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1. Preliminaries and summary. The present paper is closely related to a paper with the
same title by A. M. Macbeath [3]. We use many notions which are defined there for a
measure-space ; nevertheless we define them once more because we consider the slightly
different case of a measure-ring.

Let (S, p) be a measure-ring with unity such that the measure p is o-finite (for definitions
cf. [2]). We assume that there exists a countable group @ of transformations which map S

onto itself and which preserve the measure p and the operations v, —, ~ in S. We denote
by gA the image of A € S by e G. For any subset I of G we write I'A instead of U g4.
gel”

We say that an element P belonging to S is a packing (more precisely, a G-packing) of an

element 4 ¢ S if gP C A for every g ¢ G and the elements gP are disjoint for differentg. We
call an element C ¢ S a covering of 4 if A € GC. If an element F €S is simultaneously a packing

and a covering of A, then F is called a fundamental domain for A. 1If, in particular, A is the
ring unity 1, then we call P (or C) a packing (or covering) of S, and F a fundamental domain
for S. In Theorem 1 we give a condition on (S, u) and G which is equivalent to the existence
of a fundamental domain F for S.

If P and C are a packing and a covering of an element 4 ¢ S, then uP < uC. This result
is stated in [3] (Theorem 1) for the ring S of all measurable subsets of a measure-space
(X, S, p)and for 4 = X. However, the proof which is given there is more general and it can
be applied to a measure-ring (S, u) and to an arbitrary 4 ¢ S. We shall use this result in
several parts of our proof, referring to it as to the theorem about packings and coverings.

Let p be the upper bound of all measures uP, where P are packings of S, and let ¢ be the
lower bound of measures nC, where C are coverings of S. These numbers exist since the
zero element 0 ¢ S is a packing and the ring unity 1 is a covering of S. By the theorem
about packings and coverings we have p < ¢. In Theorem 2 we give a condition on (S, p)
and @ which is equivalent to p =c.

The corollaries contain results which are analogous to Theorems 1 and 2 but concern the
ring of measurable sets of a measure-space. We construct also examples which show that
these theorems fail to be true if the measure is not o-finite.

2. Results. Let ¢ € @ be the identity transformation. We denote by (r), (p) and (5) the
following properties :

(m) If AeS, geG, A # 0 and g + e, then there exists a BC A such that B + 0 and
BngB = 0.

(p) If A €8 has arbitrarily small coverings, then A = 0.

(8) If for some A € S and a certain g € G, ¢ + e we have BngB +# 0 for every BC 4, B # 0,
then A has arbitrarily small coverings.

THEOREM 1. There exists a fundamental domain F for S if and only if both (m) and (p) hold.

THEOREM 2. p = c is equivalent to (3).
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We shall verify in § 6 that the o-finiteness of p is in both theorems an indispensable
assumption. Let us consider now a measure-space (X, S, u), where the measure p is o-finite
and complete (see [2]). Let @ be a countable group of transformations of X onto itself which
preserve measurability and measure. We denote by (), (mg), (po), (8,) the properties :

(mo) If A€ S, ge@, pAd > 0 and g + e, then there exists a B C A such that uB > 0 and
BngB = ¢ (¢ is the empty set).

(o) No g +# e has fixed points (i.e. gx + x for x ¢ X).

(po) If A € S has arbitrarily small coverings, then pA = 0.

(8g) If for some A € S and a certain ge G, g # e we have p(BngB) > 0 for every B C A
with uB > 0, then A has arbitrarily small coverings.

Applying Theorems 1 and 2 to the measure-ring defined by (X, S, n), we obtain the
corollaries :

COROLLARY 1. There exists a fundamental domain for‘ (X, S, p) if and only if (my), (mg),
(pg) hold simultaneously.

COROLLARY 2. p = ¢ is equivalent to (3,).

Let us consider a locally compact and o-compact topological group H. We denote by p
the Haar measure on H and by S the ring of all y-measurable sets in H. Let G be a countable
subgroup of H. The left translations by elements of G form a group of measure preserving
transformations of the measure-space (H, S, p). Evidently (m,) holds. Hence (8,) is true and
s0p =c.

It follows from Corollary 1 that if @ is discrete (in the topology induced by H), then a
fundamental domain exists. This is however a known result [1]. It follows also from
Corollary 1 that if G is not discrete, then no fundamental domain exists. But this can be
proved also directly. In fact, a fundamental domain F is of positive measure and we have
FngF = ¢ for ge G —{e}. Thus @ —{e} cannot intersect every neighbourhood of e (see [4]).

3. Two lemmas. Let us call coverings of S simply coverings and let us adopt the same
convention for packings and fundamental domains.

LEmMMA 1. We assume that () holds. Then every covering C which is not a packing
contains a covering Cy # C.

Proof. We have Cng=1C # 0 for some g # e. Let 4 = Cng~'C and let B C 4 satisfy
(m). Thus ¢B C g4 C C and hence both B, ¢gB are contained in C. Since they are disjoint it
follows that Cy = C' — B is also a covering.

LeMMa 2. If (7) and (p) hold and there exists a covering C with 0 < uC < o0, then a
Sundamental domain exists.

Proof. Let G be the family of all coverings of finite measure. We observe that a partial
order is defined in C by the relation of inclusion. From Zorn’s Lemma it follows that C
containg a maximal decreasing chain M, i.e. an ordered subfamily M of coverings such that
no covering Cye C—M is contained in all Ce M. Let a = lea pC. There exist coverings

! 0
C,Cy ...;C,, ...e Msuch that @ = lim uC,. Put F = N C,. ThuspF =a. Let B = QF.

n—>ao n=1

Since 1 = GC, for each n it follows that 1 - B € G(C,, — F). We obtain from lim u(C, ~F) =0
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that 1 — B has arbitrarily small coverings. Hence, by (p), we have B = 1; i.e. F is a covering.

’

Let us verify that F C C holds for every C ¢ M. Indeed, from FNC # FforsomeC e M
m
folows u(FnC) < pF = a, and thus p N C, < a for Cy = C and sufficiently large m. This
n=0

m
is a contradiction since } €, e M. From F c C for every ' ¢ M we have that no covering
n=20

C, # F is contained in F. Since F is a covering, we obtain, by Lemma 1, that F is also a
packing and thus F is a fundamental domain.

4. Proof of Theorem 1. Suppose first that a fundamental domain F exists. We shall
prove that both () and (p) hold. Assume that () is not true, i.e. that there exists an 4 ¢ S
and g € G such that 4 # 0, ¢ # e and BngB # 0 whenever BC Aand B # 0. From 4 C GF
we have that, for some gy ¢ G, the set B = AngyF is not empty. From BC A and B # 0
it follows that BngB # 0. This is a contradiction, since B C g F, gB C gg,F and g # e.

Now suppose that (p) is false. We assume that 4 # 0 has arbitrarily small coverings.
It follows that the same is true for G4. Thus, by the theorem about packings and coverings,
there exists no packing of G4 except 0. Evidently Ang# + 0 for some g, G. Thus
P = Ang,F is a packing of GA which is different from 0 and this is a contradiction.

Now let us suppose that (7) and (p) hold. We take a maximal set @ of non-zero elements
A of finite measure such that all elements GA (A4 ¢ @) are disjoint. This set is countable

since p is o-finite. Thus @ = {4,, 4,, ..., 4,, ...}. Suppose that U G4, # 1. By the
n=1

o0
o-finiteness of p the element B = 1 - |J /4, contains an element D 0 of finite measure.
n=1

We have GDNGA, = 0 for every = and this is a contradiction since @ is maximal. Hence

o
1 = U GA,. Since 4, is a covering of G4, it follows from Lemma 2 that there exists a
n=l

fundamental domain F, for each GA4,. Thus ¥ = G F, is a fundamental domain for S.
n=1

5. Proof of Theorem 2. We assume first that (8) does not hold and we shall prove that
then p #¢c. Let A¢S and ge@, g # ¢ be such that for BCc A and B # 0 we have
BngB # 0, but A does not have arbitrarily small coverings. It follows that the lower
bound m of measures of coverings of G4 is positive. Let us prove that every packing P of S
is disjoint from GA. Assume the contrary. Then g,Ang,P # 0 for some g,, g, € @ and thus
B = Angylg,P +# 0. We have BC A, B # 0 and thus it follows from BngB # 0 that
97tg.Pggilg,P # 0. Therefore P cannot be a packing. We now define @ =1-G4. If C
is an arbitrary covering of S, then evidently M = CnGA4 is a covering of G4 and N = CnQis
a covering of Q. Consequently uM > m. We have MUN = C, MAN = 0 and this implies
pN < uC -m. Let P be a packing of S. Since P is disjoint from G4, P is a packing of Q.
Thus pP < uN, by the theorem about packings and coverings, and we obtain pP < uC —m.
Therefore p < ¢ follows.

We assume now that (3) holds and we shall prove that p = ¢. If (p) holds, then (7)
follows by (8), and then p = ¢ by Theorem 1. Suppose that (p) does not hold and take a
maximal set 2 of non-zero elements such that each 4 ¢ 2 has arbitrarily small coverings
and the elements GA, where 4 ¢ £, are disjoint. £ is countable by the o-finiteness of p and
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thus also @ = U GA has arbitrarily small coverings. We shall now prove that there exists
Aef

a fundamental domain for 1 —-Q. This follows from Theorem 1. Indeed, (p) holds for each
A c 1 -Q by the construction of @ and it remains to verify that (=) holds also. But if (=) is
false for some A # 0 and ¢ # e, then, by (8), 4 has arbitrarily small coverings, contradicting
(p). Let F be a fundamental domain for 1 —-@Q. For each € > 0 there exists a covering D
of Q with uD < e. It follows that FUD is a covering and F a packing of S. Thus ¢ < p.
By the theorem about packings and coverings, we have p < ¢ and therefore p = c.

6. Rings with a non o-finite measure. We give first an example of a measure-ring
(S, p) and a group G such that (=) and (p) hold but no fundamental domain exists. Let S
be the ring of all these sets of real numbers which either are countable or have a countable
complement. Let G be the group of translations by integers. The measure p of 4 ¢S is
defined to be the number of elements in 4 (A is infinite if 4 is infinite). Then (=) and (p)
hold. We observe that every packing of S is a countable set and every covering is not countable.
Therefore no fundamental domain exists.

Now let us give an example where (3) holds and p # ¢. Let L be the ring of all Lebesgue-
measurable sets of real numbers and let N C L be the ideal of all sets of measure 0. We denote
by L* the quotient ring L/N. Let T be an infinite non-countable set and let to each 7 ¢ T
correspond a replica L. * of L*. We consider the product S = HIL,*. For A € S we denote

by A, the r-coordinate of 4 (A4, e L,*). Let m denote the Lebesgue measure in L*. We
define 1 on S by
I"'A = Z WlA.,,
el

where the sum of a non-countable collection of positive numbers is defined to be infinite.
ForA,BeSletC = AUBIfC, = A,VB, forevery r. Similarly we define in S the operations
- and n. Let G be the group of translations of elements of L by rational numbers. Thus
for every 4 € S and g € G we can define ¢g(4,) for each . Let us define g4 by (g4), = g(4,).
Consequently (=) is true and (8) follows. Let us observe that if P is a packing of S, then
each P, is a packing of L * and thus P, = 0 by the theorem about packings and coverings.
Hence 0 is the only packing of S and we have p = 0. We easily observe that if C is a covering
of S, then uC = co. Therefore p = c.

7. Proofs of the corollaries. Let N be the ideal of all subsets of X which are of
measure 0 ; these sets form an ideal since the measure u is complete. We consider the measure-
ring (S*, u), where S* is the quotient ring S/N. Let us denote by A* ¢ S* the image of 4 ¢ S
by the natural mapping of S onto S*.

We first prove Corollary 1. Suppose that (mg), (mg) and (py) hold. Then (x) and (p)
hold for S*. Thus, by Theorem 1, there exists an F € S such that F* is a fundamental domain
for S*. It follows that

P =F-(G-{e)F
is a packing of S such that @ = X ~GP ¢ N. Evidently @ is a union of sets Gz where z ¢ Q.
Let D C @ be any set which contains exactly one element from each of these sets Gz. We
have D ¢ N, and thus D is measurable. It follows from (mg) that D is a fundamental domain
for @. Consequently PUD is a fundamental domain for S.
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Conversely, if F is a fundamental domain for S, then evidently F* is a fundamental
domain for $* and the necessity of () and (p,) follows. The necessity of (mg) is obvious.

To prove Corollary 2 it suffices to observe that to every packing of S corresponds a
packing of S* of the same measure and conversely, and that the same is true for coverings.
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