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1. Preliminaries and summary. The present paper is closely related to a paper with the
same title by A. M. Macbeath [3]. We use many notions which are defined there for a
measure-space; nevertheless we define them once more because we consider the slightly
different case of a measure-ring.

Let (S, fx) be a measure-ring with unity such that the measure /n is c-finite (for definitions
cf. [2]). We assume that there exists a countable group G of transformations which map S
onto itself and which preserve the measure /J. and the operations ^ , - , r\ in S. We denote
by gA the image of A e S by g e 0. For any subset F of G we write FA instead of U gA.

We say that an element P belonging to S is a packing (more precisely, a ©-packing) of an
element A e S if gP c A for every g e G and the elements gP are disjoint for different g. We
call an element C e S a covering of A if A C GC. If an element F e S is simultaneously a packing
and a covering of A, then F is called a fundamental domain for A. If, in particular, A is the
ring unity 1, then we call P (or C) a packing (or covering) of S, and F a fundamental domain
for S. In Theorem 1 we give a condition on (S, p.) and G which is equivalent to the existence
of a fundamental domain F for S.

If P and C are a packing and a covering of an element i f S , then /xP < pC. This result
is stated in [3] (Theorem I) for the ring S of all measurable subsets of a measure-space
(X, S, p.) and for A = X. However, the proof which is given there is more general and it can
be applied to a measure-ring (S, p) and to an arbitrary i s S . We shall use this result in
several parts of our proof, referring to it as to the theorem about packings and coverings.

Let p be the upper bound of all measures pP, where P are packings of S, and let c be the
lower bound of measures fiC, where C are coverings of S. These numbers exist since the
zero element 0 e S is a packing and the ring unity 1 is a covering of S. By the theorem
about packings and coverings we have p < c. In Theorem 2 we give a condition on (S, /x)
and G which is equivalent to p = c.

The corollaries contain results which are analogous to Theorems 1 and 2 but concern the
ring of measurable sets of a measure-space. We construct also examples which show that
these theorems fail to be true if the measure is not a-finite.

j

2. Results. Let e e G be the identity transformation. We denote by (77), (p) and (8) the
following properties :

(TT) If A e S, g e G, A ^ 0 and g # e, then there exists a B c A such that B * 0 and
BngB = 0.

(p) If A e S lias arbitrarily small coverings, then A = 0.
(8) If for some A e S and a certain g e G, g & e we have BngB j= Ofor every B C A, B & 0,

then A has arbitrarily small coverings.

THEOREM 1. There exists a fundamental domain F for S if and only if both (TT) and (/>) hold.

THEOREM 2. p = c is equivalent to (8).
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We shall verify in § 6 that the CT-finiteness of /x is in both theorems an indispensable
assumption. Let us consider now a measure-space (X, S, /x), where the measure /J. is or-finite
and complete (see [2]). Let G be a countable group of transformations of X onto itself which
preserve measurability and measure. We denote by (n0), (TT'O), (p0), (So) the properties :

(T70) If A e S, g e G, /MA > 0 and g ¥= e, then there exists a B c A such that fiB > 0 and
BngB = <f> (<j> is the empty set).

(TT'Q) NO g ¥= e has fixed points (i.e. gx ¥= x for x e X).
(po) If A e S has arbitrarily small coverings, then pA = 0.
(80) If for some A e S and a certain g e G, g ¥= e we have fi(Br\gB) > 0 for every B c A

with fiB > 0, then A has arbitrarily small coverings.
Applying Theorems 1 and 2 to the measure-ring denned by (X, S, p.), we obtain the

corollaries :

COROLLARY 1. There exists a fundamental domain for (X, S, p) if and only if (TT0), (TT'O),

(p0) hold simultaneously.

COROLLARY 2. p = c is equivalent to (80).

Let us consider a locally compact and a-compact topological group H. We denote by (i
the Haar measure on H and by S the ring of all /x-measurable sets in H. Let G be a countable
subgroup of H. The left translations by elements of G form a group of measure preserving
transformations of the measure-space (H, S, p). Evidently (n0) holds. Hence (80) is true and
so p = c.

I t follows from Corollary 1 that if G is discrete (in the topology induced by / / ) , then a
fundamental domain exists. This is however a known result [1]. I t follows also from
Corollary 1 that if G is not discrete, then no fundamental domain exists. But this can be
proved also directly. In fact, a fundamental domain F is of positive measure and we have
FngF = j> for g e G-{e}. Thus G-{e) cannot intersect every neighbourhood of e (see [4]).

3. Two lemmas. Let us call coverings of S simply coverings and let us adopt the same
convention for packings and fundamental domains.

LEMMA 1. We assume that (TT) holds. Then every covering C which is not a packing
contains a covering Co # C.

Proof. We have Cng~lC & 0 for some g ¥= e. Let A = Cc\g~xC and let B c A satisfy
(?r). Thus gB c gA c C and hence both B, gB are contained in C. Since they are disjoint it
follows that Co = 0 —B is also a covering.

LEMMA 2. / / (TT) and (p) hold and there exists a covering C with 0 < /xC < oo, then a
fundamental domain exists.

Proof. Let C be the family of all coverings of finite measure. We observe that a partial
order is denned in C by the relation of inclusion. Prom Zorn's Lemma it follows that C
contains a maximal decreasing chain M, i.e. an ordered subfamily M of coverings such that
no covering C o e C - M is contained in all C e M . Let a = inf ju,C. There exist coverings

CfM

Cv C2, ..., Cn, ... e M such that a = lim /xCn. Put F = f"l Cn. Thus fiF = a. Let B = GF.
n-*°o n = I

Since 1 = GCn for each n it follows that 1 - B c G (Cn - F). We obtain from lim ̂  (Cn - F) = 0
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that 1 - B has arbitrarily small coverings. Hence, by (p), we have B = 1 ; i.e. F is a covering.
Let us verify that F c C holds for every C e M. Indeed, from FnC ^ F for some C e M

m

follows ix(FnC) < JXF = a, and thus /J. f~l Cn < a for Co = C and sufficiently large m. This
n = 0

m
is a contradiction since f") Cn e M. From F <Z C for every <7 e M we have that no covering

n = 0
(70 =£ .F is contained in F. Since F is a covering, we obtain, by Lemma 1, that F is also a
packing and thus F is a fundamental domain.

4. Proof of Theorem 1. Suppose first that a fundamental domain F exists. We shall
prove that both (n) and (p) hold. Assume that (n) is not true, i.e. that there exists an A e S
and g e G such that A ¥= 0, g & e and BngB ^ 0 whenever B c A and B * 0. From A c OF
we have that, for some g0 e (?, the set B = ^4n<70.F is not empty. From B C.A and B # 0
it follows that BngB ^ 0. This is a contradiction, since B c ^QF, grU C gg0F and g ¥= e.

Now suppose that (p) is false. We assume that A ¥= 0 has arbitrarily small coverings.
I t follows that the same is true for GA. Thus, by the theorem about packings and coverings,
there exists no packing of OA except 0. Evidently Ang^F <£ 0 for some g0eO. Thus
P = Ang^F is a packing of OA which is different from 0 and this is a contradiction.

Now let us suppose that (n) and (p) hold. We take a maximal set <P of non-zero elements
A of finite measure such that all elements GA (A e <P) are disjoint. This set is countable

CO

since fi is a-finite. Thus 0 = {A^ Ait ..., An, ...}. Suppose that U GAn # 1. By the
n = l

ff-finiteness of n the element B = 1 - (J GAn contains an element D -t 0 of finite measure.
n = l

We have GDc~\GAn = 0 for every n and this is a contradiction since <t> is maximal. Hence
00

1 = U GAn. Since An is a covering of GAn, it follows from Lemma 2 that there exists a
n " 1

fundamental domain Fn for each GAn. Thus F = U Fn is a fundamental domain for S.

5. Proof of Theorem 2. We assume first that (S) does not hold and we shall prove that
then p ¥= c. Let i e S and g e G, g # e be such that for B C A and B ¥= 0 we have
BngB ¥= 0, but 4 does not have arbitrarily small coverings. I t follows that the lower
bound m of measures of coverings of GA is positive. Let us prove that every packing P of S
is disjoint from GA. Assume the contrary. Then g^Ang^ ^ 0 for some gv g^e.0 and thus
B = Ang-^g^P * 0. We have B c A, B ± 0 and thus it follows from BngB ± 0 that
g^giPnggi^g^P # 0. Therefore P cannot be a packing. We now define Q = 1 -GA. If C
is an arbitrary covering of S, then evidently M = CnGA is a covering of OA and N - CnQ is
a covering of Q. Consequently fiM > m. We have JWuJV = C, MnN = 0 and this implies
JXN <; fiC -m. Let P be a packing of S. Since P is disjoint from OA, P is a packing of Q.
Thus fiP < fxN, by the theorem about packings and coverings, and we obtain fiP < /xC - m.
Therefore p < c follows.

We assume now that (8) holds and we shall prove that p = c. If (p) holds, then (TT)
follows by (8), and then p = c by Theorem 1. Suppose that (p) does not hold and take a
maximal set Q of non-zero elements such that each A e Q has arbitrarily small coverings
and the elements GA, where A e Q, are disjoint. Q is countable by the tr-finiteness of fi and
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thus also Q = U GA has arbitrarily small coverings. We shall now prove that there exists
At!)

a fundamental domain for 1 -Q. This follows from Theorem 1. Indeed, (p) holds for each
A c 1 - Q by the construction of Q and it remains to verify that (IT) holds also. But if (TT) is
false for some A # 0 and g =t e, then, by (8), A has arbitrarily small coverings, contradicting
(p). Let F be a fundamental domain for 1 -Q. For each e > 0 there exists a covering D
of Q with pD < e. It follows that FuD is a covering and F a packing of S. Thus c ^p.
By the theorem about packings and coverings, we have p sg c and therefore p = c.

6. Rings with a non a-finite measure. We give first an example of a measure-ring
(S, fx) and a group G such that (77) and (p) hold but no fundamental domain exists. Let S
be the ring of all these sets of real numbers which either are countable or have a countable
complement. Let G be the group of translations by integers. The measure p of A e S is
denned to be the number of elements in A (pA is infinite if A is infinite). Then (77) and (p)
hold. We observe that every packing of S is a countable set and every covering is not countable.
Therefore no fundamental domain exists.

Now let us give an example where (8) holds and p & c. Let L be the ring of all Lebesgue-
measurable sets of real numbers and let NdL be the ideal of all sets of measure 0. We denote
by L* the quotient ring L/N. Let T be an infinite non-countable set and let to each T e T
correspond a replica L* of L*. We consider the product S = II LT*. For A e S we denote

by Ar the r-coordinate of A (Ar e LT*). Let m denote the Lebesgue measure in L*. We
define /J. on S by

IxA = S niAT,

where the sum of a non-countable collection of positive numbers is defined to be infinite.
For A, B e S let C - A u B if CT = ATvBT for every r. Similarly we define in S the operations
- and n . Let G be the group of translations of elements of L by rational numbers. Thus

for every A e S and g e 0 we can define g(AT) for each T. Let us define gA by (gA)T = g(AT).
Consequently (n) is true and (8) follows. Let us observe that if P is a packing of S, then
each PT is a packing of Lr* and thus PT = 0 by the theorem about packings and coverings.
Hence 0 is the only packing of S and we have p = 0. We easily observe that if C is a covering
of S, then \xC = 00. Therefore p + c.

7. Proofs of the corollaries. Let N be the ideal of all subsets of X which are of
measure 0 ; these sets form an ideal since the measure \x is complete. We consider the measure-
ring (S*, n), where S* is the quotient ring S/N. Let us denote by A* e S* the image of A e S
by the natural mapping of S onto S*.

We first prove Corollary 1. Suppose that (7r0), (TT'O) and (p0) hold. Then (v) and (p)
hold for S*. Thus, by Theorem 1, there exists a n f e S such that F* is a fundamental domain
for S*. It follows that

P = J - ( G - { « } ) * "
is a packing of S such that Q = X - GP e N. Evidently Q is a union of sets Gx where x e Q.
Let D c Q b e any set which contains exactly one element from each of these sets Gx. We
have D e N, and thus D is measurable. It follows from (TTQ) that D is a fundamental domain
for Q. Consequently P u D is a fundamental domain for S.
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Conversely, if F is a fundamental domain for S, then evidently F* is a fundamental
domain for S* and the necessity of (n0) and (/>„) follows. The necessity of (TT'O) is obvious.

To prove Corollary 2 it suffices to observe that to every packing of S corresponds a
packing of S* of the same measure and conversely, and that the same is true for coverings.
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