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EFFECTS OF GEOMETRY
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Abstract

In a recent paper Weber et al. [9] examined the propagation of combustion waves in a
semi-infinite gaseous or solid medium. Whereas their main concern was the behaviour of
waves once they had been initiated, we concentrate here on the initiation of such waves in
a solid medium and have not examined in detail the steadiness or otherwise of the waves
subsequent to their formation. The investigation includes calculations for finite systems.
The results for a slab, cylinder and sphere are compared.
Critical conditions for initiation of ignition by a power source are established. For a slab
the energy input is spread uniformly over one boundary surface. In the case of cylindrical
or spherical symmetry it originates from a cylindrical core or from a small, central sphere,
respectively. The size of source and reactant body is important in the last two cases. With
the exception of the initial temperature distribution, the equations investigated are similar
in form to those of Weber et al. [5,9] and, as a prelude to the present study, with very simple
adaptation, it has been possible to reproduce the results of the earlier work. We then go on
to report the result of calculations for the initiation of ignition under different geometries
with various initial and boundary conditions.

1. Introduction

There is an inherent industrial problem associated with the processing of powders,
whereby combustion may be initiated at hot spots created by friction in equipment such
as screw feeders, blenders or valves commonly used in powder handling industries [7].
The issue is not solely that of destruction and loss of a valuable product, but also
that ignition of the material may become the source of an explosion in potentially
flammable gases either emitted from the material or surrounding it from another
source.
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Though an extensive literature has accumulated over recent years [4,6,8,10,11],
there has as yet been no rigorous identification of the conditions in the solid under
which ignition may be brought about. The fundamental problem associated with all
practical cases is that of a heat flux localised in a very small volume within the mass
of reactive material. Energy could be supplied over a comparatively long period or
there could be transient dissipation. The source itself may attain a high local surface
temperature, certainly far in excess of that which is characterised as the spontaneous
ignition temperature of the substance. There would then be local destruction around
the hot spot. However a crucial question to answer concerns the circumstances in
which a self-propagating combustion wave may break away from the reactive region
local to the source. This does not constitute the classical form of criticality, but such
a distinction of non-propagation/propagation would arise if the energy flux from the
hot spot is appreciably lower than that of the chemical source term for the initiated
reaction, as is normally expected to be the case. That is, the source itself is not
influential at more remote locations within the reactant. This behaviour has been
demonstrated in recent work by Mercer and Weber [5].

In the present paper we address numerically the conditions for the initiation of a
combustion wave from a source at constant heat flux. The criteria associated with
the three geometries, the slab, the cylinder and the sphere, have been investigated.
Both the cylinder and the sphere require a defined dimension to represent the size of
the source (or the source relative to the overall size). There is no related physical
dimension for a heat flux supplied to one surface of a slab, but the results for the three
shapes may be unified if the source is defined as a flux rather than a power dissipation.
The sphere represents the closest approach to most practical applications.

The classical assumption of "zero order reaction" or "no reactant consumption"
represents another simplifying extreme, but the most interesting behaviour emerges
in conditions where reactant depletion is taken into account. Reactant consumption
also poses an interesting possibility for the initial conditions that may be adopted
in numerical calculations. The natural starting point would be that of material at
the temperature set by the outer boundary, with power dissipation beginning at zero
time. However, an alternative and illuminating "numerical experiment" is to regard
the initial, distributed temperature of the system to be that which would have been
established by the continuous energy flux into inert material of the same thermal
properties as the reactant. The numerical solution to this rather assumed initial
condition in the reactive substance is practically interesting because it may have some
bearing on approximate methods which could be used to seek analytical forms to
ignition criteria [12]. We explore also the practical question concerning whether or
not a combustion wave can be aborted if the power supply is stopped in sufficient time.

The important distinctions of the present set of equations representing the devel-
opment of a combustion wave compared to the circumstances which may prevail in
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practice, are that very often gaseous products may be formed and that oxygen may be
required to sustain the reaction. Not only are more complex mathematical descrip-
tions then required but also the predictions from the simple model can be anomalous
in practice. For example, the intervention of oxygen is likely to impose a diffusion
control on the reaction rate once a combustion wave develops, which will then yield
quite different rates of propagation from those predicted in its absence. The equations
for mass and energy conservation are developed in dimensionless form, and the merits
of non-dimensionalisation are discussed. However, the numerical values for some
of the parameters selected in the calculations relate to laboratory scale experiments,
specifically a structure of minimum dimension of 5 cm.

2. The model and non-dimensionalisation

The system of reaction-diffusion equations may ne expressed in the form

dt |_ "r r dr

— = -XAt~E'RT, (2)
ot

where T = T(r, t) represents the temperature and X = X (r, t) the solid fuel density,
r and t being the spatial and time co-ordinates. We assume for simplicity that the
physical properties, p, cp and k, of the reactant are independent of temperature and of
position, and that the reaction product is also solid with the same physical properties
as the reactant. The geometry parameter j takes the value 0, 1 and 2 for the infinite
slab, the infinite cylindrical annulus and spherical shell, respectively. The reaction is
assumed to be first order exothermic in a single reactant. This is often used in thermal
ignition theory, and is the assumption in the work by Weber et al. [9]. For the purposes
of reaction in solids, the rate of heat release is considered to be proportional to the
reactant density.

The boundary conditions are

dT - dT
-X— = P at r = r0 and - A— = h^T - Ta) at r = rudr dr

where P is the incoming heat flux (W m~2), Ta is the ambient temperature and ha the
heat transfer coefficient at the exposed surface. We shall assume ha = oo (infinite Biot
number at the edge), that is, T\r=r, = Ta. In the case of j = 0, the one dimensional
infinite slab, r0 = 0 and rt is the thickness of the slab. In the two other cases r0 and r,
are the radii of the the inner and outer surface of the reactant, respectively. The initial
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temperature throughout the system is assumed to be uniform and equal to Ta, except
where otherwise specified. Thus formally we take

X(r,O) = p and T(r, 0) = 1\ni(r),

where 7Inj(r) = 7*a in most cases.
Using the dimensionless variables u = RT/E and x = X/p, and the co-ordinates

£ = r/.rn and r = t/tn, where rn and tn are some characteristic scales to be defined,
we transform (1) and (2) to

— = — xtnAe '". (4)

There are numerous choices for the characteristic length and time rn and /„. If both
the diffusion coefficient and the product (tnA) are required to be unity then we obtain
rn = y/k/pcpA and tn = I/A. In this case (3) and (4) then become

— = —xe~l/u, (6)

where q = QR/cpE is the dimensionless adiabatic temperature excess. A slightly
different dimensionless form is used by Weber et al. [9], such that the parameter ft in
their equations is equal to q~x in the present paper.

The dimensionless boundary conditions are

_ a « = a a md a = ttatfc = t ( 7 )

where

fc
 r0 PRfn n

i = — and
rn XE r,_

The merit of this choice of non-dimensionalisation is that, as far as the reaction-
diffusion equations are concerned, different systems are distinguished by a single
parameter q. To describe the system completely, 5 independent parameters q, £0>
fi, a, and ua, are required. However, the additional parameters occur only in the
boundary conditions.

2.1. Calculations and parameter choices The system of parabolic partial differen-
tial equations (5)-(6) was solved numerically using the NAG library routine D03 PBF.

https://doi.org/10.1017/S1446181100011482 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011482


[5] Combustion waves in solids 153

It was found necessary to have about 1000 nodes in the spatial coordinate in order to
get accurate results for a 5 cm slab. Since D03 PBF allows fixed nodes, we chose to
distribute spatial mesh-points uniformly. The step size of time used in the integration
is controlled by a tolerance parameter for the estimate of local error. Usually a tol-
erance value of 10~8 was small enough to ensure accurate results but, occasionally, a
value as small as 10~10 was required. As the calculation could be very time consuming
with small meshes in either the spatial or time coordinate, we used the largest possible
step size without incurring significant numerical errors. To ensure that there were
no spurious results, a convergence test was always carried out for a new set of input
parameters.

The kinetic parameters we used in this work were as follows: A = 1.0 x 105 s~\
Q = 5.7 x 105 Jkg~\ E = 8.4 x 104 Jmol"1. The physical parameters of the reactant
and product were p = 660 kgrrr3, cp = 750 Jkg-'K"1 and A = 0.10 W m ' T 1 .
These gave rn = 1.43 x 10"6 m, tn = 1.0 x 10~5 s and q = 0.075. This q value
gives fi = 13.3 and corresponds to the unstable regime described by Weber et al. [9]
in the semi-infinite slab case. The size of the system was specified by r0 = 5 mm
and /•] = 5 cm, or £0 = 3.5 x 103 and £, = 3.5 x 104. The ambient temperature was
Ta = 300 K, giving wa = 0.0298. The initial uniform temperature was the same as the
ambient temperature, that is, w(£, 0) = ua.

3. Numerical results

3.1. Criticality in a spherical shell Although these results are presented in dimen-
sionless terms, the reaction system comprises a spherical shell of 5 cm radius, within
which a power source of 5 mm in radius is buried at the centre. The source and the
reactant are regarded as being in perfect thermal contact. Two patterns of behaviour
are predicted, which are distinguished as subcritical or supercritical reactions, near
a critical heat flux. The distinction in response is characterised by examination of
the position of a combustion (ignition) front. The concept of a combustion front is
clear in an infinite system because it can be identified as a stationary wave. In a finite
system the concept of a combustion front has to be approximate, and the definition
is somewhat arbitrary. For present purposes we define it to be where the fuel density
is half of the initial value, denoted by fh == £h(r). The temperature at £h is termed
Mh = Mh(r). How these relate to the overall development is shown in examples of
subcritical (a = 1.43845 x 10~5) and supercritical (a = 1.43846 x 10~5) behaviour
(Figures 1 and 2, respectively). In this case a dimensionless critical flux is identified
to be a* = 1.43846 x 10"5. A critical flux is predicted also for the cylindrical an-
nulus and the slab, and similar patterns are found to develop in either subcritical or
supercritical cases.
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FIGURE 1. Subcritical behaviour of a spherical shell: j = 2, q = 0.075, f0 = 3.5 x 10\ £i =
3.5 x 104, na = 0.03, a = 1.43845 x 10~5, u-m(l-) = ua. (a) Dimensionless temperature profiles at r =
(0,1.2, 2.4, 3.6, 4.8, 5.16)x 107. Dashed lines are results ofthe inert case at T = (1.2, 2.4, 3.6,4.8) x 107;
(b) Dimensionless reactant density profiles at x = (0, 1.2, 2.4, 3.6, 4.8, 5.16) x 107.

Switching on the power from cold, that is, uini(%) = ua, causes the surface to heat
quickly and energy to be dissipated into the sphere (Figures 1 and 2). For both subcrit-
ical and supercritical conditions there is an accompanying reactant consumption, such
that the local temperature becomes enhanced quite considerably above that which
would be reached in the same time interval under non-reactive conditions (dashed
lines in Figure 1).

The distinction between the marginally subcritical and supercritical behaviour is
clearly seen in Figures 1 and 2. Similar extents of reaction (and heat release) occur
during the early development of the reaction up to r = 4.8 x 107. However, in the
subcritical case the spatial evolution of reaction is driven essentially by local heating
as a result of thermal transport from the source through the reacted zone. The decay
of the temperature profile and the arresting of the reactant consumption development
after r = 5.2 x 107 can be seen in Figure 1 (also see Figure 3 (a)).
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FIGURE 2. Supercritical behaviour of a spherical shell. Parameters are the same as in Figure 1 but
a = 1.43846 x 10"5. (a) Dimensionless temperature profiles at r = (0, 1.2, 2.4, 3.6, 4.8, 5.16, 5.28,
5.4, 5.52, 5.64, 5.76, 5.88, 6.0) x 107; (b) Dimensionless reactant density profiles at the above times.

By contrast, under supercritical conditions an accelerating, self-sustained combus-
tion front begins to develop after r = 4.8 x 107. In fully dimensional terms it begins
at a radius about 0.75 cm greater than that of the surface of the source. This front
propagates almost, but not quite, to the edge of the system, where it is extinguished
by thermal losses at the surface boundary layer. The rate of heat release and the rate
of propagation throughout most of the travel are sufficiently fast that an adiabatic
temperature rise occurs in the combustion front. The maximum in the dimensionless
temperature at £ = 1.3 x 104 arises from the superposition of A«ad s» q on the
local temperature already imposed by the combined effects of chemical heat release
and thermal conduction. That complete reaction has occurred when the maximum
temperature is attained, can be seen in the accompanying dimensionless fuel density
profile (Figure 2 (b)). The local maximum in u gradually decays as a result of the
conduction of heat into the trough that exists in the reacted material closer to the hot
source. (This decay is consistent with a Fourier time tF = 123 s, assuming that the
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FIGURE 3. Distinction between the subcritical and supercritical cases. Solid and dashed lines correspond
to a = 1.43845 x 10~5 (subcritical case shown in Figure 1) and a = 1.43846 x 10~5 (supercritical
case shown in Figure 2), respectively, (a) Dimensionless half-density position fh (combustion front)
as a function of dimensionless time r; (b) Dimensionless temperature at the combustion front uft as a
function of r.

dissipation is from a region of thickness 0.5 cm.)
Both the subcritical and supercritical results, represented by the dotted and solid

lines, are summarised in Figure 3 with respect to the dimensionless half-density
position (the location of the combustion front) and the dimensionless temperature at
such position as a function of dimensionless time. These results show the marked
acceleration in the propagation rate and in the temperature change as the combustion
wave breaks away. The peak shown in Figure 3 (b) is due to the fact that, just after
take-off, the combustion front moves away quickly into the colder region.

3.2. Critical heat flux In this paper we seek to address the following underlying
questions related to the initiation of a combustion front: (i) How does the critical flux
depend on the thickness of the reactant? (ii) How does the critical flux depend on
geometry such as the radius of the source in a cylinder or sphere? (iii) How is the
critical flux affected by the initial conditions or by reactant consumption? (iv) Can
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FIGURE 4. Variation of critical heat flux with reactant size | ( in a slab: j — 0, q = 0.075, ud = 0.03.
(a) First order reaction with uml(?) = «a (dotted line); (b) First order reaction with «(£) = u^ + a($ -£,)
(dashed line); (c) Zeroth order reaction (solid line).

a propagating combustion front be aborted if the (supercritical) flux is stopped in
sufficient time?

In the interest of simplicity we have assumed a constant heat flux. Though this is
a somewhat unrealistic physical problem, it is clear from the character of the results
that once the appropriate condition for a combustion wave initiation has been attained,
the further progress of the wave is independent of the detail of its birth. This is borne
out clearly by the results obtained when the heat source is switched off after a finite
time, which may be regarded as an extreme simplification of the gradual reduction of
heat flux with surface temperature increase which may be expected in a real physical
situation.

Calculations have been performed for three different circumstances to address
how the critical flux at § = £0 varies with £t in order to try and go some way to
addressing these questions. The results are shown using non-dimensionalised variables
for the slab, the cylindrical annulus and the sphere in Figures 4-6, respectively. The
conditions relate to (a) a first order exothermic reaction with T(r, 0) = 7]ni(r), (dotted
lines), (b) a first order exothermic reaction with the initial temperature given by
the steady state inert temperature profile at the given heat flux (dashed lines), and
(c) a zeroth order (without reactant consumption) exothermic reaction (solid lines).

For each of the geometries, the lowest critical heat flux is required at a given size
when no reactant consumption is taken into account. The critical power becomes
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FIGURE 5. Variation of critical heat flux with reactant size £i in a cylindrical annulus: j = 1, q = 0.075,
fo = 3.5 x 103, na = 0.03. (a) First order reaction with um(%) = "a (dotted line); (b) First order reaction
with H(£) — ua+ a£o log(?i /?) (dashed line); (c) Zeroth order reaction (solid line).

FIGURE 6. Variation of critical heat flux with reactant size £i in a spherical shell: j = 2, q = 0.075,
ua = 0.03. (a) First order reaction with iiin,(f) = «„, ?o = 3.5 x 10\ (dotted line); (b) First order
reaction with uilM(f) = ua + a ^ ( l / £ - l/?i), So = 3.5 x 103 (dashed line); (c) Zeroth order reaction,
f0 = 3.5 x 103 (solid line); (d) Zeroth order reaction, £0 = 4.2 x 103 (dash-dotted line).
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FIGURE 7. Dimensionless temperature at the combustion front (half-density position) as a function of
dimensionless time for different stopping time rs. Dash-dotted, dashed, dotted and solid lines correspond
to rs = (3.9,4.42,4.43, 4.7) x 107. Other parameters are the same as in Figure 2.
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FIGURE 8. Dimensionless critical stopping time TS* as a function of dimensionless heat flux a. Other
parameters are the same as in Figure 2.
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independent of reactant consumption in very thick slabs, and it does not depend on
whether initially the slab is cold or there is an inert profile imposed at the start.
There are differences in critical flux between the three cases in thin slabs (Figure 4).
Nevertheless, for the slab, the zeroth order case is a reasonable criterion, particularly
at large thickness. In the case of the cylindrical annulus the critical flux for the above
three conditions are considerably different, but they change with £i rather similarly.
This is not so for the sphere, for which the difference between the first order and zeroth
order reactions, and between the first order reaction with different initial temperature
profiles are pronounced. An important result for the sphere is that, starting from
«( | ) = ua, even when reactant consumption is taken into account, there is still a point
beyond which the critical power appears to become independent of the size of the
sphere.

The dependence of critical flux on the radius of the spherical source is included in
Figure 6 (dash-dotted line) for the case of zeroth order reaction, when the radius of the
source is increased by a factor of 1.2. This result shows that, in the limit of £i » £0,
the critical flux is not governed merely by the ratio £i/£o- The size of the source itself
always remains an independent parameter.

A question has been posed representing a practical circumstance in which the early
identification of a heat flux from a source may render the system safe if the heat source
is curtailed at a certain time. This situation has been explored in terms of the permitted
development of a supercritical condition but with the flux stopped after a prescribed
time. Since the energy dissipated in that time is readily determined, there is the basis
for transposing to the more general problem in which fixed energies are dumped into
a reaction medium at different rates and over a limited interval.

The problem has been addressed with respect to the spherical system described in
Subsection 3.1, that is, a 5 mm radius source buried at the centre of a 5 cm radius
sphere of reactant. As shown in Figure 7, a second form of criticality is associated
with heat flux applied for a limited length of time. In this example, the dashed line
represents the development when the power is stopped at rs = 4.42 x 107, whereas
the dotted line relates to the same power but applied up to rs = 4.43 x 107 (a fraction
of a second longer in real time). Thus, a critical stopping time x* = 4.43 x 107 is
associated with a flux a = 1.43846 x 10~5. Also shown in the figure are the results
of power being stopped at rs = 3.9 x 107 (dash-dotted) and rs = 4.7 x 107 (solid).
The latter case gives a result that is virtually identical to the supercritical behaviour
shown in Figure 3 (b), signifying that the propagating combustion front is no longer
dependent in any way on the source flux. The critical time is shown in Figure 8 as a
function of the heat flux.
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4. Discussion and conclusions

By using numerical methods, we have shown how some of the five main parame-
ters associated with the initiation of combustion waves by a constant heat flux affect
criticality. Once one moves away from the slab geometry and from the assumption
that there is no reactant consumption, the analytical prediction of a critical heat flux to
produce a self-sustaining combustion wave is an intractable problem. Clemmow and
Huffington [2] obtained solutions for the slab in which there is no reactant consump-
tion, based on the Frank-Kamenetskii exponential approximation [3]. An alternative
method, used by Williams [12], is based on a critical Damkohler number to give an
analytical prediction of a critical time and temperature profile for ignition. With re-
actant depletion and non-planar geometry such a Damkohler number approach could
not be made without an asymptotic treatment of the thermal boundary layer near the
heat source.

The present work differs from that of Weber et al. [9] in a number of respects that
have been cited in the text. In particular, we have noted that the combustion front does
not establish itself as a stationary wave in a finite system with a constant power flux.
The propagation is affected by the hot boundary conditions. This means that evidence
of chaotic instability of the kind identified by Weber et al. [9] cannot be distinguished
until the front is very remote from the power source. This is especially acute at high
values of ft, which signify a low exothermicity of reaction. In calculations of large
cylindrical and spherical systems we have distinguished a chaotic propagation remote
from the source (at which the systems themselves approximate to planar propagation,
as in the case of Weber et al. [9]). However, the dimensions selected for the present
study do not allow sufficient opportunity for there to be clear evidence of the nature
of the instability.

The constant flux condition in a cylinder matches well the problem of electrical
power cables or heated pipes surrounded by potentially combustible material. A
faulty bearing, which generates a flux through friction, may be approximated as a
local source. In this respect also, it may be relevant to perform calculations where the
power generation at the source rises linearly with time (mimicking the degradation
of a mechanical bearing in a batch mixer, for example). We are proceeding with
investigations of a ramped input. It is also our intention to consider the effect of
oxygen diffusion into the reacting system, since in most practical cases, oxygen will
participate in the reaction. Then it is necessary to include an equation to describe
oxygen distribution.

At present in both Weber et al. [9] and here fixed nodes are used. To determine
the shape of the ignition front and calculate ignition speed more accurately, it may
be advantageous to use a numerical integrator that uses a self-adaptive re-meshing
technique [1].
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A. Appendix: A note on non-dimensionalisation

In the classic Frank-Kamenetskii model for thermal ignition [3], only one parameter,
S, is needed to completely describe a given geometric system. In that sense all systems
of the same j value are similar. Therefore the criticality criterion may be readily
generalised to different real systems. When the number of independent parameters
that define a system of reaction-diffusion equations becomes large, it is very unlikely
that two different real systems will be reduced to exactly the same set of dimensionless
parameters. Consequently, it is only quite rarely that a dimensionless calculation can
serve the purpose of generalising the results to other systems.

It is through non-dimensionalisation that the number of independent parameters is
identified for a given system, and a judicious choice helps to show the importance
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of the parameter that represents a particular physico-chemical process. However,
a simple linear transformation of the form x' = Kx, as is invariably used in non-
dimensionalisation, does not actually alleviate numerical difficulty in any way. This
is because such a linear procedure is merely expansion or contraction of spatial and
time coordinates, which is effectively equivalent to an over-all change of temporal or
spatial step size used in numerical integration.

In realistic problems, the highest temperature that can be reached in the reactant
body is approximately q + uint % qt for which usually 0.05 < q < 0.2. Therefore
each of the terms e"1/u and qe~l/u in (5)-(6) in the main text takes a numerical value
between 0 and 1, so the equations are, in a sense, well-behaved. But the ill-behaved-
ness that arises from high nonlinearity of the original equations (1 )-(2) is reflected in
the largeness of £i, which may be seen as a measure of the numerical demands of (1)-
(2). For kinetic reasons rn is usually a small quantity, so any realistic system will
correspond to dimensionless calculations where very large coordinates are necessary.

Since the value of q does not vary much over a very wide range of reactant in
practical situations, the behaviour of different systems will be distinguished principally
by size and by the boundary conditions. In particular, the boundary conditions at
£ = §0 are a major distinguishing feature of most systems. In many practical cases £0

and £i take very large values (except in they = 0 case where £0 = 0.) Therefore, the
critical heat flux at £ = £0 is not strongly sensitive to the actual value of £0 or £,, or to
the boundary condition at £ = f i. In such cases, the parameter P, which relates to a
by a = PRrn/(kE), plays the essential role in determining how a system evolves.
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