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Abstract

In this paper, we investigate minimal (weak) approximate Hessians, and completely answer
the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a
generalised Taylor's expansion in terms of a minimal weak approximate Hessian. Then we
characterise the convexity of a continuously Gateaux differentiable function. Finally some
necessary and sufficient optimality conditions are presented.

1. Introduction

Recently, considerable attention has turned to second-order nonsmooth analysis and
its applications to optimisation by virtue of various kinds of generalised directional
derivatives and generalised Hessians (see for example [1-3,5-7,9,10,12,13,15,18-
20]). In particular, much effort has been concentrated on second-order nonsmooth
calculus for C11 functions and optimisation problems involving C11 functions (see
for example [11,13,17,22,23]).

In [14] V. Jeyakumar and X. Q. Yang extended optimality condition for C11 func-
tions to continuously Gateaux differentiable functions by using approximate gener-
alised Hessians. However, a continuously Gateaux differentiable function or a C11

function may admit several approximate generalised Hessians at a point. On the other
hand, from the point of view of optimisation, it is important to find approximate gen-
eralised Hessians as "small" as possible. So the issue of finding minimal approximate
Hessians was raised as an open problem in [14], and the following open questions
were given there.

(1) When can the generalised Hessian, 3*°/ (x)(u) (see the definition in Section 3),
be guaranteed as a minimal approximate Hessian for a C11 function / at *?
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(2) Can a minimal approximate Hessian be found for a C11 function or a continu-
ously Gateaux differentiable function?
(3) When is the minimal approximate Hessian unique?

The purpose of this work is to investigate minimal approximate Hessians and min-
imal weak approximate Hessians for continuously Gateaux differentiable functions,
and to answer the above questions.

The outline of this paper is as follows. In Section 2, we give the characterisa-
tion of minimal (weak) approximate Hessians for continuously Gateaux differentiable
functions, and a necessary and sufficient condition for the uniqueness of a minimal
(weak) approximate Hessian for continuously Gateaux differentiable functions. Con-
sequently, Questions 2 and 3 above are answered. Then, in Section 3, we prove a
necessary and sufficient condition for a generalised Hessian 3°°/ (x)(u) to be a mini-
mal approximate Hessian fora C11 function/ at x. This answers Question 1 above.
As applications, in Section 4, we give a modified version of the generalised Taylor's
expansion in [14]. Then we characterise the convexity of a continuously Gateaux
differentiable function in terms of a minimal approximate Hessian and a generalised
derivative in the sense of Michel-Penot. Moreover, we present some necessary and
sufficient optimality conditions for continuously Gateaux differentiable functions,
which modify the results in f 14].

2. Minimal approximate Hessians

Let X be a Banach space and X* its dual space, and (•, •) denote the canonical
pair between X and X*. Let / : X —*• R be continuously Gateaux differentiable
and x, u e X. The second-order upper Dini-directional derivatives of / at x in the
directions (u, U) e X x X and (M, —M) € X x X (see [14]) are defined, respectively,
by

fDD, , .. (Vf(x + su),u)-{Vf(x),u)
/++(•*. ") = hmsup

no

f+"(x,u) = limsup

s

(V/ (x + s(-u)), u) - (V/ (x), u)

where V/(*) is the Gateaux derivative of/ at x. Similarly, second-order lower
Dini-directional derivatives of/ at x in the directions («, u) and (w, — u) are defined
respectively by

/f+
D0c, n) = liminf

f DD(x, u) = liminf
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Note that the first subscript +(—) represents the upper (lower) Dini-directional
derivative, and the second subscript +(—) denotes that the second direction is the
same as (the negative of) the first direction.

DEFINITION 2.1. A continuously Gateaux differentiable function/ : X —*• R is said
to admit an approximate generalised Hessian daaf (x)(u) atx for u if daaf (x)(u) ^ 0
is a convex weak* compact set and satisfies

min{(;c*, u) : x* e daaf (x)(u)} < f™(x, -u) < max{(**, u) : x* € 3°"/ (*)(«)}

and

min{(;c*, u) : x* e daaf(x)(u)) < f™(x, u) < max{(x*, u) : x* e daaf(x)(u)).

The function / is said to admit an approximate generalised Hessian at x if for each
u e X, f admits an approximate generalised Hessian at x for u. An approximate
generalised Hessian G for fatx for u is called a minimal approximate Hessian for
f at x for u if for each daaf(x)(u) C G, daaf(x)(u) = G. Denote such G by

DEFINITION 2.2. A continuously Gateaux differentiable function / : X -*• R is
said to admit a weak approximate generalised Hessian dwwf(x)(u) at x for u if
dwwf (x)(u) ^ 0 is a convex weak* compact set and satisfies

f™(x, -u),f™(x, u) > min{<jt*, u) : x* e dwwf(x)(u)}

and

/_°+
D0c, -u),f™(x, u) < max«;t*, u) : x' e dwwf (x)(«)}.

The function / is said to admit a weak approximate generalised Hessian at x if
for each u e X, f admits a weak approximate generalised Hessian at x for u. A
weak approximate generalised Hessian Gw for / at x for u is called a minimal
weak approximate Hessian for f at x for u if for each dwwf (x)(u) C Gw, we have
dwwf (x){u) = Gw. Denote such Gw by d%wf (*)(«)•

Since f™(x, -u) = -f°?(x, u),f™(x, -u) = -f™(x, u), the definition of
a (weak) approximate generalised Hessian presented here is the same as that in [14].
Clearly, each approximate generalised Hessian of/ at x is also a weak approximate
generalised Hessian. Furthermore, the following result can be derived immediately
from Definitions 2.1 and 2.2.

PROPOSITION 2.1. Letf : X -+ R be continuously Gateaux differentiable. Then

(i) / admits an approximate generalised Hessian at x for u if and only if both
f?°(x, u) andf™(x, -u) are limited.
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(ii) / admits a weak approximate generalised Hessian at x for u if and only if
f™(x, u) andf™both f?f(x, u) andf™(x, -u) are not +00, and both f°°{x, u) andf™(x, -u)

are not —00.
(iii) Each single-point (weak) approximate generalised Hessian is a minimal

(weak) approximate Hessian.
(iv) f?f(x,0) = /_D

+
D(JC,O) = 0, and {x*} can be chosen as d™f(x)(O) and

Kwf Oc)(0)for eachx* e X*.

We are now in a position to characterise the minimal (weak) approximate Hessian.

THEOREM 2.1. Suppose that a continuously Gateaux differentiable function f :
X —> R admits an approximate generalised Hessian at x for u.

(i) lff++(x, u) = f?°(x, —u), then G(x, u) C X* is a minimal approximate
Hessian for f at x for u if and only if G(x, u) = {x*} for some x* € X* s.t.
{x*,u)=f™(x,u).

(ii) Iff++(x, u) j£ f?+(x, -u), then G(x, u) C X* is a minimal approximate
Hessian for f at x for u if and only if G(x, u) — co[x*, x2*} (the convex hull of
{x\, x$}) for some x\,xl 6 X' s.t. (**, u)=f°°(x, u) and (**, u) =f™(x, -u).

PROOF, (i) lff™(x, u) = f?+(x, -u), by Definition 2.1, for each x* € X* s.t.
{x*, u) = f++(x, u), {**} is an approximate generalised Hessian for / at x for u.
Thus, by Proposition 2.1 (iii) G(x, u) = [x*] is a minimal approximate Hessian for
/ at x for u.

On the other hand, if G(x, u) is a minimal approximate Hessian for/ at x for u,
we know from Definition 2.1 that there exists x* e G(x, u) s.t. (x*, u) = / £ ? ( * , M),
and [x*) is an approximate generalised Hessian for/ at x for u. So G(x, u) = {x*}.

(ii)If/+
D+D(x, u) ^f-+(x, - « ) , then for each x\,x*2 e X*s.t. <jc*. u) =f++(x, u)

and (xj, u) = f°+(x, —u), it follows from Definition 2.1 that co{x\,xl) is an ap-
proximate generalised Hessian for/ at x for u. Let daaf (x)(u) C co{x*,xl) be an
approximate generalised Hessian fo r / at JC for u. Again by Definition 2.1, there
exists x* 6 daaf(x)(u) s.t. (x*, u) = f™{x, u), then xf = x* € daaf (x)(u) since
there is only one point in co{x*, x\) satisfying (x*, u) = f£+(x, u), that is, x^. Sim-
ilarly we can derive x\ e daaf (x)(u). Then daaf (x)(u) = co{x\,x*2), and hence
G(x, u) = co{x*, x2] is a minimal approximate Hessian for/ atx for u.

On the other hand, if G(x, u) is a minimal approximate Hessian for / at x for
M, by Definition 2.1, there exist x*,x2 6 G(x, u) s.t. (JC*, M) = f++(x,u) and
(jcj, u) — f°°(x, -u). So co{x*, xl) C G(x, u). Noticing that CO{JC,*, JCJ) is an
approximate generalised Hessian for/ at JC for u, we have G(JC, U) = co{x*, x}}. The
proof is complete.
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THEOREM 2.2. Suppose that a continuously Gateaux differentiable function f :
X -*• R admits a weak approximate generalised Hessian at x for u. Let A = {x* €
X* : f™(x,u) < (x*,u) < /+

D
+

D(x,u)} and B = [x* e X* : f™(x,-u) <
(**, "></+T (*.-")}•

(i) If A n B ^ 0 , F(x, u) C X* is a minimal weak approximate Hessian off at
x for u ifand only if F(x, u) = [x*] for some x* e AC\B.

(ii) If A H B = 0, we have two cases:

(a) V f++(x, u) < f°+(x, -u), then Fix, u) is a minimal weak approximate
Hessian for f at x for u if and only if F(x, u) = co{x*,x2*} for some x*,x2 6 X* s.t.
(x*, u) =f™(x, u) and (x*2, u) =f™{x, -u).
(b) If f++(x, —u)< fE+(x, u), then Fix, u) is a minimal weak approximate

Hessian for f at x for u if and only if Fix, u) = co{x*, x2}for some x*, x2 e X* s.t.
(x*, u) =f™ix, -u) and (x*, u) =f™ix, u).

PROOF, (i) If A D B ^ 0, it follows from Definition 2.2 that {x*} is a weak
approximate generalised Hessian for / at x for u for each x* e A D B. Thus
Fix, u) = {x*} is a minimal weak approximate Hessian for/ at x for u since {x*} is
single-point.

On the other hand, if Fix, u) is a minimal weak approximate Hessian for / atx
for u, it follows from Definition 2.2 that there exists x* € Fix, u) s.t. x* e A D B. So
Fix, u) = {x*} since {x*} is a weak approximate generalised Hessian for/ atx for u.

(ii) (a), lffffix, u) < fE+ix, -u), then for each x^,x* e X* s.t. {x*, u) =
f++ix, u) and (x%, u) = f®+ix, —u), we know that cofx*,;^} is a weak approximate
generalised Hessian for/ at* for u by Definition 2.2. Let dwwf (x)(u) C co{x*,x*2}
be any weak approximate generalised Hessian for/ atx for u. Again by Definition 2.2,
there exists x* e 9"""/(*)(") s.t. (x*, u) = f°°ix, u). But there is only one point
in co{x*, xl) satisfying (x*, u) = f+°ix, u), that is, JC,*, so x\ = x* € d
Similarly we can derive x2* e dwwf ( X ) ( M ) , which implies dwwf (;t)(u) = co[x*, x*2).
Hence Fix, u) = co[x*, x£] is a minimal weak approximate Hessian f o r / a t x for u.

On the other hand, if Fix, u) is a minimal weak approximate Hessian f o r / a t x for
u, there exist x*, JC2* e C(x , u) s.t. (x*, u) = f++ix, u) and (x*, u) = f°°ix, -u),
but co [xi,x2*] is a weak approximate generalised Hessian f o r / a tx forw.so Fix, u) =
co{xt

x,x^).
(b) The proof in this case is similar to (a) and so is omitted. The proof is complete.

R E M A R K 2.1. (i) By Theorems 2.1 and 2.2, we can see easily that there exists
a minimal (weak) approximate Hessian (3^"" / (*)(«)) d™f (x)(u) in each (weak) ap-
proximate generalised Hessian ( 3 " " " / (x)(u)) 3 0 0 / (X) (M) for a continuously Gateaux
differentiable function / at x for u. Moreover, each id™wf ( X ) ( M ) ) 3£"/ (x) (u) is a
compact set of a one-dimensional subspace of X*.
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(ii) By Proposition 2.1 (i), (ii) and Theorems 2.1 and 2.2, a continuously Gateaux
differentiable function admits a minimal (weak) approximate Hessian if and only if
it admits a (weak) approximate generalised Hessian. In particular, a C11 function,
that is, a Gateaux differentiable function with locally Lipschitz derivative, admits a
minimal (weak) approximate Hessian at each x e X for each u e X, since f++(x, u),
f++(x, -u),f°°(x, u) and/_°+

D(;t, -u) are all limited for each x, ueX.

Now Question 2 presented in Section 1 is completely answered. Let us answer
Question 3 by the following result, which shows us that the uniqueness of a minimal
approximate Hessian for a continuously Gateaux differentiable function is not true in
general, say if the underlying space is not one-dimensional.

THEOREM 2.3. Letf : X —> R be a continuously Gateaux differentiable function,
then the following statements are true.

(i) Iff admits an approximate generalised Hessian at x for u, then the minimal
approximate Hessian for f at x for u is unique if and only if u ^ 0 and X is one
dimensional.

(ii) If f admits a weak approximate generalised Hessian at x for u, then the
minimal weak approximate Hessian for f at x for u is unique if and only ifu^O.X
is one dimensional, and there is at most one point in A OB.

PROOF, (i) If u = 0, Proposition 2.1 (iv) shows that the minimal approximate
Hessians for / at x for u are not unique. If u ^ 0 and X is not one dimensional,
both {x* € X* : (**, u) = f™(x, u)} and [x* € X* : (*•, u) = f™(x, -u)} are not
single-point sets. So, by Theorems 2.1 and 2.2, the minimal approximate Hessians
for/ at x for u are not unique.

On the other hand, if u ^ 0 and X is one dimensional, {x* € X* : (x*, u) =
f?f(x, «)}, {** € X* : (x\ u) = /+

D
+

D(JC, -u)), {** 6 X* : (x*, u) = f™(x, «)}
and {x* 6 X* : (x*, u) = f?+(x, —u)} are all single-point sets, which together with
Theorems 2.1 and 2.2 imply that the minimal approximate Hessian for/ at x for u is
unique.

(ii) This statement follows from Theorem 2.2 (i) and a slight modification of the
proof of (i). The proof is complete.

3. Minimal approximate Hessians for C1'1 functions

The generalised upper and lower second-order directional derivative and gener-
alised Hessian for a C u function / : X -> R at x in the sense of Michel-Penot are
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given as follows:

, 0 0 , , ,. (V/ (X+SZ + SU), V) - (V/ (X + SZ), V)

f+ (x;u, v) = suphmsup ,
zeX i|0 S

tv>. , . , . . . e{Vf(x+sz + su),v){Vf(x+sz), v)
f_(x;u, v) = inf hminf ,

zeX j | 0 s

d'*>f(x)(u) = {x*eX*:f?>(x;u,v)<(x*,v)<f™(x;u,v) for each v e X}.

Moreover, the following formulas hold for all x, u e X.

f™(x, u)J™(x, u)e{a: / _ ~ ( * ; u,u)<a< f?(x;u, «)}, (3.1)

f"(x;u, v) = min{(;t*, v) : x* e a~/(*)(«)} for each veX, (3.2)

f"(x;u, v) = max{(^*, v) : x* e 3°7(x)(«)} for each veX. (3.3)

The definitions and formulas for the C11 functions mentioned above can be found
or derived from those in [14,23].

Note that (3.1) implies that 3O<>/ (x)(u) can be chosen as an approximate generalised
Hessian for / at x for u, so there always exists a minimal approximate Hessian in
9°°/(*)(«) by Remark 2.1 (i). Then we may ask naturally: when can 3°°/(*)(«)
itself be a minimal approximate Hessian? This is Question 1 from Section 1 and the
following theorem gives the answer.

THEOREM 3.1. Letf : X -* Rbea C11 function andx, u e X. Then 3°°/ (x)(u)
is a minimal approximate Hessian for f at x for u if and only if 3°°/ (x)(u) is a
compact set of a one-dimensional subspace ofX*, and

f?(x; u, u) = max[f^(x, u),f™(x, -u)), (3.4)

f?{x; u, u) = rrun{f™(x, u),f™(x, -«)}. (3.5)

PROOF. If 3°*/ (x)(u) is a minimal approximate Hessian for/ at x for u, we have
two cases.

Case a. If f++(x, u) = f™(x, -u), Theorem 2.1 shows that a minimal ap-
proximate Hessian fo r / at x for u is a single-point set {x*}, where x* € X* s.t.
(x*, u) = f++(x, u). So 3°*/ (x)(u) is a compact set of a one dimensional subspace
of X*. Moreover, by (3.1), we have f~(x; u, u) = f™(x, u) = f™(x, -u) =
/ ~ ( x ; u, u). Thus (3.4) and (3.5) hold.

Case b. lif°°(x, u) ^ f°+(x, -u), Theorem 2.1 shows that a minimal approx-
imate Hessian for / at x for u is a convex hull co{x*tx^}, where x*,x\ e X* s.t.
(*,*, u) = f™(x, u) and (JC*, u) = f°f(x, -u). Thus 3°°/ (x)(u) is a compact set of
a one dimensional subspace of X*. Furthermore, (3.1)—(3.3) implies (3.4) and (3.5).
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On the other hand, if 3°*/ (x)(u) is a compact set of a one-dimensional subspace
of X* and (3.4) and (3.5) hold, we also have two cases.

Case 1. If f™(x,u) = f??(x,-u), 3 ~ / (x)(u) is single-point, and hence
3°°/ (•*)(") is a minimal approximate Hessian of/ at x for u.

Case 2. If f++(x, u) ^ f E+(x, —u), there exist a unique x* e X* and a unique
x* 6 X* s.t. (**, M) = / ~ ( J C ; M, w) and (x*. M) = f™(x;u, u). Then it follows from
(3.2M3-5) that 3 ~ / (*)(«) = co{x*, x*}, which implies that 3 ~ / (A:)(M) is a minimal
approximate Hessian for/ at x for w by Theorem 2.1. This completes the proof.

Since in a reflexive Banach space X, the mapping x -*• 3°*/ (*)(«) is single-
valued for each M € X if and only if / is twice weakly Gateaux differentiable at x
(see [14,23]), we have the following corollary by Theorem 3.1 immediately.

COROLLARY 3.1. Letf : X -*• R be twice weakly Gateaux differentiable atx € X
,with Banach space X reflexive, then 3°*/ (x)(u) is a minimal approximate Hessian
for f at x for u.

4. Applications

4.1. Generalised Taylor's expansions and convexity We now apply a minimal
approximate Hessian to give the following modified version of the generalised Taylor's
expansions given in [14] for continuously Gateaux differentiable functions.

THEOREM 4.1. Suppose a continuously Gateaux differentiable function f : X —• R
admits a weak approximate generalised Hessian at each z € X. Then for each
x, y 6 X, there exists % e (x, y) (the open line segment from x to y) s.t.

PROOF. The proof follows immediately from [14, Theorem 4.1] and Remark 2.1 (i).

By applying this generalised Taylor's expansion, we characterise the convexity of
a continuously Gateaux differentiable function in terms of a minimal approximate
Hessian and generalised derivative.

THEOREM 4.2. Suppose a continuously Gateaux differentiable function f :X^R
admits a weak approximate generalised Hessian at each x € X. Then the following
statements are equivalent:

(i) / is convex.
(ii) f?(x;u,u)>Oforeachx,ueX.
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(iii) min{(;t*, u) : x* e d%w(x)(u)} > 0 for each x, u € X.

PROOF, (i) =>• (ii). Since / is convex, (V/ (y) - V / (*), y - x) > 0 for each
x,y e X, and then

fOOt , . ,.. . r(Vf(.x+sz + su),u)-{Vf(x+sz),u) ^ A/_ (x;u, u) = lnrliminf > 0,

for each A:, U e X.
(ii) =$• (iii). Note that (ii) and (3.1) imply f™(x, u) > 0 for each x, u € X. Then

f++(.x, u) > f™(x, u) > 0 for each x, ueX. Hence (iii) holds by Theorem 2.2.
(iii) =» (i). By Theorem 4.1, for each x, u e X, there exists £ 6 (*,>) and

- *) s.t.

which together with (iii) implies

f(y)>f (*) + (V/ (JC), y - *) for each x.yeX.

Hence / is convex.

REMARK 4.1. By [21, Theorem 3.1], we know that, although we have (3.1), the
condition (ii) in Theorem 4.2 is equivalent to the condition below:

(iv) f°°(x, u) > 0 for each x, ueX,

provided that the continuously Gateaux differentiable function / : X —• R admits
a weak approximate generalised Hessian at each x e X. In particular, for a C u

function / , the condition (iii) in Theorem 4.2 is equivalent to

(v) min{(;c*, u) : x* e d°°f (x)(u)) > 0 for each x,u eX.

This can also be derived from [14, Corollary 4.1].

4.2. Second-order optimality conditions Here we present some second-order
necessary and sufficient optimality conditions, by using minimal approximate Hes-
sians, so that the range of the feasible points can be chosen as "small" as possible.
This is important for optimisation problems. Consider the following optimisation
problem:

(P) Minimise/ (*) subject t o x e X ,

where / : X —> R is a continuously Gateaux differentiable function.
It follows from Remark 2.1 (i) that Theorems 5.1-5.3 in [14] can be modified

immediately as the following Theorems 4.3 and 4.4, where we just need to consider
the "smaller" feasible point set 9°°/(*)(«) or d™wf(x)(u) rather than the whole
d°°f(x)(u)ordwu>f(x)(u).
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THEOREM 4.3. Suppose f admits an approximate generalised Hessian at x e X

for each u € X.

(i) If x is a local minimum of the problem (P), then V / (x) = 0 and for each

u € X there exists x* e d™f (x)(u) such that (JC*, u) > 0.

(ii) If x is a local maximum of the problem (P), then V / (x) = 0 and for each

u e X there exists x* e 3™/ (*)(u) suc/i //uir (x*, u) < 0.

THEOREM 4.4. Letx e X. Assume that f admits a weak approximate generalised
Hessian at each x near x for each u 6 X. /f V/ (i) = 0 and for 0 < a < 1, eac/i
u e X with M ^ O , the following holds:

(x*, u) > 0 /ora// x* 6 3™"/ (i + a«)(M) (4.1)

and so x is a local minimum of the problem (P). Furthermore, if the inequality (4.1) is

strict, x is a strict local minimum of the problem (P).
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