset

The dataset currently contains 12,774 annotated radio images
taken from different surveys, such as the VLA FIRST (Becker
etal., 1995), ATCA Scorpio (Umana et al., 2015), and ASKAP-
EMU Scorpio (Umana et al., 2021) surveys. The annotation
data include bounding boxes, segmentation masks and classifi-
cation labels for all radio object identified in the images (38,342
objects, including both real and spurious sources). Objects
are classified into five possible classes: SPURIOUS, COMPACT,
EXTENDED, EXTENDED-MULTISLAND, FLAGGED. A detailed ex-
planation of the labelling scheme is provided in the reference
publication (Riggi et al., 2023). The entire dataset was used to

produce the Q&A training dataset.

emu-pilot-rgcat dataset

The dataset currently contains 10,414 annotated radio images
taken from the ASKAP EMU pilot survey (Norris et al., 2021),
each containing at least one extended radio source. Annotation
data have been extracted from EMU pilot RG-CAT catalogue
(Gupta et al, 2024), including bounding boxes and classification
labels for radio objects present in the images. Objects in the
original catalogue are classified into six possible radio galaxy

morphology classes:

* C: compact radio galaxies;
* FR-I: radio galaxies of Fanaroff-Riley type I;
* FR-II:radio galaxies of Fanaroff-Riley type II;

* FR-x: radio galaxies with mixed or hybrid morphology,
showing characteristics of both FR-I and FR-II galaxy

classes;

* R: radio galaxies with single-peak resolved morphology;

* Pec: radio galaxies with a peculiar morphology;

A total of 185,294 objects were annotated according to RG-

CAT catalogue.

From a visual inspection of the data, we note that various
objects classified as compact (C) should be rather considered as
belonging to the EXTENDED class in the classification scheme
adopted in the caesar-mrenn dataset (see previous paragraph).
To make the two fine-grained datasets more comparable, we
applied the following processing steps. We first extracted ob-
jects from EMU pilot images using caesar-mrcnn trained model
(Riggi et al., 2023). As a result, we obtained a list of detected
objects classified with the caesar-mrenn classification scheme,
that was cross-matched with the original RG-CAT object col-
lection. This was extended and complemented according to
the match results. Objects with a match (~78%) were also
given a caesar-mrcnn label. Objects detected by the caesar-mrenn
model but missed in the RG-CAT were added to the final col-
lection, including a total of 231,439 objects. The obtained
source annotations were taken into account to generate the

conversational dataset.

B. Image multi-modal benchmarks
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Al2
This benchmark!* consists of 3,088 image-based Q&A pairs

on annotated grade school science diagrams from the AI2
Diagrams (AI2D) dataset (Kembhavi et al., 2016).

ChartQA
This benchmark!® contains 2,500 image-based Q&A pairs

on real-world charts in various formats (pie, bar) from the
ChartQA dataset (Masry et al., 2022).

DocVQA
This benchmark!® contains 16,626 image-based Q&A pairs

on document of various types and content, sourced from the
DocVQA dataset (Mathew et al., 2021).

InfoVQA
This benchmark!” contains 2,801 image-based Q&A pairs on

document infographics of various types and content, sourced
from the InfographicVQA dataset (Mathew et al., 2022).

MME

This benchmark!® consists of 2,374 image-based Q&A pairs
from the MME dataset (Fu et al., 2024), designed to evaluate
multimodal models’ perception and cognition abilities. Percep-
tion tasks include OCR, recognition of coarse-grained objects
(e.g., object presence, count, position, and colour) and fine-
grained objects (e.g., identification of movie posters, celebrities,
scenes, landmarks and artworks). Cognition tasks cover com-
mon sense reasoning, numerical calculation, text translation,
and code reasoning.

MMMU

This benchmark!® consists of 900 image-based Q&A pairs
from the MMMU dataset (Yue et al., 2024), designed to assess
multimodal perception and reasoning abilities across various
image formats, including charts, diagrams, maps, tables, mu-
sic sheets, and chemical structures. The images are sourced
from college exams, quizzes, and textbooks spanning six disci-
plines: Art & Design, Business, Science, Health & Medicine,
Humanities & Social Science, and Tech & Engineering.

MMStar

This benchmark?® contains 1,500 image-based Q&A pairs
from the MMStar dataset (Chen et al., 2024), designed to eval-
uate multimodal models across six core capabilities: Coarse Per-
ception, Fine—grained Perception, Instance Reasoning, Logical

Reasoning, Science & Technology, Mathematics.
Yhetps://huggingface.co/datasets/Imms-lab/ai2d
Sheeps://huggingface.co/datasets/Imms-lab/ChartQA
10hteps://huggingface.co/datasets/Imms-lab/DocVQA
17https://huggingface.co/datasets/Imms-lab/DocVQA, see InfographicVQA

validation data split
Bheeps://huggingface.co/datasets/lmms-lab/MME
19https://huggingface.(:o/datasets/lmms—lab/MMMU, see validation data

split
hteps://huggingface.co/datasets/Lin-Chen/MMStar
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OCRBench

This benchmark?! consists of 1,000 image-based Q&A pairs
from the OCRBench dataset (Liu et al., 2024c), designed to
assess Optical Character Recognition (OCR) capabilities across
various domains, including multilingual text, handwritten text,
non-semantic text, and mathematical expression recognition.

SEED-Bench

This benchmark?? contains 17,990 image-based Q&A pairs
from the SEED-Bench dataset (Li et al., 2023c), designed to
evaluate multimodal model capabilities across various domains,
including scene understanding, instance identity/attribute/lo-
cation/counting, spatial relations, instance interaction, visual
reasoning, text recognition, action recognition/prediction,
procedure understanding,.

ScienceQA-IMG

This benchmark?® consists of 2,017 image-based Q&A pairs
from the ScienceQA dataset (Lu et al., 2022), featuring
multiple-choice questions spanning diverse topics across three
subjects: natural science, social science, and language science.

RealWorldQA

This benchmark?* contains 765 image-based Q&A pairs from
the Real WorldQA dataset, featuring real-world scenarios, in-
cluding images captured from vehicles.

2l heeps://huggingface.co/datasets/echo840/OCRBench
Zhetps://huggingface.co/datasets/Imms-lab/SEED-Bench
Bhetps://huggingface.co/datasets/lmms-lab/ScienceQA, see ScienceQA-
IMG test data split
24heeps://huggingface.co/datasets/Imms-lab/Real WorldQA
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C. Supplementary plots/tables

S. Riggietal.

Table C1. User-assistant conversations on sample radio images for base and fine-tuned LLaVA-OneVision models.

User

llava-ov

radio-1llava (Q&A)

radio-1lava (Q&A + capt.)

You are given a radio astronomical image as input. Answer to the question below, strictly following the provided instructions.

## Question: Can you provide a brief description of the image?

## Instructions:

— Base your description solely on the objects and patterns visible in the image.
— Do not include details that are not present in the image.

— Use a scientific and astronomical writing style.

— Limit your response to a maximum of four sentences.

The image depicts a section of the sky with several bright, white spots
against adark background. These spots are likely to be celestial objects
such as stars or galaxies. The distribution and brightness of these

objects suggest they could be part of a larger astronomical structure,
possibly a galaxy cluster or a group of stars within a constellation.

Theimage is a radio astronomical image cutout extracted from a larger
radio-continuum Stokes-l1 map produced by an interferometer tele-
scope, centred and zoomed on a multi-island extended radio source,
consisting of 3 islands.

The image shows a radio astronomical cutout of an extended radio
galaxy candidate, characterised by its elongated structure and multiple
bright spots.

Theimage depicts a radio astronomical observation, likely of a celestial
object such as a galaxy or a star system. It shows two bright, circular
regions that could represent the centers of these objects, surrounded
by fainter, ring-like structures that might be indicative of surrounding
material or disk-like formations. The central bright spots are possi-
bly the cores of the objects, emitting intense radio signals. The faint
lines and patterns suggest variations in intensity or different emission
mechanisms within the observed region.

The image is a radio astronomical cutout featuring various point-like
and compact radio sources, as well as extended radio sources, with
some sources exhibiting poor imaging and ring-patterned artefacts.

The image shows a radio astronomical cutout with two prominent
sources. One source appears as a bright, compact object near the
center of the image, while the other is a more extended source located
towards the right side. The background exhibits a complex pattern of
concentric rings, likely resulting from the imaging process.

User

1llava-ov
radio-1lava (Q&A)

radio-1lava (Q&A + capt.)

## Question: Do you see any likely radio galaxy with an extended morphology in the image?

## Context:

— RADIO GALAXY: a type of active galaxy that emits an exceptionally large amount of radio waves, often extending beyond its visible structure. These galaxies host an
active galactic nucleus (AGN), powered by a supermassive black hole (SMBH) at their center, which fuels the production of powerful radio jets and lobes.

## Instructions:

— Answer the question taking into account the provided context.

Yes, there is a likely radio galaxy with an extended morphology in the
image.

Yes, the image suggests the presence of an extended radio galaxy can-
didate due to its elongated and extended morphology.

Yes, the image shows characteristics of a radio galaxy with an extended
morphology.

Yes, there is a likely radio galaxy with an extended morphology in the
image.

Yes, the image contains candidate radio galaxies with extended mor-
phology.

No, the image does not show characteristics of a radio galaxy with an
extended morphology.

User

1llava-ov
radio-1lava (Q&A)
radio-1lava (Q&A + capt.)

## Question: Do you see any imaging artifact in the provided image?
## Context:

— ARTEFACT: noise pattern with a ring-like or elongated morphology, typically found around bright compact sources in radio images. They are often mistaken for real
radio sources but are actually spurious. These patterns arise from imperfections in the imaging processing stage of radio data..

## Instructions:

— Answer the question taking into account the provided context.
No

No, the image does not show any imaging artefacts.

No, there are no imaging artefacts present in the image.

No
Yes, the image contains imaging artefacts.

Yes, there are imaging artefacts present in the image.
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radio-llava Demo

Model Configuration

Imms-labillay

" GO02.5+0.01Fx_Mosalc_Momo_cutout0D01757.png 30742 x

Image Processing
Parameters

e Prompt

Provide a brief description of the input image

Conversations

ription ofthe Input image

Figure C.1. A screenshot displaying the Streamlit web application developed for radio-llava demo purposes.

1= fine-tuning (Q&A), full (shallow)

— @ default
default (alt prompt)

vl

F1-score

B6

Bl

Figure C.2. Class-averaged classification F1-scores obtained with the radio-llava model on B1-B6 radio benchmarks, comparing fine-tuning on the Q&A training
dataset (black solid histograms, labelled as "default") with model variants (v1-v6, coloured histograms), fine-tuned on the same dataset using alternative
parameters (see text). The dashed black histogram represents the standard model evaluated on B1-B6 benchmarks using an alternative prompt.
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