COMMUTATIVE EXTENSION OF PARTIAL AUTOMORPHISMS
OF GROUPS

by C. G. CHEHATA

v (Received 5th June, 1953)
Introduction.

Let p be an isomorphism which maps a subgroup 4 of the group @ onto a second sub-
group B (not necessarily distinct from A) of @ ; then p is called a partial automorphism of G.
If A coincides with G, that is if the isomorphism is defined on the whole of G, we speak of a
total automorphism ; this is what is usually called an automorphism of Q. A partial (or total)
automorphism p* extends or continues a partial automorphism p if p* is defined for, at least,
all those elements for which u is defined, and moreover u* coincides with u where y is defined.

It is known (2) that any partial automorphism of a group can always be extended to a
total automorphism of a supergroup, and even to an inner automorphism of a supergroup.
Moreover, any number of partial automorphisms can be simultaneously extended to inner
automorphisms of one and the same supergroup. 1In this paper conditions are investigated
which ensure that two partial automorphisms can be extended to commutative (or permut-
able) automorphisms of a supergroup.

Sufficient conditions are derived in § 2, conditions which are too restrictive to be neces-
sary as well, but which are sufficiently wide to give the following special case as a corollary :

If 4 maps 4 =6 isomorphically onto BeG and if v maps C'e=G isomorphically onto D=G,
and if

A~C=BAC=4~D=B~D={1},
then p and v can be extended to commutative automorphisms p* and v* of a supergroup G*
of G.

The principal tool throughout is the free product of two groups with one amalgamated
subgroup.

I am indebted to Dr. B. H. Neumann for his advice and continuous help during the
work.

§ 1. Definitions and Lemmas.

In this paragraph we explain what is mearit by an incomplete group, group amalgams,
homomorphism of an amalgam, canonic group, canonic homomorphism and generalized free
products.f We then state Lemma 1 which is proved by Hanna Neumann (3), and prove
some other lemmas which will be required later on.

Definition 1. ,

An incomplete group is a set of elements with a group operation defined for some pairs of
its elements, ’

Then we call 4 an amalgam of groups G, if 4 is an incomplete group consisting of the
elements of the groups G; with the product of two elements of A defined if, and only if, they
both lie in (at least) one and the same group ;. We call G, the constituent groups of the
amalgam and denote by H,;=H;, (i) the intersection of &; and @, ; H,; may contain the
unit element alone.

1 These definitions are adopted from a paper under publication by B. H. Neumann and H. Neumann
for the purpose of making this paper self-contained.
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Definition 2.
A homomorphism of an amalgam A into a group P is a mapping ¢ of 4 into P such that
if @ and b are two elements of A whose product is defined in A4, then

(ab)$ =as b
in P.
Definition 3.
We associate with the amalgam A the group P* which is generated by elements
a* =ad*

corresponding to the elements a of 4 ;, with the defining relations

whenever a* =ag¢*, b* =bd*, c* =cé* and
ab=c
in 4. We call P* the canonic group of A and ¢* the canonic homomorphism of A.
If the mapping ¢* is one-to-one, then we say that P* is the free product of the &; with

amalgamated subgroups H ;.
Hanna Neumann ﬁ)roved the following lemma (3, Corollary 8.11):

Lemma 1. .
Let P be the free product of two groups @ and G, with an amalgamated subgroup H ;
we use the notation
P={@,*G,; H}.
Then if 4, and A4, are subgroups of G, and G, respectively which have the same intersection
B with H, then they generate in P the free product of 4, and 4, with the amalgamated sub-
group B.

Lemma 2.
Let .
P={G,*G,; H},
and let 4, and A4, be subgroups of G, and G, respectively with 4, ~H=A4,~H=DB a8 in
Lemma 1. Let
. {41, Az} =Q.
Then Q~G=A,; i=1,2.
Proof :
By Lemma 1 we have 4
Q={4,*4,; B}.
Choose T, as a set of left-hand coset representatives of 4, mod B (i=1, 2). Then ae 4, is
uniquely expressed in the form '
a=tb; teT; bebB.
Assume that 1 ¢ T, that is to say, B is to be represented by the unit element. Then for
any ¢ e @ there exists a unique normal form
Cq=tbty ... tyb,

where each £;e T, —{1} or T, — {1}, be Band if ;€ T, then T'; ,; € T,. We call n the length of g ;
thus n =0 for elements of B and n =1 for elements of 4, - B.
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Choose 8; as a set of left-hand coset representatives of G; mod H such that S;= 7';. This
is possible because if ¢, H =t ,H (m7~n ; 1, ¢, eT, say), then

t:,;ltn eH,
but bt € Ay,
thus tnlt,e A~ H=B,

contrary to the assumption that 7'; is a set of left-hand coset representatives of 4, mod B.
A normal form thus exists in P with respect to .S,.

Let ge@ Gy
g as an element in @ has a normal form
g=1tts ... b,
but as an element in G, it can be written uniquely as
g=sh, s;€8; heH.
From the uniqueness of the representation we get
n=1, t=s, b=h.
Thus g =t,b ¢ 4, that is to say,

Q~Gi=4,;
but since we obviously have

Q~G=4,
then Q~G; =4,

This completes the proof.
We mention without proof the following known result (1) :
Lemma 3. .
Let x be a homomorphism of the amalgam A into a group ¢. Then there is a homo-
morphism » of the canonic group P* of 4 into ¢ such that

p=¢*v
where ¢* is the canonic mapping of 4.
As an immediate consequence of Lemma 3 we have :

Corollary :

Let ¢, and G, be two groups with U =G ~ G, and let u,; map G; homomorphically onto
H; (i=1,2). Suppose that Up;~Up,=V and that, more precisely, uu, =up, for all ue U.
Then there exists a homomorphic mapping » of

P ={G,*Gy; U}

onto any group P, generated by H; and H, such that H; ~ H,= V where v extends p, and pu,
simultaneously.
Proof.

For we can take A as the amalgam whose constituent groups are (; and G,. P* and @
become P; and P, respectively, and the result follows immediately from Lemma 3.
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Lemma 4.
Let G and G, be two groups with U =G ~ G, and let y; map G, isomorphically onto
H; (i=1,2). Suppose that Up;~Upu,="V and that, more precisely, uu, =up, for all ueU.
Then there exists an isomorphic mapping of
. Py ={G,*Gy; U}
onto ‘ P,={H,*H,; V},
which extends u, and u, simultaneously.
Proof.
Since Up,;~Up, =V, then by the previous corollary there exists a homomorphic mapping
v of P, onto P, which extends both x, and p,, that is to say
Pyv=P,, 1
Gy=Gu,=H;; i=1,2. "

Since p; is an isomorphism, then its inverse p; ! is an isomorphic mapping of H; onto G,.

.................................. (1.2)

Again since Vul '~ Vpu; ! =U, then by the previous corollary there exists a homomorphic

mapping v of P, onto P, which extends u ! and u; ! respectively, that is to say
Py’ =Py, )
e B

Applying +' to (1.2) we get

Pw' =Py =P,
Gw' =Hy' =Ge,,
where ¢, is the identity mapping.

Applying v to (1.3) we get :
Py'v=Py=P,,

Hy'v=0Gy=He,

Thus »' maps P, onto itself and on the constituent groups of P, it is equal to the identity
mapping. Also »'v maps P, onto itself and on the constituent groups of P, it is equal to the
identity mapping.

Hence v and »' are reciprocal isomorphisms and the lemma follows.

§ 2. Sufficient Conditions.

Denote by 4, B, C, D subgroups of a given group ¢ and assume that p maps A4 iso-
morphically onto B and v maps C isomorphically onto D. Throughout this paragraph :
A, B, C, D, G, p and v will always retain the same meaning.

For the existence of a group G*= G and two total automorphisms p* and »* of G* such that

prv* =v*u* and p*,; v* extend p, v respectively one ‘condition is obviously necessary, namely
the following :

gy =gvu,
whenever gu, gv, (gu)v, (gv) u are defined, in other words wheneverge A ~C,gueC and gve A.
Because if G*, p* and v* exist, then for such an element g we get :

guv =gp*v¥,

gvp =gv¥p¥,
and since p* commutes with v*, then

gpv =gvp.
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We now show the sufficiency-of certain conditions by proving the following theorem :
Theorem 1.

For the existence of a supergroup G*= G with two commutative inner automorphisms
s and ¢ extending p and » respectively, it is sufficient that the following hold :

(AAC =B AC, ccvriirviiiininiiiiieneiiineenrienean,s 2.1
(A~ADyp=B D, .cccovrununn.n. T (2.2)
(AAC)Ww=A D, .cccecerviviiniininiiiniiniiiiiiasenn (2.3)
(BACYw=BaD, cceeeeeeieeeeeeereeeeeieereeereenens (2.4)
IV = Vs oeveriiiiiiniiiniiieeniinie e (2.5)
whenever gu, gv, (gu)v and (gv)p are defined.
Proof.
The proof of this theorem is somewhat long and it will be effected by a number of lemmas,
The main steps in the procedure are these : we take a sequence ..., G_;, Gy, G4, ... of copies

of the group @, that is to say a sequence of groups isomorphic to @, and construct certain
free products P,; defined inductively for any i<(j and for G,, G;,4, ..., G; with certain amalga-
mated subgroups. We then prove that in P,; there exist two subgroups @,; and R,; which are

' [+ o]
isomorphic under a mapping v;; that extends v. Lastly we form the union U P_, ., and prove
' . n=1

that it contains two subgroups which are isomorphic under a mapping v that extends », and
that it possesses an automorphism p* which extends p and commutes with . The proof
will then be completed by applying a theorem due to G. Higman, B. H. Neumann and H.
Neumann (2).
Now take a sequence of groups
vy Gy, Gy, Gy, ol
each of which is isomorphic to G. Let under a fixed isomorphic mapping y,,
Gy;=Q;; =0, +1,....
Bach group G; contains subgroups 4;, B,, (;, D;, which are the images of 4, B, C, D under
the mapping y; and possesses two isomorphisms u; and v; mapping 4; onto B, and C; onto
D; respectively, such that if
a;=ay; aecd,
b;=by;, beb,
then a;p; =56, if ap=>b. In other words,,
R
Similarly one defines v; to be
vi=ryy IV)’i-
If we repla,cg A4,B,C, D, p and v by 4,, B;, C;, D;, p; and v, respectively, then they will
satisfy the relations that correspond to (2.1) —(2.5). ' _
Form the free product of @; and' G, amalgamating B,=G,; with 4,,, =G, as follows ¢
if \
b;=by,, beB,
Biyg =0Yiy1, €4,
and if ap =b then we put b, =a,,;. That is to say, the isomorphism underlying the amalgama-
tion is y; Y ly;1.  ¥i wtyi is defined on B, moreover it is the identical mapping on B,
"Call this free product ‘
Pipn={G:*G;y; Bi=4,.}
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We then form the free product of P;;; and G, amalgamating B;,, =P;;,, with 4, ,=G,,,
according to the isomorphism y;u~'y,,,. Call the product
Piva={Piis1 * Gira; Bia=4ua}
More generally we define P;; inductively for any i<j in the following way :
Pin={G; * G5 B; =Ai+1},
Py ={Py;1*G; ; B; =43
where B;_,; is amalgamated with 4; according to the isomorphism y; % p—1y;.
We note that we have : ‘

for any h<i<<j<k.
Also by this method of construction P, is isomorphic to Py, in an obvious way, for any
4, b and positive . This fact will be used later in Lemma 8.

Now we prove that in P,; the following lemmas are true :

Lemma 5 :
In P,;,, the following relations hold :
CinB=Ciyn Ay, coviniiniiiiiiniiiiiiniiineeinieans (2.7)
DinB;=D;1n i1 covniininniiniinieieiiiieiiiirneneenn (2.8)
Proof.
Let a;eC;~ By,
then a;y;te C~B.
Since a; e B;=A,,,, that is to say a; is an amalgamated element,
then @y i =,
or ayi  =ayihe;
thus ayipeCnB=(C~A)p by 2.1).
Since p is an isomorphism, then
ayieCn A,
2 e(Cnd)yy=Cipyndiy,
CinBieCi g n A coviniiiiiiiiiieiirie e, (2.9)
If, on the other hand,
@iy1€ Cipy n Ay,
then

a’i+17i_+11 eCn~Ad,
@nyian e(C~A)p=0C~B, by (2.1).
Since a3 € 4,,, =B;, that is to say a,,, is an amalgamated element, then :

-1 -1 _
QY WTYinn =,

or ay; ' =ay;ipeC B,
a;€(C~B)y;=C; ~ B,
t}hus O‘i+]. ~ .A1£+1 EC’i ~ Bi' ....................................... (2.10)

(2.9) and (2.10) together give
CinB;=Cipy n Ay,

which proves (2.8). Similarly one proves (2.9), and the lemma follows.
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Lemma 5 and relation (2.6) give the following :

C’brollary :
In P;; tHe following relations hold :
CinBy=Ciiyn Ay ceiiiiiiiiiiiiiiiiiir e, (2.11)
DinBy=Dy s nAyqycoeeeiiiiiiiiiieiiirinriieaineenns (2.12)

for all {=¢,¢+1,...,5-1.
Lemma 6.

If h<<i<j<k and if we denote by ¢;; the subgroup of P, generated by C;, Oy, ..., C; = @y,
in particular, is C; —, and if we similarly denote by R,; the subgroup of P, generated by
Dy, Diys ooy Dy~ By, in particular, is D; —, then

Qij={Qij-1* Cj5 Cjqn By =C;nAj,
Rij={Riy1*D;; D;1~B; =D;~A}
Proof.
It is sufficient to prove the lemma for @;;, the proof for R;; will be on similar lines.
Now we shall prove by induction that
Qij_l ~ Bj—l = Oj ~ Aj’ ] -----------------------
Qij={Qu1*Ci; CiqnBjy=C;~A4 J
for any 1<Cj. The induction is on j.
For j=1i+1 we have
Qi ~B;=C;~ B;
=01~ A, by Lemma 5.
Thus by Lemma 1, C; and C,,, generate in P, their free product with the amalgamated
subgroup C; ~ B;:
Qi ={C:*Cin; CinB;=Cign A}
Assume that (2.13) is true for j.
Applying Lemma 2 with Py, P, ;, G;, B, @y, @41, C;, Cij_y ~ B;_; in the place of P, G,
Gg H, @, A, A,, B respectively we get, because of the first inductive relation of (2.13):
Qipn G;=C}. ‘
Intersecting both sides with B; we get
Qii nBj=O,»nBj
=Ci1~n 4y, by (2.11).
Because of this equation, we can apply Lemma 1, with
Pij+1’ P'ij} GH—I’ Bj! Qif’ OJ'+1
in the place of
P ) Gl; Gz; H 2 Al’ A25
and thus @,; and C;,; generate in P, their free product with the amalgamated subgroup
C;~B;=0C;,, ~4,,,. This completes the proof of Lemma 6.
Lemma 7.

There exists an isomorphic mapping v;;, say, of @;; onto R;; such that v;; extends v;, v,

veey Vie )
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Proof.
The proof is by induction on j. We first show that in @,;,, the map by »; of an element
in C; ~ 0,4, is equal to its map by v,,;. By the construction of P;; we have

Gi ~ Gi+l =Bi3
intersecting both sides with C; ~ Oy, we get

Ci ~ Oi+l =Bi ~ Oi s Oi+1

=Ai+1 ~ Ci+l
=Bi’\ Cz by (2.7).
Let ¢;€CinCrpy=As4~ Oi+1- =B;~C,
then i =Cy vy € Bi n Dy oo, (2.14)
CVin =Ci)’¢_+11"7’i+1 €eA; 1 ~D;y. e (2.15)

Since ¢, is an amalgamated element, then
v Wi =0
or civi  =cyitin.
¢;yi 1€ B~ C, thus applying » to the last equation we get
ey v =covithm

=cl~yi_+11vp. by (2.5). ......... et rerererenaeenees (2.16)
But (2.14) and (2.15) give

CYy 1,V=01‘Vi7i— L
-1, _ —~1
Ci¥it1V =C¥in¥iv1-
Substituting in (2.16) we get
Civi¥s ! =Ci"i+17i_+11!"’
or (evi) vi "ty = (i)
Thus, according to the rule of amalgamation, we get
CiVy =C¥yy-
This together with the fact that
(Cy~ By)v;=D,; ~ By,

enables us to apply Lemma 4, thus proving the existence of an isomorphic mapping v;;,,, say,
of @;;,, onto R;;,, such that v,;;; extends »;, and v,,;,.

Suppose that v; maps Q,; isomorphically onto R;; such that v; extends v;, viy, ..., ¥,
For any element

¢eQijrnCip,
we get ce (; ~ B; =0y, ~ A; ,, since by Lemma 6 we have
Qij ~ Cip1=C;~ B;=Ciyy ~ Ay
For such an element ¢, we proved above that o

ch = U.V’,-t_l.
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Since »;; extends v;, that is to say, since
vy =Cryj,

then eV =CVi 4.
Thus it is legitimate to apply Lemma 4 which proves the existence ot an isomorphie
mapping v;;,,, say, of

Qis1={Qu* Cisxs CinBj=Cian 4,5}
onto Bijnn={Ri;*Djp; D;nBj=D;,~A4;,}
which extends v,; and v;,; and thus extends v, »,,y, ..., v;4;. This completes the proof of the

lemma.

Now we form
[« o}

Pr=UP_, ,p
) n=1
Define the mapping p* as follows : For any g, € G4, if g,y =g and gy;,;=9,,;, then we put
gip* =g i+1s
in other words, on G,,
gi* =gsyi Y-
We prove then the following

Lemma 8.
The mapping p* generates an automorphism of P* which extends every p,.
Proof. .
That p* generates a mapping of P* onto itself is obvious. It is also consistent for if

9ieGinGiy=B;=A4,,,

and if
gy t=9,
FYis1=9s415
then gin* =gi41 € Bigy.
If, on the other hand,
9vi1=9's

9Virs=Gire
then gir* =gi0€ Aypor
Since g; is an amalgamated element, then
97 B e =9s

But 9yt =9=0invih
and 9¥ii =9 =0ira¥iis
These last three equations together give

Gin Vit Wisa =Gire

Thus g,,, is to be amalgamated with g,,,. This proves the éonsistency of p*.
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That u* generates an automorphism of P* follows from the fact that P,,,, is isomorphie
to P, ;.o under the mapping generated by y; 'y¢,; and y Y yi s
To prove that u* extends every u;, we take an arbitrary element a, € A;, then by the defini-
tion of p* and u,; we get
ap* =ay Yy e Ay,
Ayp =“i7’;1l"')’i €B..
Since (@i ) ¥ W e =0y i
(@) yi 0 i = (@ap®),
then by the rule of amalgamation we get
Aipr; = Bspa*.
This completes the proof of the lemma.
The group P* contains the subgroups
C*={...,C_,, Cy Cy, ..},
D*={...,D_;, D, Dy, ...}.
It is clear that u* maps C* onto itself and maps D* onto itself.

Define the mapping v of C* onto D* as follows : for ¢ e C*, that is to say ¢ € @,; for some
suitable ¢ and j, put
CV =Cvy.
v is thus an isomorphism of C* onto D*, which extends the v, since the v;; does.
It is clear that for any c* ¢ C*, c*vu* is defined, and since c*u* e C* then c*u*v is also
defined. Moreover, we have :

Lemma 9. *
CRUR* = CFU*D, it (2.17)
for any c* e C*.
Proof.
’ Let c* = Hc,-, C; € C'i'

i

Since v extends all the v, then
C*; =II Cv;
i

=Hciyi_ 1”')’:':
t
cvp* =Ile;y; Yy in
PR
=Hegy; vyin-
(]
On the other hand,
¥y =Iewy; yiaavin
1
=ITe,v Yy, ivlyy.
=11C;y; “YinVir1¥vin
t
=Iewy; 'vyis-
%

Thus ¢*yp* =c*p*y, and the lemma follows.
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Now form the group generated by P* and an element s, call this group

P=(p*, 3,
and define
sipts=p*u* for all p* ¢ P*;

s thus induces an inner automorphism of ?

Equation (2.17) then translates into

' s (c*p)s =(s~Lc*s) v,
that is, the inner automorphism ¢ commutes with the partial automorphism ».
If we, moreover, define

, SV =38,
then ¥ becomes an isomorphism of ~
C={C*, s}
N
onto D ={D*, s},

and it also commutes with s.

At this stage we mention a theorem proved by G. Higman, B. H. Neumann and H.
Neumann (2, Theorem 1), namely, the following
Theorem 2.

Let u be an isomorphism of a subgroup 4 of a group & onto a second subgroup B of G.
Then there exists a group H containing G, and an element ¢ of H, such that the transform by ¢
of any element of A is its image under p :

t1at=ap forallacA.

Applying this theorem with v, /0\, /1;,/]} taking the place of u, 4, B, G respectively, we can
embed P in a group

A
G* ={P, &
such that —~
718t = &G forany €eC, covvviiviiiiiiiiiiniiieineniin, (2.18)

that is to say ¢ induces an inner automorphistn of ¢ which extends v and thus extends v.
Putting ¢ =s in (2.18) we get
ttst = sv
=8 by definition.
Thus s and ¢ commute and G* has the required properties. This completes the proof of
Theorem 1, '
Remark. We note that conditions (2.1)~(2.4) of Theorem 1 are not necessary ; for if
we take the subgroups 4, B, C, D of G such that V
A=0#{1}, B=D, A~B={1},
and take v to be the same mapping as 1, then the conclusion of the theorem is known to be
valid (by Theorem 2), although (A ~ D)u#~B ~ D.
A special case of Theorem 1 is the following :
Corollary :
Sufficient for u and v to be extendable to two commutative inner automorphisms of one
and the same group is that
A~C=B~C=4A~D=B~D={1}.
For then equations (2.1)-(2.5) will be trivially satisfied.
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