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Abstract

Calving glaciers respond quickly to atmospheric variability through ice dynamic adjustment.
Particularly, single weather extremes may cause changes in ice-flow velocity and terminus
position. Occasionally, this can lead to substantial event-driven mass loss at the ice front. We
examine changes in terminus position, ice-flow velocity, and calving flux at the grounded
lacustrine Schiaparelli Glacier in the Cordillera Darwin using geo-referenced time-lapse camera
images and remote sensing data (Sentinel-1) from 2015 to 2022. Lake-level records, lake
discharge measurements, and a coupled energy and mass balance model provide insight into
the subglacial water discharge. We use downscaled reanalysis data (ERA5) to identify climate
extremes and track land-falling atmospheric rivers to investigate the ice-dynamic response on
possible atmospheric drivers.

Meltwater controls seasonal variations in ice-flow velocity, with an efficient subglacial drain-
age system developing during the warm season and propagating up-glacier. Calving accounts for
4.2% of the ice loss. Throughout the year, warm spells, wet spells, and landfalling atmospheric
rivers promote calving. The progressive thinning of the ice destabilizes the terminus position,
highlighting the positive feedback between glacier thinning, near-terminus ice-flow acceleration,
and calving flux.

1. Introduction

In recent decades, the temperature increase in South Patagonia has been lower than the global
average (NOAA National Centers for Environmental Information, 2023). Remarkably, the ice
fields of South Patagonia are one of the fastest shrinking ice bodies (Braun, 2019). Since most
glaciers in Patagonia calve either into a fjord system or freshwater lake (Warren and Aniya,
1999), a considerable amount of mass loss is attributed to ice-dynamical adjustment
(Sakakibara and Sugiyama, 2014; Mouginot and Rignot, 2015; Braun, 2019; Sauter, 2020;
Minowa and others, 2021).

In the southern part of the Andes, three icefields host the majority of South Patagonia’s
glacier volume. These include the Northern and Southern Patagonia Icefields on the mainland
of South America and the Cordillera Darwin Icefield, located in the western part of Isla Grande
de Tierra del Fuego, which hosts the southernmost temperate glaciers (Fig. 1). It consists of a
main ice body with a total area of 1760 km2 centered on Monte Darwin (2207 m) to the east,
glaciers that coalesce around Monte Sarmiento (2261 m), and some smaller glaciers separated
by fjord systems to the west covering an area of 179 km2 (Meier and others, 2018; Rada and
Martinez, 2022). As in the whole region of South Patagonia, strong baroclinicity in the westerly
wind belt characterizes the prevailing very harsh climatic conditions (Schneider and others,
2003; Garreaud, 2009; Garreaud and others, 2013; Sauter, 2020). Westerly winds transport
moist, temperate air masses from the South Pacific (Langhamer and others, 2018) and are
responsible for the extremely humid climate, low seasonal temperature ranges, strong winds,
and high annual precipitation totals (Miller, 1976; Endlicher, 2000; Garreaud and others,
2013). The Andes act as an effective climatic barrier perpendicular to the main flow, creating
a heterogeneous precipitation pattern. Annual precipitation amounts at the Patagonian ice-
fields are estimated to be 6.09+ 0.64m a−1 (Sauter, 2020). Compared to other regions in
South America, the Patagonian Icefields exhibit the highest negative specific mass balance
rates (Braun, 2019). These high rates obtained from geodetic mass-balance observations are
inconsistent with climate records (Malz and others, 2018; Braun, 2019). Previous estimates
of frontal ablation suggest that at least 30% of the mass loss in the Southern and Northern
Patagonian Icefields occurs via dynamic processes (Minowa and others, 2021), highlighting
the importance of ice-dynamic processes.

When studying glacier dynamics and their response to atmospheric forcing, it is crucial to
consider glacier runoff, defined as the flux of water leaving the glacier system (Cogley, 2010),
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including meltwater, precipitation, and water input from the mar-
gins, which can drain down to the ice-bedrock interface and
potentially increase basal lubrication (Weertman, 1972).
However, whether runoff increases basal lubrication also depends
on the state of the subglacial discharge system. The subglacial dis-
charge system drains runoff water efficiently by channelization
(Röthlisberger, 1972) or inefficiently by cavitation (Lliboutry,
1968). In the latter, runoff reaches the ice-bedrock interface,
increasing basal water pressure, which reduces basal drag and
improves lubrication, accelerating ice motion (Weertman, 1972;
Iken, 1981; Iken and others, 1983; Iken and Bindschadler,
1986). Thus, the interplay between runoff and discharge efficiency
determines a glacier’s characteristic seasonal velocity pattern
(Moon and others, 2014). Ultimately, high runoff volumes due
to single weather events, such as rapid temperature increases or
heavy precipitation events, can affect a glacier’s ice dynamics
(e.g., Kamb, 1987; Meier and others, 1994; Luckman and others,
2006; den Ouden and others, 2010; Schellenberger and others,
2015; Little and others, 2019; Tuckett and others, 2019) when
runoff inputs exceed the ability of the existing englacial channel
system to discharge water (Bartholomaus and others, 2008).
Generally, thinning at the terminus of a calving glacier reduces
the effective pressure at the glacier bed (difference between glacier
weight and basal water pressure) and causes instantaneous accel-
eration and rapid retreat as the glacier approaches flotation
(Howat and others, 2008; Stearns and van der Veen, 2018).

Because of the often asynchronous behavior of calving glaciers
on a regional scale, these glaciers belong to the group of non-
representative glaciers with respect to climate variation (Post
and others, 2011). The dynamic behavior, particularly the ice-flow
velocity, terminus position, and calving, can undergo abrupt
changes, and their adjustments are partially decoupled from the cli-
mate (Benn and others, 2007). For instance, in South Patagonia,
different seasonal velocity patterns can exist side-by-side, and
retreat or advance can occur in immediate proximity (Sakakibara
and Sugiyama, 2014).

To date, no long-term records are available to study the dynamic
response to the atmospheric forcing of Cordillera Darwin’s calving
glaciers. Glaciological fieldwork in the Cordillera Darwin Icefield is
challenging and uncommon due to the remoteness and harsh condi-
tions. Therefore, only remote sensing-basedmeasurements of glacier
area, volume, length, and velocity changes andnumerical simulations
of mass balance are available (Melkonian and others, 2013; Braun,
2019; Weidemann and others, 2020; Temme and others, 2023).
However, the latter neglect ice dynamics. The spatial and temporal
resolution of repeat-pass synthetic aperture radar (SAR) remote-
sensing capabilities limits the ability to detect small isolated calving
events and associated frontal changes of lacustrine glaciers.

Since 2013, we have recorded ice-dynamic adjustments at a
representative lacustrine glacier, Schiaparelli, located at the
Monte Sarmiento Massif (Fig. 2). The surface ice-flow velocity
in the glacier’s ablation area is estimated using a combined

Figure 1. Overview of South Patagonia and the icefields. The
star highlights the location of Monte Sarmiento in the
Cordillera Darwin. The inset map displays the glacier out-
lines at Monte Sarmiento Massif (RGI Consortium, 2017).
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approach of SAR images and images from in-situ monoscopic
camera systems. Furthermore, we used the camera systems to
record changes in the ice-front position at two-hour intervals
from 2015 to 2022, with occasional interruptions. A coupled
snowpack and ice surface energy and mass balance model esti-
mates glacier runoff, which we compare to the measured lake
discharge to evaluate the efficiency of the subglacial discharge sys-
tem. We use automatic weather station records to downscale
ERA5 temperature and precipitation to the complex mountainous
terrain to reproduce the atmospheric forcing over the whole
glacier. This study provides a detailed picture of the spatial and
temporal variations in ice-front position and surface velocity.
We study the relationship between glacier discharge and ice-flow
velocity using (time-lagged) correlation analysis to understand the
interplay between runoff and ice-flow velocity. In addition, we
evaluate recurrent weather extremes and assess their contribution
to calving and surface ablation with the aim of quantifying poten-
tial atmospheric drivers conducive to controlling the ice dynamics
and total mass balance of Schiaparelli Glacier.

2. Study site

The scenery of the Cordillera Darwin Icefield, with its numerous
fjords, mountain peaks, and calving glaciers, has fascinated scien-
tists and adventurers since its description by the famous Beagle
Expedition in the 19th century. ‘The occurrence of glaciers reach-
ing to the water’s edge & in summer, in Lat: 56◦ is a most curious
phenomenon: the same thing does not occur in Norway under Lat.
70◦. From the number of small ice-bergs the channel represented in
miniature the Arctic Ocean’ (van Wyhe, 2006, p. 139). These were
the words Charles Darwin used to describe the unique climate
and environmental conditions at the Cordillera Darwin in his
Beagle Diary on January 29, 1833. Lithographs taken during the
second Beagle Expedition in 1836 provide the earliest documen-
tation of the glaciers around Monte Sarmiento (Darwin and
others, 1839), increasing our awareness of glaciers’ adaptation to
climate change in the mid-latitudes of the Southern Hemisphere.

The proximity to the fjord system results in a temperate mari-
time climate with an annual mean temperature of 1.2 °C and a low

seasonal amplitude of 5.9 °C. Located south of the core of the
westerlies and upstream of the mountain’s main ridge, orographi-
cally enhanced uplift leads to high annual precipitation totals of
3914 mm and almost permanent cloud cover. During winter, pre-
cipitation sums are slightly lower (≈ 200mmmonth−1) than in
summer (≈ 330mmmonth−1) due to a weakening of the westerly
wind belt (Garreaud and others, 2013; Langhamer and others,
2018). According to a non-parametric Mann–Kendall test, there
is a significant (p≤ 0.05) linear trend in both ERA5 temperature
and precipitation of 0.09 °C decade−1 and 4.0 mm decade−1,
respectively, illustrating sustained changes in climate forcing
from 1950 to 2022.

The Monte Sarmiento Massif comprises a glaciated area of
around 70 km2 (Barcaza, 2017) with the four largest glaciers
named Conway, Lovisato, Emma and Schiaparelli (Fig. 1).
Schiaparelli Glacier covers the largest area (24.3 km2 in 2016
(Meier and others, 2018)), extending from an elevation of 2013
m above mean sea level (m msl) on the northeast side of Monte
Sarmiento (Rada and Martinez, 2022) to the moraine-dammed
lake, Lago Azul, at 17 mmsl. Schiaparelli Glacier, named by the
Salesian missionary, explorer, mountaineer and scientist Alberto
De Agostini in 1913 to honor the Italian astronomer Giovanni
Schiaparelli (1835-1920) (De Agostini, 1955), is a grounded lacus-
trine glacier, like most glaciers in South Patagonia (Warren and
Aniya, 1999). The glacier calves into Lago Azul, a proglacial
lake that formed after the glacier receded from its former terminal
moraines in the 1940s (Meier and others, 2019). Through a cut in
the moraine ridge, the lake discharges westward down a stream
(Rio Azul) into the Magdalena Channel, providing a suitable
setup for glaciological studies (Fig. 2).

Since 2015, two automatic weather stations (AWSs), one in the
glacier’s vicinity and the other close to the centerline, have been
recording air temperature, air pressure, precipitation amount,
relative humidity, wind direction and velocity, snow height and
global radiation (Fig. 2). Fieldwork included measurements of
ice thickness (Gacitúa and others, 2021), lake bathymetry and
the discharge of Lago Azul. The lake-level and water temperature
fluctuations are monitored using a water pressure sensor to deter-
mine a functional relationship between lake-level and lake

Figure 2. Overview of the study area with Sentinel-1 surface
ice-flow velocity estimates averaged from 2015 to 2022.
White lines indicate terrain height (Pléiades © CNES
2020-02-03, Distribution Airbus D&S; Marti and others
(2016); Beyer and others (2018); Deschamps-Berger (2020))
and red lines ice thickness in meters (Farinotti, 2019). Blue
areas with contour lines present the lake depth in meters.
Black circles (P1 to P7) represent the region of interest for
the calculation of surface ice-flow velocity presented in
Figures 11, 9, 14, and 16 along the centerline (black dashed
line obtained from Maussion, 2019). The black dots illustrate
the section of the photo above that captures the glacier ter-
minus, the proglacial Lago Azul, and its discharge into the
fjord system. The photo was taken at a ridge ≈ 710mmsl
in March 2020.
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discharge. On-site unoccupied aerial vehicle (UAV) missions pro-
vide spatially detailed annual height and length changes of the
glacier margin. Ablation stakes have been used to validate surface
mass balance models in the lower ablation area (Weidemann and
others, 2020; Temme and others, 2023). To capture the most
recent changes and their causes, camera systems have recorded
the glacier’s terminus since 2015.

3. Materials and methods

3.1 Atmospheric data

The ERA5 reanalysis dataset is the highest temporally and spa-
tially resolved global reanalysis dataset to date (Hersbach and
others, 2020). Variables at surface and pressure levels are available
in hourly time steps at a horizontal resolution of approximately
31 km. Surface variables of temperature, relative humidity, pres-
sure, wind velocity and cloud cover are used to generate the cli-
matic forcing for the coupled snowpack and ice surface energy
and mass balance model in python (COSIPY). Therefore, ERA5
data is extracted at the four closest grid cells to the AWS and
statistically downscaled to the local conditions at the AWS by
quantile mapping (Gudmundsson and others, 2012). Quantile
mapping is a technique for downscaling climate-model data via
statistical bias correction by adjusting the cumulative distribution
function of the model data to the observed data. It has been suc-
cessfully applied in recent studies in Southern Patagonia (e.g.,
Weidemann and others, 2018, 2020) and shows a good perform-
ance in the Monte Sarmiento Massif (for evaluation results, see
supplementary table S1 in Temme and others (2023)). Since
wind velocities at the AWS are strongly influenced by the local
topography, we decided to take this variable directly from the
ERA5 data. Statistically downscaled air temperature and pressure
are spatially interpolated from the AWS over the topography
using a linear temperature lapse rate and the barometric equation,
respectively. By fine-tuning the parameters within both the
atmospheric and melt model, we determined a lapse rate of
0.60K (100m)−1 (Temme and others, 2023). This estimate is con-
sistent with values previously used in the region (e.g., Strelin and
Iturraspe, 2007; Koppes and others, 2009) and the average
obtained from the ERA5 dataset. The generated high-resolution
dataset of atmospheric conditions at the study site is used to
force COSIPY following the approach in Weidemann and others
(2020) and for the climatological analysis of extreme events. The
precipitation is downscaled by an orographic precipitation model
(see the following section). The required input is taken from
ERA5 and consists of upwind information on geopotential height,
air temperature, wind vectors and relative humidity between
850 hPa and 500 hPa and total precipitation over the study site.
We use the horizontal integrated water vapor transport (IVT)
to detect atmospheric rivers.

3.2 Orographic precipitation model

Since precipitation events can be highly variable spatially and
temporally, downscaling is challenging over complex terrain.
Furthermore, observations in southern Patagonia are known to
be error-prone due to strong winds (Schneider and others,
2003, 2007). Thus, linear extrapolation of such sparse and uncer-
tain observations with an elevation-dependent lapse rate is crit-
ical. Therefore, precipitation is simulated following a physically
motivated approach using a linear model of orographic precipita-
tion (Smith and Barstad, 2004; Barstad and Smith, 2005; Sauter,
2020), which has been shown in previous studies to reproduce
in-situ measurements and their temporal variability well over
mountainous terrain (e.g., Schuler and others, 2008; Jarosch and

others, 2012; Weidemann and others, 2013, 2018; Sauter, 2020;
Temme and others, 2023). The model is based on the linear
steady-state theory of orographic precipitation and calculates the
precipitation resulting from forced orographic uplift over a moun-
tain, assuming saturated and stable conditions. The cloud water
and hydrometeor density are given from advection, condensation
due to terrain-forced uplift, and the conversion of cloud water to
hydrometeors, as well as the fallout of those producing precipita-
tion (Smith and Barstad, 2004; Barstad and Smith, 2005; Sauter,
2020; Weidemann and others, 2020). The total precipitation is
calculated by adding the orographic precipitation computed by
the model to the large-scale precipitation, which is given by
removing the orographic component from the ERA5 precipitation
(Weidemann and others, 2013, 2018; Sauter, 2020; Weidemann
and others, 2020; Temme and others, 2023). The model para-
meters include a threshold of relative humidity above which pre-
cipitation can occur (90%), determined on observations, and the
fallout and conversion time of hydrometeors (1200 s), calibrated
for the Monte Sarmiento Massif, in combination with surface-
mass balance model parameters based on observations of geodetic
mass balance (Temme and others, 2023).

3.3 Glacier mass balance and runoff model

Similar to Weidemann and others (2020), we use an updated ver-
sion of the COSIPY model (Sauter and others, 2020) to estimate
the glacier’s total runoff. The runoff, including meltwater and
liquid precipitation, represents the liquid water flux leaving the
glacier system (Cogley, 2010). The model performance of
COSIPY was compared to three different surface mass balance
models of varying complexity in the Monte Sarmiento Massif
(Temme and others, 2023). Mass balance estimates of COSIPY
agree well with the other model results and show good perform-
ance with regional and local geodetic mass balance estimates and
ablation stake measurements (Temme and others, 2023). COSIPY
combines a surface energy balance with a multi-layer subsurface
snow and ice model, where the computed surface meltwater serves
as an input for the subsurface model (Sauter and others, 2020).
The total ablation includes surface melting, which is calculated
by solving all energy fluxes at the glacier surface, sublimation
and subsurface melting. Accumulation is possible through snow-
fall, refreezing and deposition. Snowfall is derived from down-
scaled precipitation, distinguishing between solid/liquid phases
with a logistic transfer function scaling around a threshold tem-
perature of 1.0 °C. Furthermore, the model was extended with a
basic parameterization of snowdrift (Warscher and others, 2013;
Temme and others, 2023), modifying the snowfall distribution
based on the topography and the prevalent wind direction. The
simulations cover the Monte Sarmiento Massif, including
Schiaparelli Glacier, with a 200 m spatial and three-hourly tem-
poral resolution for 2000–2022. The model parameters were
partly calibrated (albedo of ice and firn and ice roughness length)
and partly fixed based on sensitivity tests and reference values.
For a detailed description of the model setup, calibration and
evaluation, we refer to Temme and others (2023) and Tables 1
and S2 therein.

3.4 Discharge model

Pressure readings from the water-level sensor are converted to
relative water levels of Lago Azul by the hydrostatic equation,
accounting for the ambient air pressure. The relative water level
of 0 m corresponds to the lowest point of the lake outflow at
Rio Azul, when no discharge would be possible. The discharge
was measured at the outlet of Rio Azul over a cross-section
of ≈ 20m (Fig. 2). Following the velocity area method, water
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flow velocity measurements were taken at 1 m intervals
(Morgenschweis, 2018). A two-point method was used, measur-
ing the flow velocity at 20% and 80% of the water depth in
2018 and 2019 and a fixed depth approach in 2022. A total of
14 discharge measurements were conducted at different lake levels
to establish a relationship between discharge and lake level
(Fig. 3). The discharge-lake-level relation follows a power function
of the form f(x) = axn (Morgenschweis, 2018). We achieve the
best fit with a coefficient of determination R2 = 0.87 using the
coefficient a = 0.51 and the exponent n = 0.32. We use the 95%
prediction interval to provide model uncertainties.

3.5 Identifying extreme meteorological events

Environmental responses to intense and frequent climate and
weather extremes are complex and globally diverse (Karl and
others, 1997). To quantify extremes, the Expert Team on
Climate Change Detection and Indices (ETCCDI) suggests a set
of 27 temperature and precipitation indices to assess terrestrial cli-
mate variability and change (Karl and others, 1999; Peterson and
others, 2001, 2002). Six consecutive days of daily maximum tem-
peratures in the upper and lower 10th percentile of maximum
temperature centered on a five-day window (1961–1990) are
defined as a warm spell duration index (WSDI) or cold spell dur-
ation index (CSDI), respectively (Karl and others, 1999; Peterson
and others, 2001; Zhang and others, 2005). In southern South
Patagonia, hardly any events (eleven warm spells and five cold
spells) of six consecutive days could be attributed to WSDI or
CSDI from 2015 to 2022. Thus, four instead of six consecutive
days, as defined above, are used to identify warm or cold spells
in accordance with the 90th percentile of all identified consecutive
days. We used a base period from 1991 to 2020 as suggested by
the World Meteorological Organization (WMO). Additionally,
we count the number of consecutive wet days (CWD) (consecu-
tive dry days (CDD)) of at least (less than) 1 mm daily precipita-
tion sum. Wet and dry spells are identified if the number of
consecutive days exceeds the 90th percentile of all identified
CWD and CDD (i.e., 17 and 7 consecutive days, respectively).

3.6 Atmospheric river tracking

We detect and track landfalling atmospheric rivers (ARs) with an
Image-Processing-based Atmospheric River Tracking method
(IPART) (Xu and others, 2020b). While conventional detection
methods of ARs typically use either IVT thresholds (e.g.,
IVT ≥ 250 kg m−1s−1) or a relative IVT magnitude threshold
(e.g., 85th percentile of local climatology) (Ralph and others,
2004; Dettinger and others, 2011; Lavers and others, 2012; Rutz

and others, 2014), the IPART algorithm works by the ‘top hat by
reconstruction’ technique (Xu and others, 2020b). Additionally,
this method can capture even the genesis and decaying stage of sin-
gle ARs, especially in high-latitudes where less water vapor is pre-
sent in the atmosphere (Xu and others, 2020a,2020b).

According to Xu and others (2020b), we set a geometrical filter
to drop ARs with an area smaller than 5×105 km2 or greater than
18×106 km2, a length subceeding 800 km or exceeding 11 000 km
and having a length-width-ratio of smaller than two. We evaluate
all ARs with their centroids inside 120◦W and 60◦W and 10◦S
and 80◦S. Due to the high spatial resolution of the ERA5 dataset,
the kernel size (E) has been adapted to E = [16, 18, 18] (number of
grid cells). We assume that any precipitation event in the study
area that falls within the contours of a detected AR of at least
one reanalysis time step per day is associated with an AR (Viale
and others, 2018).

3.7 Lake sounding

In April 2018, bathymetric measurements of Lago Azul were con-
ducted using a Garmin Echomap Plus 42cv echosounder
mounted on a touring kayak. At three-second intervals, lake
depth measurements were taken along parallel transects spaced
40 m to 60 m apart (Fig. 4). Subsequently, the resulting 14 100
lake depth measurements were interpolated to the entire lake
area by the Triangulated Irregular Network method (Peucker
and others, 1976).

3.8 Photogrammetric processing

Two identical monoscopic camera systems (Canon EOS 1200D, as
shown in Fig. 5) recorded changes in the glacier-front position
and on the glacier surface (Fig. 2). The lower camera system
(example image in Fig. 6) was installed close to the glacier ter-
minus and operated from October 2015 until March 2019
(Weidemann, 2021). The upper camera system has been operating
since March 2018, and it is located approximately 200 m above
the glacier terminus perpendicular to the main glacier flow
(example image in Fig. 5). Based on a time interval of two
hours, images with similar illumination and lighting were chosen
on a three-to-five-day frequency. To estimate the ice-flow velocity
from the selected camera images, we use the Python-based open-
source tool PyTrx (How and others, 2020). The tool is adaptable,
performing image transformations of 2D images into a real-world
coordinate system and feature tracking for ice-flow velocity esti-
mates. PyTrx uses a pinhole camera model that assigns each
pixel of the image coordinate system (u,v) into a world coordinate
system (Xw, Yw, Zw),

zc
u
v
1

⎛
⎝

⎞
⎠ = P

Xw

Yw

Zw

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (1)

where zc is an arbitrary scaling factor and P the camera perspec-
tive projection matrix (Xu and Zhang, 1996). P comprises internal
camera properties denoted as the intrinsic camera matrix K and
the external camera matrix such as orientation and location,

P = K[R�T], (2)

with the rotation matrix R and the translation vector �T (Xu and
Zhang, 1996). The pinhole camera model does not consider dis-
tortion effects due to the camera lens (Xu and Zhang, 1996).

Figure 3. Empirical discharge function (blue line) representing the relationship
between lake level and discharge.
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PyTrx does evaluate the radial and tangential distortion coeffi-
cients and the intrinsic camera matrix using a technique based
on the OpenCV toolbox by using black-white chessboard camera
images (How and others, 2020). The extrinsic camera matrix is
determined by the exact location and camera pose (How and
others, 2020). Therefore, the camera position must be measured
by the differential global positioning system (DGPS), and the
pose must be estimated using a stereo reference camera technique.
For the latter, we used the photogrammetric processing software
AgiSoft PhotoScan Professional (Version 1.7.0) (2020). We esti-
mated the camera pose based on camera images from 17 different
DGPS-measured locations and common features in the image
plane with the corresponding DGPS-measured position markers,
so-called ground control points (GCP). Appropriate GCP are
stable features in the camera field view of known world coordi-
nates, such as boulders, quartz veins in rocks, or mountain peaks.

Because very small variations (O ≈ 10−4 ◦) of the estimated
pose lead to large deviations (O ≈ 10m) in the transformation
(Equation (1)), PyTrx has included a camera pose optimization rou-
tine based on GCP to refine the estimated camera model (How and
others, 2020). Combined with a digital elevation model (DEM)
retrieved from multiple UAV surveys during subsequent field cam-
paigns in 2016, 2017, 2018, 2019, 2020 and 2022, a world coordinate
is assigned to each pixel of the image coordinate system.

3.9 Ice-flow velocity estimates

PyTrx uses the sparse feature-tracking approach that produces a
spatially more detailed velocity map than the alternative dense
feature-tracking method. Sparse feature tracking identifies pat-
terns in the image plane with unique pixel-intensity distributions
between image pairs (How and others, 2020). Static features vis-
ible in the fore- and background of the image plane correct the
camera motion. When the feature-tracking or motion correction
fails, it produces unrealistic movement patterns that are too
high or against the main direction of the ice flow. Thus, we fil-
tered for derived velocities within the 95 % confidence interval
and for the direction of movement with orientation along the
main flow of the glacier. As the final estimated ice-flow velocity
derived from one image pair, we use the mean of all estimated ice-
flow velocities that fall inside a circle (rP1 = 400m) close to the
terminus (Fig. 2).

However, the camera images only produce a detailed tem-
poral estimate of the ice flow near the terminus. Ice-flow velocity
estimates from SAR obtained from the Sentinel-1 mission pro-
vide a spatial view of the ice flow over the entire glacier. SAR
data is independent of daylight, cloud cover, weather and the
sun’s illumination of Earth’s surface and thus appropriate to
study the ice flow in heavily cloudy regions such as southern
South Patagonia (Jawak and other, 2015). Worldwide post-
processed Sentinel-1 velocity maps of 12 glacierized regions out-
side the large polar ice sheets are available on the online appli-
cation RETREAT (2021) (Friedl and others, 2021). RETREAT
presents an open-access interactive web interface providing spa-
tial velocity maps with a spatial resolution of 200 m and a time
interval of 6–48 days since 2014 (Friedl and others, 2021). We
calculated the ice-flow variation along the centerline in 50 m
intervals. Here, we consider the mean ice flow within a circle
of 400 m (Fig. 2).

3.10 Glacier terminus changes and calving flux

The terminus line T is defined as the dividing line between the
glacier front and lake water. We determine the terminus line in
the image plane and project it into the world coordinate system
using PyTrx. Projecting a terminus retreat on a DEM causes
errors in assigning the respective world coordinate whenever the
terminus line is projected on the glacier front or surface. Thus,
we use a modified DEM instead, where the glacier height is
equal to the lake surface. The resulting terminus line on the
lake surface is separated into 1 m intervals. For each interval i,
we calculate the distance δTi to the newly estimated terminus pos-
ition parallel to the centerline (Fig. 7). By considering their means
(dT), we retrieve a time-dependent terminus length change rela-
tive to the initial terminus position.

To evaluate the reliability of the estimates of glacier-length
change of both camera systems, we calculated changes along the
ice front using a sample image pair from both the lower and
the upper camera system. This process was repeated 20 times,
with the position of the ice front determined manually each
time, resulting in a standard error of 0.06 m d−1 and 0.08 m d−1

for the lower and upper camera estimates within the camera
coordinate system, respectively. In addition, we georeferenced
the camera model projections onto the DEM to align with the

Figure 4. Bathymetric map of Lago Azul. The red line represents
the survey grid of April 2018. The black lines show the glacier
retreat, which has been derived from UAV mosaics captured in
October 2016, March 2017, March 2018, April 2019, March 2020
and January 2022.
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terminus line determined by the UAV missions (Fig. 4) to reduce
the offset to the real world coordinate system.

We estimate the calving flux using a combined approach of a
fixed flux gate located upstream of the calving front position and
the temporal glacier terminus position (Evans and others, 2022).
Let Tt0 be the ice-front position at the time t0 and Tt0+Dt the new
observed ice-front position after any time step Δt. Without any
calving, the ice-front position would be pushed forward by the
glacier motion and reach a new simulated position,

Tsim,t0+Dt = Tt0 + vDt · Dt, (3)

where we assume the ice-flow velocity (vΔt) is the observed mean
velocity close to the terminus occurring during Δt (Fig. 8). The
calving flux (qc) is calculated by the difference between the simu-
lated and observed ice-front position,

qc,t0+Dt = (Tsim,t0+Dt − Tt0+Dt) · w · h · rice, (4)

with the width w of the ice-front. The ice thickness h is estimated
by the sum of the bathymetry measurements of the lake depth
close to the terminus (Fig. 2) and yearly DEMs based on the
UAV missions. Intra-annual changes are assumed to be linear.
By considering the density of ice rice = 900 kg.m−3, we calculate

Figure 5. The digital single-lens reflex camera (DSLR) system and time-lapse images. (a) Installed time-lapse camera system. (b) Original image from the upper
time-lapse camera on November, 23 2020. The dashed black frame refers to the zoomed-in section captured in the images shown in (c) to (f). The dotted
frame refers to the zoomed-in section captured in (g) and (h). This sequence of images presents the largest calving events on record. (c) Ice front image from
November 19, 2020 and its fracture line (dashed red line) and (d) from November 20, 2020 immediately after the calving event. (e) Ice front image from
November 1, 2021 and its fracture line (dashed red line), and (f) from November 3, 2021 after the calving event. (g) Ice front image from April 27, 2021 and (h)
from April 29, 2021 after the calving event.
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the water equivalent calving flux (Equation (4)). This approach
neglects subaqueous melting and assumes that any change
along the ice front is spread across the entire ice depth.

3.11 Time-series analysis

Separation of the spatial and temporal signatures of glacier
velocity allows us to identify the primary driving force acting

on ice-dynamical processes in response to atmospheric forcing.
In many cases, several temporal signals overlap, with seasonal
fluctuations often superimposed on low-frequency signals. To
separate the signal in its short- and long-term contribution, we
emulate the original signal by linear combinations of elementary
functions. Riel and others (2021) suggest splitting the signal into a

Figure 6. Relative position of the glacier front and rate of length change were derived from the lower (blue dots) and upper (red dots) time-lapse camera. The
corresponding line indicates the centered 30 d rolling mean. The thick black line shows the water level relative to the reference height. The rate of length change
is depicted in the panel above as centered 30 d rolling mean in m d−1. The images above show the ice front from the lower camera system in November 2016 (left)
and January 2022 (right). The background color indicates the ERA5 daily temperature anomaly with respect to the 2015–2022 mean. The 75% of the longest-lasting
identified wet, and dry (top), cold, and warm spells (bottom) are shown separately in the upper panel. The roman letters within the Figure correspond to the
following assignment: I – both camera systems were operated simultaneously; II – largest observed calving event in November 2020 (cf. Figs. 5c, d); III – calving
event in April 2021 (cf. Figs. 5g, h); IV – calving event in November 2021 (cf. Figs. 5e, f).

Figure 7. Schematic representation of the calculation of glacier length changes. Tt0 is
the initial terminus position and Tt0+Dt the position at any time step Δt. Length
changes are calculated parallel to the centerline (dashed line) in 1 m increments.

Figure 8. Schematic illustration of calving flux calculation between two terminus
positions T at two time steps, t = t0 (black line) and t = t0 + Δt (grey line). The simu-
lated terminus position is shown in green. Similar to the estimation of glacier length
changes (Fig. 7), changes parallel to the centerline (dashed line) are calculated in 1 m
increments.
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short-term seasonal contribution by third-order B-spline func-
tions, which may vary in amplitude from year to year.
Long-term changes, including non-steady and non-periodic sig-
nals, are represented by time-integrated B-spline functions (Riel
and others, 2021). This methodology is especially suited for dis-
continuous and heterogeneous time series. Its performance was
tested on Greenland’s surface ice-flow velocity estimates based
on Sentinel-1 data (Riel and others, 2021).

To investigate calving’s response (a non-linear dataset) to an
extreme event (non-linear phenomena), we first apply a peak
detection method (Du and others, 2006). The peak detection
identifies local maxima of the original data set, in our case the
calving flux. If there is a peak in calving flux within five days
after an extreme weather event, the event is considered a potential
cause. We test the resulting frequency’s significance by comparing
this result to surrogate datasets. Surrogates are used to generate
pseudo-observations that approximate the calving flux by having
the same power spectrum and amplitude distribution. We gener-
ated 10 000 surrogates by an iterative amplitude adjusted Fourier
transform (IAAFT) algorithm (Kantz and Schreiber, 2004;
Venema and others, 2006). When the original dataset’s peak con-
tribution of events such as landfalling AR or the onset of warm,
cold, wet and dry spells is greater than the 95th percentile of
the surrogate samples, the results are considered statistically
significant.

We use a Spearman rank-order test to assess the statistical
dependence between the rankings of two variables. Throughout
the study, we only mention significant correlations (i.e., p≤ 0.05).

4. Results

4.1 Terminus position

Over the seven years, we observed a terminus retreat of about
200 m with an identifiable seasonal cycle and with ice advances
during the cold season. Due to a malfunction in the camera systems
(an empty timer or camera battery and no memory access due to
defective SD cards), no data was collected from October 2016 to
March 2017 and April 2019 to April 2020. We used two different
camera locations to determine the position of the ice front. Both
camera systems operated simultaneously from March 2018 to
August 2018 (highlighted with I in Fig. 6). We use this period
to verify accuracy and to evaluate any system-related differences.
The estimations of the terminus position of both camera systems
are consistent with a maximum deviation of 1% in the distance

estimates to the reference line of 2015 (Fig. 6). On average, the
calculated distance of the ice front position from the reference
position deviates by 3% from the world coordinate system com-
paring the estimates of the camera system and the UAV
measurements.

4.2 Ice-flow velocity

The functional representation of Sentinel-1 ice-flow estimates
shows a seasonal cycle, with the smallest velocities at the end of
the melt season and maxima in the middle of the cold season
(Fig. 9). Figure 10 shows the functional representation of the ice-
flow velocity estimates along the centerline. A phase shift in the
seasonal ice-flow velocity pattern is apparent, indicating a time
delay that increases with increasing distance from the terminus.
Variations in velocity are inversely related to variations in melt
and runoff water. Daily temperature anomalies affect the total
glacier runoff but not the ice-flow velocity (Fig. 9). These obser-
vations are confirmed using the results of ice-flow velocity esti-
mates based on the time-lapse camera images (Fig. 11).
Considering the monthly rolling mean, the ice-flow velocity
reaches its peak in late cold winter (≈ 0.45md−1), while a min-
imum is reached during the melt season (≈ 0.33md−1), when
melt and runoff water input is relatively high. Figure 11 considers
only ice-flow velocity estimates from the upper camera system,
which continuously worked from May 2020 to January 2022.
Difficulties in obtaining appropriate ice-flow velocity estimates
arise when the fraction of the ice surface visible in the camera
image is too small and when the oblique angle of the camera to
the glacier flow reduces the signal-to-noise ratio.

Concerning the estimates obtained from the time-lapse cam-
era, we observe a greater variance in the ice-flow velocity during
the cold season. In particular, days with low illumination and visi-
bility limit the ability to track features along the glacier surface
and fail when there is snow cover. In general, velocity estimates
from the time-lapse camera are 15% higher and show a greater
variance than Sentinel-1 estimates. We cross-checked the results
by DGPS measurements close to the glacier terminus (the cyan
cross in Fig. 2) from January 16–21, 2022. We measured an aver-
age ice-flow velocity of 0.36 m d−1. During the same period, time-
lapse camera-based estimates of flow velocity were 16% higher
(0.42 m d−1). It was not possible to validate the velocity estimates
of Sentinel-1 due to data unavailability. Nevertheless, similar vel-
ocity patterns and relative changes are found in both approaches.
However, absolute values should be handled with care.

Figure 9. Ice-flow velocity estimates at circles 1, 4 and 7 (cf. Fig. 2) based on Sentinel-1. Solid lines represent the superimposed functional representation of the
ice-flow velocity after Riel and others (2021), shaded areas the uncertainty, and the colored markers the individual estimates (P1: crosses, P2: circles, P3: triangles).
The black solid and dashed lines indicate the modeled glacier runoff and meltwater (monthly rolling mean) across the whole glacier. The background color shows
the daily mean temperature anomalies averaged over the glacier. Velocity estimates are missing from April to November 2018.
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An early season peak is visible in the monthly rolling mean
ice-flow velocity estimates obtained from the time-lapse camera
in December 2020 (Fig. 11). Gaps in the Sentinel-1 observations
may explain the missing early season peaks in December 2020
and other years (Fig. 9). For instance, at the beginning of the
warmest summer spanning from December 2019 to January
2020, a time when the glacier runoff exceeded that of other
years by over 20%, the smaller reduction in velocity observed
near the glacier’s terminus (P1) might suggest the occurrence of
an early season peak in ice velocity.

4.3 Calving flux, runoff and discharge

To estimate the calving flux from 2015 to 2022, we used a combin-
ation of both Sentinel-1mean velocity estimates close to the terminus
in P1 (Fig. 9) and time-lapse camera terminus changes (Fig. 6). The
average calving flux is estimated to 0.137m3 s−1 (Table 1)), which
corresponds to an annual mass loss of 4.33Mt a−1. The calving
peaks during the melt season, when the lake temperature 2 m
below the surface (Tmelt−season = 1.9 ◦C) is on average 0.9 °Cwarmer
than in the cold season. During thewintermonths, the calving flux is
reduced bymore than half (0.083m3 s−1) as the glacier advances. The

presented uncertainties of the calving flux include the standard devi-
ation of the ice-front position estimates and the errors in the surface
ice-flow velocity. In addition, we consider an accuracy of+10m for
the ice thickness estimates to account for neglecting subaqueous
melting.

Since 2020, the mass loss from calving has increased by 8%.
Greater ice-front retreat in summer, as presented in Figure 6,
increases the calving flux by 60%. Conversely, since 2020, the
calving flux in winter has decreased by 30% compared to the pre-
vious winter months. This was especially evident during 2020, the
coldest winter of the study period (≈ 1 ◦C colder than the other
winter periods), when the lake was partially frozen, combined
with the terminus acceleration, resulting in a glacier advance of
25 m (Fig. 6).

There is a significantly high correlation between the modeled
glacier runoff and lake discharge (R = 0.89), which reaches its
maximum with a time lag of three days (R = 0.92) (Figs. 12
and 13). The temporal evolution indicates similar extremes,
and the modeled runoff and lake discharge indicate high positive
correlations to air temperature. Note that the lake discharge
represents all water reservoirs (e.g., non-glacial snowmelt, ground-
water, precipitation on non-glacierized areas of the catchment)

a b

Figure 10. (a) Sentinel-1 ice-flow velocity and (b) modeled glacier runoff along the centerline of the glacier. The gray line presents the air temperature. Velocity
estimates are missing from April to November 2018.

Figure 11. Ice-flow velocity estimated by the upper time-lapse camera (orange dots). The black line represents their monthly centered rolling mean, and the orange
line represents their superimposed functional representation after Riel and others (2021) and its uncertainty (gray shaded area). The blue solid and dashed
lines indicate the modeled daily glacier-wide runoff and meltwater contribution (monthly rolling mean), respectively, as daily sums in meter water equivalent
(m w.e. d−1). The background color shows the daily mean temperature anomalies averaged over the entire glacier.
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contributing to the catchment of Lago Azul. Thus, it is reasonable
that lake discharge exceeds modeled runoff. During the warm sea-
son the total glacier runoff correlates significantly (R > 0.77, p≤
0.05) with the lake discharge, with a leading time lag of two
days (Fig. 13). In comparison, there are significant correlations
of R > 0.71 up to a four-day lag during the cold season.

Low discharge estimates should be treated cautiously because
there is only one discharge measurement , 7m3s−1 (Fig. 3). A
higher uncertainty for the discharge estimates . 15m3s−1 results
from applying a fixed-depth approach instead of a two-point
method in 2020 (Morgenschweis, 2018).

Meltwater controls the lake level and shows a seasonal cycle
with the maximum water level during the melt season. The air
temperature correlates (R = 0.92) with the lake level with a leading
time lag of three days (Figs. 6 and 13). Individual peaks in the lake
level can be directly related to daily temperature anomalies.
Precipitation amounts are less important in controlling the lake
level (there is no significant correlation; thus, it is not shown in
Fig. 13). These findings are similar to a previous study, which
considered a period from October 2015 to April 2016
(Weidemann and others, 2020).

Calving correlates positively with lake temperature (R = 0.57),
air temperature (R = 0.39), and lake level (R = 0.44) (Figs. 12
and 13). Warm spells, wet spells and ARs are associated with
increases in the average daily lake-level changes at Lago Azul
from 3.6 cm d−1 to 8.8 cm d−1. Since 2020, the impact of daily
air and lake temperature and lake level on the calving flux
increased to R = 0.52, R = 0.62 and R = 0.49, respectively.

4.4 The link between extreme meteorological events and
calving

Considering all the days in the study period, 25% of the days are
associated with wet spells, 5% with dry spells, 8% with warm

spells and 5% with cold spells. While the 75% of the
longest-lasting dry spells occur mainly in the cold season, wet
spells occur almost only in the melt season (Fig. 6). The longest
wet spell lasted 90 days, from November 2020 until February
2021, with a total precipitation of 1153 mm, which corresponds
to 34% of the annual precipitation total. The periods covered by
wet spells are identical with AR periods and identified
warm spells in 36% and 32% of all cases, respectively. From
2015 to 2022, landfalling ARs contributed, on average, 28% to
the total precipitation, with a seasonal minimum contribution
during winter months and increased the daily mean temperature
by 1.0 ◦C, on average, after onset.

The inherent noisiness of the data, the superposition of mul-
tiple events, and their non-linearity and complex coupling pose
a challenge in isolating leading processes that increase the calving
activity. Thus, we use surrogate datasets to assess the significance
of recurring extremes, such as warm, cold, dry and wet spells and
landfalling ARs on calving. We consider a leading process to be
significantly controlling the calving flux if the contribution is
greater than the 95% confidence interval provided by the surro-
gates. This ensures that any dependencies are not arbitrary.
While there is no evidence of a response of ice motion to specific

Table 1. Mean m3 s−1 values for glacier runoff, surface ablation, calving flux and
mass balance (MB = accumulation - ablation) over the entire study period
whenever estimates of the calving flux are available (cf. Fig. 12). The
numbers in bold indicate their corresponding seasonally detrended means.
The data is also grouped by specific atmospheric events. The number of days
n defined as warm season or cold season is given in parentheses (nwarm,ncold)

runoff sfc. abl. calving MB

study period (657,625) 4.14 4.11 3.10 3.08 0.14 0.14 −0.99 −0.97
AR (128,54) 6.00 4.86 4.29 3.47 0.17 0.15 −1.98 −1.06
wet spells (598,362) 5.21 4.60 3.79 3.33 0.15 0.14 −1.35 −0.85
dry spells (0,83) 0.12 3.28 0.13 2.54 0.04 0.11 0.56 −2.01
warm spells (45,101) 4.82 5.88 3.65 4.47 0.16 0.18 −1.97 −2.82
cold spells (38,25) 1.85 1.04 1.56 0.95 0.09 0.08 0.60 1.28

Figure 13. Spearman’s rank correlation coefficient (R) and leading time-lag. ‘Runoff’
denotes the combined modeled rain and melt runoff from the glacier. Note that the
lake level is, by definition, related to the lake discharge due to the
discharge-lake-level relation (Fig. 3).

Figure 12. Solid lines indicate the five-day centered rolling mean of glacier runoff, lake discharge, calving flux, lake temperature and downscaled ERA5 air tem-
perature. The solid black line in the upper panel indicates the mean height of the terminus derived from UAV missions. The vertical lines indicate the onset of
landfalling ARs and warm spells. For clarity, we only present ARs that lead to large temperature increases according to the 75th-percentile (i.e., DT ≥ 2.7 ◦C).
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atmospheric events, we identified in 50% of the cases a peak in
calving flux after the onset of a warm spell, in 38% of the cases
when a precipitation event is associated with an AR, and in
46% after the onset of a wet spell. The seasonally detrended signal
is used in further analyses to ensure that the retrieved averages of
runoff or MB-related terms are not solely the result of their
intra-annual occurrence. Detrended runoff and surface ablation
(surface melt plus sublimation) time series show that warm spells,
wet spells and ARs are characterized by a 12% to 43% increase in
runoff and an 8% to 45% increase in surface ablation (Table 1).
Calving flux increases during AR (14%) but hardly increase dur-
ing wet spells. Warm spells indicate an increase in calving flux by
an average of 29%. In contrast, dry and cold spells are character-
ized by low runoff, low surface ablation and a low calving flux,
while only cold spells contribute to a positive mass balance.
Notably, calving flux decreases by 43% during cold spells and
by 21% during dry spells.

5. Discussion

5.1 Seasonal ice-flow velocity

The ice-flow velocity shows a seasonal pattern, with higher ice-
flow velocities during the cold season (MJJAS) than during the
melt season (NDJFM) (Fig. 14). Thereby, the air temperature reg-
ulates the availability of runoff (Fig. 13) which could potentially
increase basal lubrication. Counter-intuitively, there is an inverse
seasonal relationship between runoff and ice-flow velocity, sug-
gesting a transition from an efficient to inefficient subglacial
drainage system during the melt season (Andrews, 2014; Moon
and others, 2014; Vijay and Braun, 2017). During the melt season,
fast lake level response and slower ice motion support that the
subglacial drainage system evolves seasonally to efficiently chan-
nel summer runoff (Fig. 13). As runoff decreases toward the
end of the melt season, velocity increases (Figs. 9, 11, and 14),
and the response time of lake level to runoff doubles (Fig. 13),
indicating a change to an inefficient englacial drainage system
during the cold season. Despite the relatively low availability of
runoff, basal meltwater and ongoing meltwater percolation from
ice and firn may further increase basal water volume and pressure,
thereby enhancing basal lubrication and causing higher ice-flow
velocities during the cold season (Brinkerhoff and O’Neel,
2017). In the transition month of December, the ice-flow velocity
peaks in the early melt season, considering the monthly rolling
mean in Figure 11. At the same time, the greatest annual increase
in runoff occurs when the drainage system is still inefficient.

The mechanism controlling the development of the subglacial
drainage system can be illustrated by the so-called ‘Röthlisberger
channel (R-channel) theory’ (Weertman, 1972; Röthlisberger,
1972; Mathews, 1973). An efficient englacial drainage system

develops during the melt season when the runoff water widens
the channels by frictional heat. Glacier runoff drains through
pressurized tubular englacial R-channels, which tend to form
main veins as meltwater increases (Röthlisberger, 1972; Fudge
and others, 2008; Pohle and others, 2022). This reduces the
basal water pressure during the melt season and enhances friction
at the glacier bed, which in turn decreases ice-flow velocity during
the summer (e.g. Bartholomaus and others, 2008; Bartholomew
and others, 2010; Hoffman and others, 2011; Sundal and others,
2011; Andrews, 2014). Once the ambient ice pressure exceeds the
water pressure in the channels, they collapse within a few days
under viscous deformation (Röthlisberger, 1972; Vieli and others,
2004; Bartholomaus and others, 2008; Pohle and others, 2022).
The breakdown of the R-channel system reduces subglacial
water drainage capability, causing an increase in the englacial resi-
dence time of the runoff.

Over the course of the year, the capability of englacial dis-
charge alternates between efficient and inefficient. This seasonal
behavior has been reported primarily in regions where the melt
season is long, and runoff rates are high, such as in southeast
Greenland (Moon and others, 2014; Solgaard and others, 2022).
When the seasonal velocity follows a similar temporal pattern
as the runoff, the discharge is inefficient throughout the period
(Moon and others, 2014; Solgaard and others, 2022). These gla-
cier types are typically found in colder regions with a shorter
melt season and primarily determined by limited meltwater avail-
ability. There are also glaciers controlled by meltwater in the
Southern Patagonia Icefield, such as Glacier Jorge Montt and
the northern front of Glacier Pío (Sakakibara and Sugiyama,
2014). However, the velocity patterns of glaciers in South
Patagonia and the controlling mechanism behind them have
not yet been thoroughly evaluated.

Seasonal velocity changes propagate up-glacier by approxi-
mately 3 kmmonth−1 (Fig. 14a). Such upstream propagating
waves have been studied on tidewater glaciers in Greenland at
Jakobshavn Isbræ where the discharge is mostly inefficient over
the course of the year (Moon and others, 2014), and described
as kinematic waves (Riel and others, 2021). Kinematic waves are
primarily driven by ice mass redistribution caused by calving or
thinning (Riel and others, 2021), a typical feature of glaciers
that follow a seasonal velocity pattern in phase with runoff avail-
ability (Moon and others, 2014). In the case of Schiaparelli
Glacier, we do not observe any event-related velocity increase
that we could explain by calving activity. Indeed, glacial runoff
follows a similar seasonal pattern as ice-flow velocity, but with
a 5-month phase shift and seasonal runoff variations propagating
up-glacier at least twice as fast as velocity changes (Fig. 14b). As
the melt season progresses, the changing phase of discharge effi-
ciency may shift upstream when channels develop further

a b

Figure 14. (a) Seasonal ice-flow velocity and (b) modeled glacier runoff anomalies along the centerline of the glacier (from P1 to P7 as indicated in Fig. 2). The gray
line presents the seasonal temperature pattern.
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up-glacier. Thus, we assume an upward propagating wave of basal
water pressure changes to explain the upward propagation of the
seasonal speed variation. Owing to the underlying bedrock topog-
raphy, the magnitude of seasonal velocity variations peaks
between 1.5 km to 2.2 km from the terminus until an inverse bed-
rock slope is reached at 2.5 km (Fig. 15). A more pronounced
englacial channel system attenuates seasonal speed-up near the
terminus, especially where the glacier reaches below lake level.

5.2 Multi-annual ice-flow velocity changes

Short datasets (, 25 years) do not capture long-term trends or
variability and make it impossible to assess their response to
the underlying climate forcing. The 2015 to 2022 analysis offers
a snapshot to evaluate recent changes and discuss their potential
atmospheric drivers. Similar to outlet glaciers in Alaska and on
the Antarctic Peninsula (Burgess and others, 2013; Tuckett and
others, 2019), preceding cold-season temperature or runoff in
the years 2015 and 2016 correlate negatively with the subsequent
melt-season velocity (Fig. 16). However, multi-annual speed-ups
seem to be spatially decoupled. Low temperatures until the
onset of the melt season result in reduced runoff water availability,
especially at higher elevations where temperatures remain below
freezing. Reduced runoff water availability degrades the formation
of the englacial drainage system in the upper area and causes the
onset of a multi-year acceleration. This can be seen in 2015 at dis-
tances . 1500m from the terminus, where the bedrock elevation
of the glacier is higher than the lake level (cf. Fig. 15).

Since 2019, a speed-up close to the terminus can be observed
(Fig. 16a). The acceleration is inherent to thinning (Fig. 12). Once
the loss of bed traction outweighs the loss of driving stress, a grad-
ual change in dynamics occurs (Howat and others, 2007; Pfeffer,
2007). Basal drag is reduced, and parts near the front accelerate
(Pfeffer, 2007), a common feature of sudden glacier acceleration
(Thomas, 2004). This process has positive feedback similar to

the marine instability hypothesis, which explains a sudden
increase in the dynamic instability of tidewater glaciers (Truffer
and Motyka, 2016). Progressive thinning causes a gradual
decrease in effective pressure at the glacier bed and an acceleration
of the parts of the glacier close to the front (Amundson and
Truffer, 2010; Post and others, 2011; Stearns and van der Veen,
2018). The acceleration causes further stretching-induced thin-
ning close to the terminus (Venteris, 1999; Howat and others,
2008). Moreover, the combination of thinning and acceleration
often results in an increase in mass loss due to calving (e.g.
Meier and Post, 1987; Howat and others, 2007; Post and others,
2011). Between 2019 and 2020, there was an enhanced decrease
in the terminus height (Fig. 12), but there was no enhanced
mass loss due to melting (Fig. 9). We suspect an additional
dynamic thinning near the terminus with acceleration-induced
ice stretching as the driving force.

5.3 Changes of ice-front position

Apart from the long-term trend of the terminus retreat, there are
seasonal variations in the ice-front position, with a retreat during
the melt season when ice motion is slower (Fig. 6). Retreat and
advance can be linked to seasonal changes in air temperature.
The transition between seasonal advance and retreat coincides
with temperature anomalies. Thus, thinning may intensify sea-
sonal variations (Luckman and others, 2006; Howat and others,
2007; Pfeffer, 2007) and become highly unstable when the ter-
minus thins to floating (Howat and others, 2008). In addition, lar-
ger seasonal temperature anomalies, warmer (longer) summers
and colder (shorter) winters supported the stronger terminus
advance during winter and enhanced the retreat in summer
from 2020 to 2022.

The underlying bed topography is a major controlling factor in
the duration and extent of glacier retreat once frontal instability
begins (Meier and Post, 1987; Howat and others, 2007).

Figure 15. Cross-section along the centerline with the
mean surface ice-flow velocity (2015 to 2022). Dashed
white lines show the center point of the black circles
(P1 to P7 presented in Fig. 2), and the dotted black
line is the lake level.

a b

Figure 16. (a) Multi-annual ice-flow velocity and (b) modeled glacier runoff anomalies along the centerline of the glacier. The black line presents the multi-annual
air temperature anomalies. Velocity estimates are missing from April to November 2018.
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Schiaparelli Glacier tends to retreat rapidly due to a shallow and
slightly reversed slope forming within 1 km of the ice-front result-
ing in a over-deepening of the basin (Fig. 15). This intensification
may progress or remain at a point determined by the bedrock top-
ography as basal drag increases and the height-above-buoyancy
criterion is reestablished (Benn and others, 2007). Since 2020,
the mean terminus height has dropped below 10 m above lake
level (Fig. 12), with a section near the centerline reaching the flo-
tation thickness (, 5m; cf. Figs. 5 and 6), considering a lake
depth in this section of 50 m (Fig. 1). Simultaneously, the stability
of the ice-front position has decreased. Daily ice-front variations
have more than doubled from 0.26 m d−1 (September 2015 to
April 2019) to 0.61 m d−1 (May 2020 to January 2022) (Fig. 17).
This period is characterized by a substantial ice-mass loss related
to individual single calving events with average terminus retreats
of up to 20 m, as observed in November 2020, April 2021 and
November 2021 (highlighted with II, III and IV in Fig. 6). If thin-
ning at the terminus section continues at the rate of recent years
from 2015 to 2022 of −10.6 m a−1, larger parts of the terminus
could become ungrounded, leading to increased instability of
the ice front position during the next decade.

As the glacier advances, areas near the centerline get thinner
until they become buoyant, where the most pronounced variations
along the ice front are observed. Note that the maximum advance
in 2020 and 2021 was reached one month before the largest retreats
in November 2020 and 2021, highlighting the increased vulnerabil-
ity when the ice-front position becomes ungrounded (Fig. 5).
Changes in lake level increase the effective principal stress in the
terminus due to buoyancy torque and can cause ablation at the
ice front (Benn and others, 2007). These observations are similar
to those reported from lacustrine glaciers in southeast Alaska
(Boyce and others, 2007; Trüssel and others, 2013).

5.4 Calving

In total, calving contributes 4.2% to the total mass loss of
Schiaparelli Glacier and has a pronounced seasonal calving

pattern (Fig. 12). Despite the minor contribution to the mass
loss, calving nevertheless makes an important contribution of
14% to the total mass balance of −0.99 m3 s−1 (Table 1). A com-
parison of the surface mass balance (MB) with the geodetic MB at
Schiaparelli Glacier resulted in a calving flux estimate of 4.26Mt a−1

(Temme and others, 2023), which is in very good agreement with
our estimate (4.33Mt a−1).

When the glacier reached its maximum advance in November
2020 and 2021, an almost-flat glacier surface with a backward
tilted block near the ice front can be temporally observed
(Figs. 5c, e). These records suggest that parts of the once
grounded terminus become buoyant as the ice thins, creating tor-
que and tensile stress in the ice front area. This is a highly
unstable and transient situation, making floating termini on tem-
perate glaciers a rare observation (Walter and others, 2010;
Trüssel and others, 2013). Surface mass balance, dynamic thin-
ning and lake-level changes are essential components controlling
the buoyancy close to the ice front of lacustrine glaciers (Benn and
others, 2007; Truffer and Motyka, 2016). Estimates from the MB
model indicate ablation-induced thinning as the main controlling
factor, causing the ice front to become partially ungrounded.
Ongoing thinning and a rising lake level force the terminus out
of hydrostatic equilibrium, creating substantial bending forces in
the vicinity of the non-buoyant ice junction (Benn and others,
2007). During the largest calving events of 60 m x 160 m in
November 2020 and of 40 m x 150 m in November 2021, the frac-
ture developed along a transverse crevasse separating the buoyant
and non-buoyant area close to the glacier’s centerline (Figs. 5c, e).
The collapse of ice rotated outward, indicating an imbalance of out-
ward forces (How and others, 2019). In April 2021, a 50m x 90m
undercutted thermo-erosional notch collapsed on the non-buoyant
left edge as the lake-level dropped, marking the third-largest calving
event (Figs. 5g, h). Immediately prior to separation, the non-
buoyant area bent forward toward the lake surface, increasing
shear as the transverse crevasse widened along the rupture line.

By analyzing the time-lapse camera images, we noticed areas
along the glacier front where certain calving styles predominate:

Figure 17. Mean location and daily changes of the ice-front
position separated in 1 m intervals along the ice front for the
two periods, September 2015 to April 2019 and May 2020 to
January 2022. The dashed blue and red lines represent the
extreme positions of 2015–2019 and 2020–2022, respectively.
The background image is the mosaic from the UAV mission
in 2017 and matches the mean ice-front position from
2015 to 2019.
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Marginal sections of the subaerial ice front overhang due to flak-
ing larger lamellae (Figs. 5 and 6). The ice seracs rotate outwards
and collapse into the lake above well-developed waterline notches,
mostly observed on the right margin. Stack topples (one event
depicted in Figs. 5g, h) are limited to the margins, where the
lake bed is steepest (cf. Fig. 4), and the ice is farthest above the
water level (Fig. 6). Subaqueous melting near the water surface
creates an unstable ice front above the waterline notch along
the entire ice front that promotes subaerial calving (How and
others, 2019). Since 2019, this observation has been limited to
the higher margins. Occasionally, subaqueous calving is found
when ice blocks have appeared at the ice front while the ice-front
above the waterline has not changed (How and others, 2019).

Such observations show similarities to a marine-terminating
glacier in Svalbard (How and others, 2019). However, for lacus-
trine glaciers, the lack of density-driven circulation combined
with the cold water results in very low subaqueous melt rates
and inhibited melt undercutting (Truffer and Motyka, 2016).
Vertical lake-water profiles of temperature and salinity in summer
2022 show very small differences in temperature and density
between lake and runoff water. The lake water was thermally
stratified and there was no evidence of meltwater pulses or glacier
runoff perturbing the water column near the ice front. The sea-
sonal near-surface water temperature of the lake varies between
0.5 ◦C to 3.0 ◦C (Fig. 12). These observations are consistent with
records from proglacial lakes of other lacustrine glaciers (Boyce
and others, 2007; Trüssel and others, 2013; Truffer and Motyka,
2016; Sugiyama and others, 2019, 2021). Thus, at lacustrine gla-
ciers, subaqueous melt plays a subordinate role. In addition, in
deeper regions along the ice front, where the water is near freez-
ing, a subaqueous ice terrace or ‘ice foot’ may form due to the
warmer water in the upper layer (Benn and others, 2007;
Sugiyama and others, 2019).

5.5 Atmospheric extremes can trigger calving

In general, ARs advect warm, moist air masses from the subtrop-
ics and can be responsible for both a temperature increase and
enormous precipitation sums. Almost a third of the total precipi-
tation is associated with a land-falling AR at Schiaparelli Glacier.
On average, the occurrence of an AR leads to an increase in mean
daily temperature, which reduces the ratio of solid to liquid pre-
cipitation from 3/4 to 2/3. In addition, we observe an increase
in sensible and latent heat flux at the glacier surface and an
increase in incoming longwave radiation (not shown), which
may enhance melting on Schiaparelli during AR events, similar
to findings from a case study on Brewster Glacier, New Zealand
(Kropač and others, 2021). Within five days after the onset of a
landfalling AR, calving flux reaches a local maximum in 38% of
such cases. We observe an increase in calving flux (14%) and
an increase in surface ablation (13%) for a water equivalent height
change of 16 mm d−1, resulting in increased mass loss during the
days associated with ARs (Table 1). Combined with lower mass
accumulation due to greater contribution from liquid precipita-
tion, the MB is 9% more negative. In general, the effect of land-
falling ARs on the surface mass balance is controversial. While
it can enhance melting by increasing the energy fluxes from liquid
precipitation, turbulent fluxes, latent heat release from the
advected air mass, and enhanced downward longwave radiation,
the glacier may also gain mass by snowfall where temperatures
are below freezing (Little and others, 2019; Saavedra and others,
2020; Francis and others, 2021; Wille and others, 2021). At
Antarctic ice shelves, strong winds associated with atmospheric
extremes and ARs caused exceptionally large calving events trig-
gered by storm surges and a wind-driven ocean slope (Francis
and others, 2021, 2022). In contrast, for lacustrine glaciers, the

wind-driven circulation controls the temperature stratification of
large lakes and determines the calving mechanism (Sugiyama
and others, 2021). At Schiaparelli Glacier, the generally low lake
temperature and the comparatively small Lago Azul suggest that
the temperature stratification in the lake, possibly influenced by
atmospheric extremes, plays a minor role in controlling calving.

During wet spells, the daily mean air temperature and incom-
ing longwave radiation increase by 2.5 °C and 12%, respectively, at
Schiaparelli Glacier. After the onset of a wet spell, runoff into
Lago Azul increases and the calving flux peaks in 46% of such
cases. However, results highlight that a response to wet spells
does not necessarily imply an increase in calving flux (Table 1).
Warm spells increase the runoff by 43%, promoting rapid lake-
level rise. In 5% of all cases, a peak in the calving flux can be
related to the onset of a warm spell. Here we register an average
29% increase in calving flux. These events also have the largest
impact on surface ablation, increasing the total mass loss by
45%, resulting in a tripling of the negative MB term. Dry spells
occur only during the cold season, but the mass balance terms
are strongly influenced by the lack of precipitation. The resulting
lack of accumulation outweighs the inhibited ablation, which dou-
bles the negative MB (Table 1). The lowest surface ablation and
calving flux can be attributed to cold spells. Here we record a
positive MB.

The largest calving events occurred when the grounded frontal
center became buoyant. These calving events are accompanied by
rapid lake-level changes (Fig. 6). Prior to the largest calving event
on November 20, 2020 (Fig. 5), one of the most rapid changes in
lake level occurred. A landfalling AR with a total precipitation
sum of 89 mm and a daily mean temperature increase of 4.7 °C
caused an intensive lake-level rise of 0.73 m within 7 days.
Almost a year later, the second-largest calving event was subject
to a similar mechanical process. The sudden ice loss on
November 3, 2021, was preceded by a lake-level rise of 0.25 m.
This event was accompanied by an AR, which caused a tempera-
ture increase of 3.5 °C and 27.5 mm accumulated precipitation
within three days. Additionally, this event can be classified as a
five-day warm spell. The ice front collapsed on April 29, 2021,
while the average daily air temperature dropped by 2.8 °C over
the previous three days, reducing glacier melt and thus lake
level by 0.29 m.

There are no incidences of short-term acceleration triggered by
those calving events, as commonly observed at tidewater glaciers
(e.g. Nick and others, 2009; Moon and others, 2014;
Schellenberger and others, 2015; Kehrl and others, 2017). More
generally, no evidence exists that extreme events such as warm,
cold, dry or wet spells affect short-term variations in ice velocities.
The ice flow’s internal variability seems greater than the
event-related potential increase in basal water pressure and its
effect on basal lubrication.

6. Conclusion

We analyzed records from in-situ camera systems and remote
sensing data based on Sentinel-1 from 2015 to 2022 to estimate
ice-front position, surface velocity and the resulting calving flux
of Schiaparelli Glacier, a grounded lacustrine glacier in the
Cordillera Darwin Icefield. In this study, changes were quantified,
underlying concepts were illustrated, and the mechanisms and
possible connections with atmospheric factors were shown.

At Schiaparelli Glacier, calving accounts for 4.2% of cumula-
tive ice loss, which is in the range of the lower percentile when
comparing estimates for lacustrine glaciers from the Patagonian
icefields (Minowa and others, 2021). The complex interactions
at the lake-glacier interface make an accurate assessment of purely
atmospheric-driven effects difficult. However, we recognize three
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recurring atmospheric extremes responsible for the increased
calving activity: warm spells, wet spells and landfalling ARs.
Rapid changes in lake level trigger the largest calving events due
to temperature variations and associated glacial meltwater input
to the lake. The calving flux increase during warm spells and
AR, together with the higher surface ablation, contributes to a
considerably greater mass loss during the occurrence of such
events. Cold spells favor conditions that reduce both surface abla-
tion and calving, resulting in a positive short-term MB during
cold spells on average. Although dry spells tend to occur during
the cold season, they contribute on average to a doubling of nega-
tive MB as a result of reduced precipitation, while calving flux and
surface ablation are below average.

Seasonal ice-front advance in winter can be linked to sustained
negative daily air-temperature anomalies characteristic of the cold
season. The advance during the cold season is more pronounced
when higher ice-flow velocities occur. Changes in the ice front are
in sync with the calving flux, with higher calving rates during the
retreat phases of the melt season.

Observed changes in Schiaparelli Glacier provide insights in
line with established dynamic concepts of marine-terminating
and lacustrine glaciers. These include:

– Progressive melt-induced thinning is inherent to an acceler-
ation of the terminus section of the glacier. This process desta-
bilizes the ice-front position, which includes an intensification
of retreat and seasonality of the ice-front position, while the lar-
gest calving events are observed simultaneously.

– The seasonal velocity pattern is inversely related to the seasonal
runoff. We hypothesize that the englacial discharge system alter-
nates between efficient (melt season) and inefficient (cold season).

– Seasonal changes in velocity propagate up-glacier, as do
changes in glacier runoff.

The mass loss due to calving response to atmospheric extremes
must be considered to evaluate and predict the rapid changes in
the lacustrine glaciers of southern Patagonia. Neglecting calving
in the total MB would result in a 14% difference in the case of
Schiaparelli Glacier. Our results show that individual weather
conditions can trigger calving, which in turn can increase the
calving flux. Individual glaciers may respond very differently to
similar atmospheric forcing. However, the potential atmospheric
drivers outlined in this study could also explain recent ice
dynamic changes at other sites in Patagonia or elsewhere.

Data. The mass-balance model output and the model-forcing data are pub-
lished (Temme and others, 2023) and available at https://doi.org/10.5281/
zenodo.7798666. Lake level, lake temperature, lake discharge, lake bathymetry,
time-lapse camera images and movies, ice-front position, ice-flow velocity,
calving flux and all detected atmospheric extremes are accessible via
Zenodo. We also provide Python functions to estimate calving flux and evalu-
ate its response to atmospheric extremes (https://doi.org/10.5281/zenodo.
7962016).
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Appendix A. List of acronyms

AR atmospheric river
AWS automatic weather station
UAV unoccupied aerial vehicle
DGPS differential global positioning system
DEM digital elevation model
DSLR digital single-lens reflex camera
SAR repeat-pass synthetic aperture radar
WSDI warm spell duration index
CSDI cold spell duration index
CDD consecutive dry days
CWD consecutive wet days
IVT integrated water vapor transport
MB mass balance
ETCCDI Expert Team on Climate Change Detection and Indices
COSIPY coupled snowpack and ice surface energy and mass balance

model in python
IAAFT iterative amplitude adjusted Fourier transform
GCP ground control points
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