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Abstract
We show that the group (a,b,c,t:a'=b,b' =c,c' =ca™") is profinitely rigid amongst free-by-cyclic groups,
providing the first example of a hyperbolic free-by-cyclic group with this property.

1. Introduction

All groups considered will be finitely generated and residually finite. Two groups are said to be profinitely
isomorphic if they share the same set of finite quotients, and a group G is profinitely rigid (within a class
C) if any group (within C), which is profinitely isomorphic to G is isomorphic to G. One can ask which
groups within which classes are profinitely rigid, though this question can be subtle even when the
class is very restricted: finitely generated abelian groups are profinitely rigid, free groups are profinitely
rigid among themselves but it is an open question due to Remeslennikov [11], Question 5.48] whether
this holds among finitely generated groups, and there are pairs of non-isomorphic virtually free (even
virtually Z!) groups which are profinitely isomorphic [1].

Grothendieck asked if there are groups that are profinitely isomorphic to one of their proper, non-
isomorphic subgroups: Platonov and Tavgen [12] provide examples of this phenomenon for finitely
generated groups, and Bridson and Grunewald [2], Theorem 1.1] for finitely presented groups. For a
discussion of these facts, as well as a broader introduction to profinite rigidity of groups, see for instance
[13].

Herein, we consider profinite rigidity within the class of free-by-cyclic groups. A free-by-cyclic group
is a semidirect product G: = F, X, Z, where F, denotes the free group of finite rank r. If two auto-
morphisms ¢, ¥ of F, represent conjugate or conjugate inverse elements of Out(F',) then they define
isomorphic free-by-cyclic groups [4], Lemma 2.1]. The converse holds when the abelianisation has
rank 1, b;(G) =1 [4], Theorem 2.4], though not in general [4], p1678].

We provide the first known example of a hyperbolic free-by-cyclic group that is profinitely rigid
amongst free-by-cyclic groups.

Theorem 1. The group G={(a,b,c,t:a' =b,b' =c,c =ca™"') is profinitely rigid amongst free-by-
cyclic groups.
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Hughes and Kudlinska [10] have shown that if G has b,(G) = 1 then in many cases G is almost profinitely
rigid: it shares a profinite isomorphism class with at most finitely many non-isomorphic free-by-cyclic
groups. These cases include when the defining automorphism is irreducible (it has no non-trivial pre-
served free factor system) and when the rank of the kernel is 3. Building off work of Bridson, Reid and
Wilton [8] they also show that if the kernel has rank 2 then G is profinitely rigid among free-by-cyclic
groups. Note that in the rank 2 case G is never hyperbolic.

In a different direction Bridson and Piwek have very recently shown that free-by-cyclic groups with
centre [5], Theorem 1.1], or where the cyclic group is instead required to be finite cyclic [5], Theorem
1.2], are profinitely rigid among respectively all free-by-(infinite cyclic) groups and free-by-(finite
cyclic) groups.

Following the analogy between free-by-cyclic groups and three manifolds, we recall two cognate
results on the profinite rigidity of three manifolds. First, the fundamental group of the figure-eight knot
complement is profinitely rigid amongst all fundamental groups of three manifolds [6], Theorem A]J:
the proof goes via the identification of this manifold with a once punctured torus bundle over the cir-
cle, which algebraically corresponds to some F, x Z. Second, and stronger, the fundamental group of
the Weeks manifold (the unique closed orientable hyperbolic three manifold of minimal volume) is
profinitely rigid, with no need to restrict the class concerned [3], Theorem 9.1].

Proof of the theorem. The proof will be an application of Hughes and Kudlinska’s characterisation of
properties detected by the profinite isomorphism class of a free-by-cyclic group (Theorem 2), together
with Hillen’s work (Corollary 3) controlling stretch factors of elements of Out(F),):

Theorem 2 (Hughes—Kudlinska). Suppose G = F, x Z is a free-by-cyclic group that is hyperbolic and
has bi(G) = 1. If H = F; x Z is profinitely isomorphic to G, then

e H is hyperbolic (Theorem C of [10]).

o r=s(Theorem B(1) of [10] and Lemma 3.1 of [6]).

o The set of stretch factors {L:, Az} associated to the defining outer automorphism of G (and its
inverse) agrees with {1};, A;;} (End of Theorem B of [10]).

We briefly recap the concepts introduced within the theorem. Brinkmann showed that G is hyperbolic
if and only if its defining automorphism is atoroidal: it has no periodic conjugacy classes [7], Theorem
1.2]. The stretch factor A of an automorphism is defined to be

sup lim sup v/ [[@"(W),

weF,

where ||w|| is the cyclically reduced word length of the element w; it records “how fast” elements grow
under repeated application of the automorphism, and is an Out(F,)-conjugacy class invariant. Elements
of Out(F,) can and often do have different stretch factors from their inverses, so we must record both.
Note that the set {1}, A;;} is well defined since the profinite isomorphism class of a group determines its
abelianisation (see for instance [13], Remark 3.2]), and in particular H must also have b,(H) = 1 and so
there is a unique (up to inverting and Out(F,)-conjugacy) defining automorphism for H.

Corollary 3. [9], Corollary 8.1] The element  of Out(F5) defined by sending av+> b, b+ ¢, c+> ca™
defines the unique Out(F5)-conjugacy class of infinite order irreducible elements realising the minimal
stretch factor A ~ 1.167.

Proof of Theorem 1. First we check that G satisfies the hypotheses of Theorem 2. A quick computation
with the abelianisation verifies that b,(G) = 1, while hyperbolicity follows from Brinkmann’s theorem
[7], Theorem 1.2] since the single fold representative has no periodic Nielsen paths so there cannot be
a periodic conjugacy class.
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Now, suppose H is another free-by-cyclic group that is profinitely isomorphic to G. From Theorem 2
we know that H is some F; x Z, that it is hyperbolic, and that the defining automorphism and its inverse
will have the same stretch factor(s) as ¢ and its inverse; in particular one of them must be A. Let ¢ be
the choice with smaller stretch factor.

It follows from Brinkmann’s theorem that ¢ is atoroidal. We also observe, as for instance in the proof
of [10], Corollary F], that if an element of Out(F3) is atoroidal then it must be irreducible (the point
is that a preserved free factor would have rank 1 or 2, and in either case there is a periodic conjugacy
class). But then, by Corollary 3, we have that ¢ and v are conjugate as elements of Out(F5), and so they
define isomorphic free-by-cyclic groups. U
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