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ON HOMEOMORPHISMS OF THE UNIT CIRCLE
PRESERVING ORIENTATION

MASARU HARA

1. Introduction

Let I' denote the unit circle in the complex plane C, C(I") the set
of complex valued continuous functions on I" which is a Banach space
by the sup-norm |-||, A(2) the uniform closure of all polynomials in z on
I', H{I') the set of homeomorphisms of I, H*(I") the set of direction-
preserving homeomorphisms and H~(I") the set of direction-reversing
homeomorphisms. For € H(I"), let A(y-) denote the uniform closure of
all polynomials in + on I

Any map + belonging to H~(I") has the following property (A) (Browder
and Wermer [2]):

Q) A@R + A = ).

The purpose of this paper is to investigate direction-preserving
homeomorphisms which have the property (A). We observe the follow-
ing Lemma 1 which is, in essence, contained in Browder and Wermer [2].

LEmMMA 1. Any map <€ H*(I') has the property (A) provided it enjoys
the following property (B):

B A N A@W)=C.

In view of this it is important for our purpose to classify when
V€ H*(I') has the property (B). We will give one sufficient condition
for e H*(I') to the property (B) as follows:

TaEOREM 1. If, for a given map e H*(I'), there exists a Blaschke
product B such that  + B and the linear measure of {ze I'|¥(z) = B(2)}
is positive, then + has the property (B).

CoroLLARY. The set of maps in H*(I") possessing the property (B) is
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dense in the space H*(I').

We mention here an example of maps in H*(I") which do not have
the property (A). Consider the linear transformation

U(z; a) = 12:;; lal<1.

Clearly U belongs to H*(I") and A(U) = A(2) and a fortiori U does not
have the property (A). We will later give another such examples in
Theorem 2, among which a typical one is following: let B(2) = [[%-, U(z; @)
be with all different a,. Then the map (B(2))"" is an example.

In connection with the welding theory of Riemann surfaces, we will
give an example which has the property (B). This example will be con-
structed from the Jordan curve 7 in the following

THEOREM 3. On any Jordan curve y which contains a line segment,
there dose not exist any nonconstant function which is bounded and con-
tinuous on the complex plane, analytic in the interior of and anti-analytic
in the exterior of 7.

Finally we will prove the following theorem in no. 5:

THEOREM 4. If, for a given map € H(I'), there exists a nowhere
constant function fe C(I") with the property f(1) = f, then there exists an
integer n with the property yroro - - - o4 (n compositions) = z, where a func-
tion fe(I") is said to be nowhere constant if f is nonconstant on any open
set of I'.

2. Proof of Theorem 1

For @, eI a + B, there exist two arcs of I" whose end points are «
and 8. Among them we denote by («, f) the arc starting from « and
ending at B8 in the positive direction and [a, f] the closed arc {a} U (o, )
U {g}. Although the proof of Lemma 1 is contained in the proof of
Theorem of Browder and Wermer in [2] we include it here for the sake
of convenience to the readers.

Proof of Lemma 1. Assuming the conclusion is false, by the Hahn-
Banach theorem, there exists a non-zero measure on I' with the follow-
ing property:
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f Z"dy::O, f \V‘dﬂ:() n=0,1,2,---).

lzl=1 lzl=1

By the former condition of the above, we have the Riesz’s representation
dy = h(z)dz he LX) .

If we set

HE) = [ hode,

then He C(I") and

[zHE@d=] | hoddz=] »O[ zdedz=o0.

lzl=1 [1,z.

Therefore He A(z). Clearly H is non-constant and

H)rdz = | H@yy @)diw)

_ 1 _
= - J.w.ﬂ"’ (w)h(w)dw = 0 .

lz]=1

Hence H(y)e A(z). If we set H(v") = G, then G(v) = H and A(y)
N A(2) # C. This is a contradiction.

The proof of Theorem 1. Suppose that A(z) N A(y) = C. There exist
non-constant functions fe A(z) N A(Yv) and ge A(2) with the property
f=g(). Since g(B)e A(z) and B(z) = y(2) for ze E, f(2) = g(B(z)) for
ze E. By the Fatou theorem, f = g(B) and g(¥) = g(B). In view of
() = B(«) and the following Lemma 2, 4+ = B. This is a contradiction.

LemMA 2. Let the function =(t) be monotone increasing in {t = 0} and
satisfy ©(0) = 0. If there exists a nowhere constant function f in {t = 0}
with the property f(z(t)) = f(t) for t = 0, then (t) = t.

Proof. We set F={t=0|z(f) =t}. Since F is closed, {t =0} — F
consists of countably many disjoint open intervals. Among them, we
choose an arbitrary interval (e, b). Assuming z(f) > ¢ on (a, b), there
exists ¢, such that a <, < b, a < z(t,) < b and f(z(¢,)) # f(a). The sequence
{z(), by, 77'(ty), t™' 0 7 (},), - - -} is contained in (e, b) and monotone decreas-
ing. We denote by ¢ the limit point of this sequence. Since f(c) = f(z(t,))
+ f(a), we conclude that ¢ 5= a. On the other hand, z(¢c) = ¢, a contradic-
tion. Similarly it does not hold that z(¢) < ¢.
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Proof of Corollary. Given € H*(I') and ¢ > 0, there exist two dif-
ferent points « and J belonging to I" such that |[V(z) — y(2,)| < ¢/2 for
2, 2,€ (o, f). Take a point ¢ in (@, f). We denote by ¢ a linear transfor-
mation which is a map from I" to I" and maps « to (a), 8 to ¥(8) and
¢ to any point of (Y¥(a), ¥(B)). The map ¢ is a finite Blaschke product.
We denote by +* a map which is equal to ¢ on [¢, 8] and ¥ on [B, «].
The map +* belongs to H*(I") and, by choosing +*(c) suitably, satisfies
the conditions in Theorem 1 and |y* — | <e.

3. Examples which do not satisfy the property (A)

For a finite Blaschke product B(z) = [[i.; U(z; a,) |a:] <1, we set ¥(2)
= B(2)"". The map +«(2) belongs to H*(I") and does not satisfy the prop-
erty (A) because of the following Theorem 2. We denote by LY(I") the set
of integrable functions on I, C'(I") the set of continuously differentiable
functions on I' and H%|z| < 1) the subset of L") with the following
property:

I f@erdz=0, n=012""-.

{z]=1

For a function f(2) defined on I" we denote by —§L the limit
2

lim fO) = 1@

vz Yy — 2z
if it exists. The differential operator »55— has the following properties:
2

1° For z = €%, ‘Sf (z) e~ d

(f €)) .
2° For f CI), f (z)dz — f(2) — f(V) .

3° If f is analytic at ze I, then ¥ (2) = ¥ (z) |
oz dz
4° For fe C'(I") and ¢e H(I") N C'(I"), if we set z = ¢(0),

*{f(¢(C))} = (C)

THEOREM 2. If a map e H*(I") is conformal on some neighborhood
of I' and there exists a non-constant function f(z) on I' with the following
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property:

g_i(z) eH(2|<1) and f(¥)eA@),

then the map  does not have the property (A).
Proof. We set

dp = —{fCueN)dz .
z
We will show that the measure p satisfies
f 2"dp =0, f vidp = 0 n=01,2, -
lz] =1 2] =1
Since f(¥) e A, we have
n n 6
[ zdu=] 22 {fuedz
Jzl=1 lzl=1 0z

- —nLM f((2)z"'dz = 0 .
We set
J
= " —_(0d¢ .
g = [ o0

By the former property of f, the function g(2) belongs A(2).

J z"g(z)dz =0 and 98 _ z"a—f .

lzl=1 oz oz

Since the map  is conformal on I,
S O = L@
and
S8 = £ 2 ot
- wc)ggw(c»%‘g(c) POGACH) -

Therefore
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n _ n 6
J o VEIEE) = f o VOO

5 —
- flct:x }E{g(\l’(C))}dC =0.

4. Welding

Given a Jordan curve y on the complex plane, we denote by 2 (2%,
resp.) the interior of y (the exterior of 7, resp.), by D (D*, resp.) the in-
terior of I’ (the exterior of I'*, resp.) and by y (x*, resp.) a Riemann’s
conformal map from D (D¥*, resp.) to 2 (2%, resp.) which is also a home-
omorphism on the closure of the given region. From now on we assume
that (1) = y*(1). If we set

V(€)= x* o x(e”)

then e H*(I"). We denote by Hi(I") all of € H¥(I") with ¢ = y* "oy
for some Jordan curve 7. By the theorem of Oikawa [5], if we define a
map 4 by 2° on [1,e*¥] and 4/ 2z on [e***%, 1] whose branches are chosen
in such a way that the map + is continuous, then e H*(I") and +
g H;(I"). For e H}('), there exist infinitely many Jordan curves cor-
responding to +, and among them we choose a certain y and y’. Then
there is a homeomorphism @ on C which maps 7 onto 7’ and the interior
of 7 (the exterior of 7, resp.) onto the interior of ¢ (the exterior of ¢/,
resp.) and is analytic off 7. The map @ is not necessarily conformal on
C. For example, if the area of y is positive, the map @ is not conformal
for some 7 ([5]). By the welding theory ([5]), it is sufficient for e H*(I")
to belong to H}(I') that the map + has the following condition: for any
zel', there exist e > 0 and p > 0 (dependant on z) such that for any ¢
and ¢ with (e %, Le') C (ze™*, ze*

1| (e — O | -
o =90 — e 1=

0.

By virtue of this theorem, if 4 belongs to C!(I") and satisfies ii(z) * 0,
4

or if I' is divided into finite intervals and on each interval 4 is equal
to a linear transformation, then + belongs to H;(I').

DerFINITION. If there exist no non-constant functions that are bounded
and continuous on C, analytic in the interior of y and anti-analytic in
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the exterior of 7, then we denote the fact by ye0.

LemMAa 3. Given ¢ H}(I") and choose a Jordan curve y correspondent
to . Then +» has the property (B) if and only if y€0.

Proof. We suppose that f= g(y), where f and geA. Since f
= g(x* oy on I', we have f(y™)) = g(x*™) = g(1/(x*)™) on 7. Therefore,
by observing that the function is equal to f(y~!) in the interior of 7 and
21/(x*)") in the exterior of 7, we see the validity of our lemma.

THeEOREM 3. Any Jordan curve containing a line segment satisfies
re0.

Proof. We suppose that the line segment is on the real axis. There
exists an open disk D such that the center of D is on the real axis and
D does not have common points with 7 except for the line segment. We
denote by £ the interior of 7, 2% the exterior of y and 2§ the domain
obtained from £* by reflecting it with respect to the real axis. We take
a function f which is bounded and continuous on C, analytic in the in-
terior of y and anti-analytic in the exterior of y. The function f(Z) is
analytic in 2f and continuous on 2f. By considering f(2) and f(3) in
£ N D, we see that f(2) and f(2) satisfy f(2) = f(Z) on 62 N D and are
analytic in £ N D. By Fatou’s theorem, f(z) = f(zZ) in 2 N D and f(2) is
analytic on £, N £*. We denote by 2, the domain obtained from £ by
reflection and by £’ the component of 2 U 2,° containing the point at
infinite. The domain 2’ is a Jordan region, whose boundary will be de-
noted by 7. The Jordan curve ¢ is symmetric with respect to real axis.
If two points z, and z, on { satisfy z, = Z, then one of them is on 7.
We may suppose that z, €7. There exists a curve ¢ which connects the
center of D with z, and is contained in £2* except for its end points. If
we denote by ¢, the curve obtained from ¢/ by reflection with respect to
the real axis, ¢, connects the center of D with 2z, and is contained in 2F
except for its end points. Since f(2) = f(2) in 2F, f(z) = f(z,). Hence f
is analytic 2’, bounded and continuous on 2’ and satisfies f(2) = f(Z) on
Y. Since £’ is symmetric, the analytic function f(z) and the anti-analytic
function f(Z) has the same boundary values, the function f(z) is constant.

5. Proof of Theorem 4

Since Yoy e H*(I") for v e H-(I'), we will show the theorem in the
case of € H*(I'). For simplicity we denote by v an n-iterated map oo
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<o,

Lemma 4. Under the assumption of Theorem 4, if \» + 2, then f([x, y(x)])
= f(I).

Proof. We will show that f([x, v(x)]) C f([v(x), x]) for any x and any
e H*(I") with f() = f. Then from v 'e H*(I') and f = f(v+"), it follows
that the reverse inclusion holds if we take y(x) in place of x. We sup-
pose that aef([x, y(x)]) and « & f([¥(x), x]). When three points «, § and
x satisfy [x, «] C [x, p], we say that « is closer to x than 8. We denote
by t, the closest point to x among {te[x, v(x)]|f({) = «}. The map
sends (x, t,) to (Y(x), (t,)) preserving direction. Since f(y(t)) = f(t) = «
and a & f([v(x), x], ¥(t) & [¥(x), x] and V(%) € [x, ¥(0)]. If & = (%), then
from Lemma 2 it follows that v = z. We may assume that (%) € (¢, ¥(x)).
It follows that ¢, € (Y(x), ¥(&,)) and ¥'(¢,) € (x, t,). Since f(v~'(t)) = «a, this
contradicts that ¢, is the closest to x.

Proof of Theorem 4. If there exist a point x€/' and an integer n
with ¥"(x) = x, then " = z because of y"e H*(I') and Lemma 2. We
now discuss the rest. Given x,eI’, we may assume that f(x,) = 0. From
fece(l), it follows that there exists a positive number § such that |f(x)
— f| < 1/2|If|| for |x — y] < 5. The sequence {y"(x,)} has the following
property: (1) if m = n, ¥"(x,) # ¥"(x0), (2) fF(Y¥"(x)) = f(x)) = 0. If we take
m and n with |[y™(x) — ¥"(x,)] < 8, then any ye (¥™(x,), ¥"(x,)) satisfies
fMI<1/2|fll. But from *"e H*(I') and Lemma 4 it follows that
F(vr™(x), ¥v™(x)]) = f(I"), this is a contradiction.
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