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There are some simple facts which distinguish Lie-algebras over fields of prime charac-
teristic from Lie-algebras over fields of characteristic zero. These are

(1) The degrees of the absolutely irreducible representations of a Lie-algebra of prime
characteristic are bounded whereas, according to a theorem of H. Weyl, the degrees of the
absolutely irreducible representations of a semi-simple Lie-algebra over a field of characteristic
zero can be arbitrarily high.*

(2) For each Lie-algebra of prime characteristic there are indecomposable representations
which are not irreducible, whereas every indecomposable representation of a semi-simple Lie-
algebra over a field of characteristic zero is irreducible (¢f. [4]).

(3) The quotient ring of the embedding algebra of a Lie-algebra over a field of prime
characteristic is a division algebra of finite dimension over its center, whereas this is not the
cage for characteristic zero. (cf. [4]).

(4) There are faithful fully reducible representations of every Lie-algebra of prime
characteristic, whereas for characteristic zero only ring sums of semi-simple Lie-algebras and
abelian Lie-algebras admit faithful fully reducible representations (cf. (8], [2], [4]).

These facts have been established for special cases for many years, and some of them have
been considered in the general case by N. Jacobson recently in [4]. They are at the basis of
every investigation aiming at a theory of Lie-algebras of prime characteristic embedded into
their enveloping algebras.

In this paper I attempt to work out such a theory up to the point where (1)-(4) and a
number of deeper-lying properties of Lie-algebras of prime characteristic become connected
with the central fact that if one wants to study the representations of a Lie-algebra of prime
characteristic, one is concerned with specializations of an algebraic variety. This is an illus-
tration of the significance of a remark of A. Weil that the tools and results of algebraic geometry
are capable of being applied with great advantage in the study of Lie-algebras. Furthermore
the method of elementary ideals introduced by E. Steinitz proves its value once again.

The following is a summary of the present paper.

It is proved that the enveloping algebra A (L) of a Lie-algebra L of dimension » over a
field F of characteristic p>>0 is a maximal order of a division algebra of dimension p*" over
the quotient field of the center 3 of 4 (L) and that 3 is a normal algebraic variety of dimension
nover F.

* This property of Lie-algebras of prime characteristic is implicitly contained in [3), [7] and [4] and
explicitly, for special cases, in [6), (8] and (2]. The following is a brief account of a proof, given by N.
Jacobson in a letter to I. Kaplansky, communicated to the author on 12th November, 1952.

Let L be a finite-dimensional Lie-algebra over an algebraically closed field F of characteristic p>0, and
let A be its Birkhoff-Witt algebra. For any linear element = of A there exists by Jacobson a polynomial f
such that f(z) is in the center @ of 4. Let there be given an irreducible representation .of L on a finite-
dimensional vector space over . Then in the induced representation of 4, f(z) must go into & scalar c.
Let z,, z,, ... , %, be a basis of L with corresponding f; and ¢;. Let f; have degree r;. Let I be the ideal in 4

generated by all f(z;) —c;. Then the representation is really one of A/I. But A/I is really finite-dimensional

with dimension at most 7,7, ... r,,. Hence this is a bound for the degrees of the irreducible representations.

A G.M.A.

https://doi.org/10.1017/52040618500032974 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500032974

2 HANS ZASSENHAUS

Every specialization 8 of § onto an algebrat @ over F determines a specialization of 4 (L)
onto a finitely-generated @-ring ¥, which is uniquely determined up to isomorphisms over ®.
The indecomposable representations of L are in (1-1)-correspondence with the faithful in-
decomposable representations of all algebras ¥ for which @ is a primary ring over #. In other
words, for characteristic p>0, the theory of the representations of Lie-algebras allows a
structural reduction to the theory of representations of associative algebras.

To every absolutely irreducible representation of L there corresponds a specialization of
the algebraic variety 3 onto F. Only a finite number of classes of equivalent absolutely
irreducible representations lead to the same specialization of 3. The degree of these repre-
sentations is less than or equal to p™. Except for a subvariety characterized by the vanishing
of the specialized discriminant ideal of 4 (L) over &, the correspondence between the classes of
equivalent absolutely irreducible representations and the specializations of  onto F is 1-1
and the degree is equal to p™.

The irreducible constituents of an indecomposable representation lead to equivalent
specializations of 3. Conversely, for every specialization of 3 onto a finite extension of F over
F there are indecomposable representations of arbitrarily high degree, in the sense indicated
above.

The F-module

L*=L +FL?+FL* +...

generated by the set of all the elements a®’, with a ¢ L and j ranging from zero to infinity, turns
out to be an F-Lie-ring containing L as an ideal with abelian difference ring.

The ring 3 is finitely-generated over the subring o which is generated by the unit element
1 and the intersection ~L* of 3 and L*. Two representations are called members of the
same family if they induce equivalent specializations of o over F.

The representations of L over F are distributed into families, each consisting of a certain
number of classes with at most a finite number of irreducible ones among them. Any two
families are coprime.

The Lie-Kronecker product induces an addition of the families corresponding to the
specializations of o0 over F onto F' ; so these specializations form a module of characteristic p.

I take this opportunity of expressing my appreciation of the generous support which I
have received from the Canadian National Research Council, under whose auspices the
investigations presented in this paper were begun in the summer of 1950 and concluded in the
summer of 1952 at the Summer Research Institute at Kingston, Ont.

§ 1. Let L be a Lie-algebra with basis a,, a,,..., a, over the field F. Let 4 (L) be the en-
veloping algebra of L over F, i.e., the associative F-ring with the basis elements

ats abr...apm (u;2>0)

over F and multiplication defined by juxtaposition and application of the straightening pro-
cedure of G. Birkhoff which is derived from the commutation rule

n
a"ak =aka,~ + 'yﬁkal,
l=1

t The word ‘* algebra , without any qualifying adjective, will be used to mean associative algebra of
finite dimension.
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which itself is obtained from the multiplication rule

n
a; O A= E ‘yfkal (i, k=1, 2,...,n; ‘y{kEF)
1=1

for the Lie-multiplication of the basis elements of L (¢f. [1]).

LemMma 1. A (L) has no divisors of zero.
Proof : Define the degree of the monomial expression

ai‘l age... ann
to be the sum of the exponents, according to the formula
d(at abs...akn)=p) +py+.oo +pin,

and the degree d(X) of a linear combination X of the basis elements to be the maximum of the
degrees of all the basis elements of A (L) having non-vanishing coefficients in X. The zero ele-
ment 0 is not given a degree. The sum s(X) of all contributions to X from the basis elements
of degree d(X), which we may call the highest terms, is called the leading member of X ; e.g.,

s(a,ad +ala, +a,a, +a,) =a,ak +ala,.

Since the application of the straightening procedure of Birkhoff to XY, where X and Y are
linear combinations of the basis elements of A4 (L), only permutes factors and creates new
products of less than d(X) +d(Y) basis elements of L, it follows that if

s(X)= CAg... Ay a/‘la"a a"
Mgt Ay =d(X)

and
= e a“‘a”z e H )

S(Y) Z#1+#g+---+un=d(l’) B#lua un 1% a”n
then

XY= E g An Brusstg o um ahase... an +terms of lower degree,
where summation is over all sets of non-negative integral values of A;, A, ..., A, such that
AL+ A+ + A, =d(X) and all sets of non-negative integral values of j,, y,, ..., i, such that
Py tpet . +p,=d(Y), and v;=A; +p; (=1, 2, ..., n). In other words, there is an operator
isomorphism ¢ between A4 (L) and the polynomial ring Flx,, x,, ..., x,] in » polynomial
variables x;, %,, ... , z,, both 4 (L) and F[x,, z,, ..., x,] being considered as F-modules only,

such that

E Pi(LP | = E PipPs . PR
¢( §p,p,...pnalla21 oee a” ) gplpa.“pnxlle aee 5.13” ,

and under this operator isomorphism the leading member of X corresponds to the leading
member of ¢(X) and the leading member of XY corresponds to the leading member of
$(X)p(Y). Consequently )

A XY)=d(X) +d(Y),

8(XY)=s(s(X)s(¥)),

$(8(XY))=¢(s(X))(s(Y)).
Thus if X#0and Y #0, XY #0; q.ed. ,
From now on we assume that F is a field of characteristic p>>0, where p is a prime

number.
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LeEvMma 2. The elements
aP(i=1,2,...,n; §=0,1,2,..)
are the basis elements of an F-Lie ring L* contained in the universal embedding ring A (L) of L
over F such that the Lie-algebra L is an ideal of L* with Abelian difference ring.
Proof : The linear independence of the elements a,*’ over F follows from the construction
of A(L). The rest of lemma 2 follows from repeated application of the formula
(1) 2?0oy= —yox?=x —yx?
=20 (20... (x0y¥) ...), where z occurs p times to the left of ¥,
= —(... (yo2) ... oxz) oz, where x occurs p times to the right of y,
in rings of characteristic p (¢f. [3]).
Lemma 3. L* is independent of the choice of the basis of L over F, since

L¥=L+FL?+FL?" +...

where L denotes the module generated by all the elements a?’ with a contained in L.
Furthermore, the elements afi, ag‘, ... » P form a basis of the F-module L + FL? + ... + FL#

modulo the F-module L + FL?+... + FL»~1 over F.
The proof follows from repeated application of the formula

-1
(@) <x+y)ﬂ=ﬂ+§ " A y) o7,
=1

in rings of characteristic p, where 4,;(x, y) denotes & certain sum of Lie-products with < factors
z and p -1 factors y (¢f. [4]).

LemMa 4. Let M be an F-Lie-ring contained in L* and satisfying the condition

Mr=M +(0).
Let My=M~(L+FL?+ ... +FL%), (k=0,1,2, .)
Mi=M, ,+FM3_,, (k=1,2,...),
M;=(0).
Then it follows that
(a) 0<;:.=Zao dimp (M, - M;)<n.
k=0

(b) There are p elements uy, u,, ... , u, in M such that the elements

w? (l<i<p; §=0,1,2,...)
form a basis of M over F.
(¢} The elements .
up'ug' ...y (0<ary)
form an F-basis of the F-ring (M) generated by M and the unit element.
(d) : (MY~L*=M.
(e) The F-module L* — M is of finite dimension over F if and only if p=n. In this case
@O
dimg(L* ~ M) = E k dimp (M, - My).
k=0

(f) Considering A(L) as an {M)-ring, there is a basis of A (L) over (M), provided that F isa .
perfect field. In this case,if p=n,there is a basis consisting of p' elements, where | =dimp (L* — M).
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For the proof, let us assume first that F is a perfect field of characteristic p>0, t.¢., that
every equation {? =« with « in ¥ has a solution £ in F'. This solution is uniquely determined
by « and may be denoted by «*»'. We define recursively

= (et (522,38, ..

Then it follows by repeated application of the formulas (1), (2) and

(3) (Az)?=27z> (A& F)

that

4) z\lzfi + /\zx’;i +o A2l = (/\f—i:z:1 +A;’_im2 Ho F AT )
modulo L +L? +... + L?*L, for i.=1, 2, ... Ty, Tgy -er , Zpe L

We adapt the choice of the basis a,, a,, ... , @, of L over F to the situation of M and L*
relative to each other. Let a,, a,, ... a,, be a basis of M, over F, where, of course, =0 if
M,y=(0). .

By lemma 3 the elements a?, af, ..., a’, are linearly independent modulo L over F.

By . b
Since MP =M, + E ' Fa?, it follows that M, =M, + E ' Fa?, where + and E denote
. t=1 =1

direct summation. There is a basis a{¥, ,, ..., al!), , of M, modulo M over F. According to
0 oty 1
(4), we find that '

a®

=q?
I-ln+j =q

‘tg-+j

(mod L),

with @, ;eL; §=1,2, ..., u.
The elements a,, a,, ... , @,,+,, of L are linearly independent over F, since a linear relation

: :“n+#l
Aiai’ = 0
{=1
oty
E Ma?=0 (mod L),
i=1

Ho+py
E Mad=0 (mod M),
i=pe+1

would imply in succession

AL 1= =M+ =0,
A14.;+1 T =Nigt =0,
Ho
Aiai =0,
Zi=1
A=A=... =2, =0
Note that
pro=dimp (M, — M),
py =dimp (M, - M)
Set }L"=dimF(Mi—M,’:).
Continuing the above process, we find py+pu; +... +p, elements a,, g, .. Ay bt itp

of L, linearly independent over F, and pg +p; + ... + 1, elements

. o) ny . < le) {p)
Ou Oy voe s Bugs Bulprs ooy Qulip s oo 5 Oyt pp —yado o s Gliut g
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of M such that .
Hp
— " 3 )
Mp M,+ E ] lFa',(“:,+u,+‘..+up——1+.i
=
and furthermore

(p) —— 4 DP p—1 A
a’u‘;+u1+...+up—1+:i=auo+u1+...+up—1+7' (mod L+ L7 +... + L™, (G=1,2,...,p).

Since certainly
tot g+ Fp,<dimpL =n,

the construction will terminate after a finite number of steps ; say

f“'a>0’ Pot1 = Mopg = - =0.
Let
ad
BP=potpyt..  Fp,= E Fri-
=0
Extend the set of linearly independent elements a,, a,, ... , a, to form a basis a,, a,, ..., a, of L

over F. If u,>0, define
(Botpyto Fpea+g) =0 (j=1,2,..., )

From the construction it follows that

n k=1
‘ 'y E E I
(5) “;,h)=a{ + ol =0 @) (A e F).

The elements
v, =a) (1=1,2, ..., p),
with a{¥ =a, fori=1, 2, ..., p,, are elements of M with the property that the elements
Y (<))
form a basis of M; modulo M,_, over F (j=0, 1, 2, ..., M_, =(0)) and that

0<I'<2<... < =o.

If there were a linear relation

B v k
Aikv? = O
Zi=1 k=0

with some non-zero coefficients, then among the non-zero coefficients A;;, there would be one
with maximum value of ¢’ +k, say m ; and it would follow that

O = )\,k’vfk (mOd Mm—l)!
Zi’+k=m

which contradicts the linear independence of the elements vf’k, with 4’ + &k =m, modulo M,,_,
over I'. Hence the elements

W (1=1,2,...,p; k=0,1,...)

are linearly independent over F.
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If there were an element z in M not a linear combination of the elements v?*, then
zeL*,
zeL+L?+... +L*, for some A0,
ZTe Mh‘

Among all such elements there would be one with minimum value of 4. If =0, then

e
zeM,= Fa,,
=1

contrary to the first property of . If A>0, then

z= E AP (mod M, _y), (A eF),
i<h
and thus the element

= — E ,\ivg;h—i'
i<h

could not be a linear combination of the elements »?*. But the fact that ” is in M,_, contra-

dicts the minimum property of z. Consequently the elements v form a basis of M over F.
This proves {a) and (b) for perfect ground fields.
The F-Lie-ring M has the basis elements

I
Uy Vyy V) 5 oer s

Uy V5, 0 AR
Applying the straightening procedure of Birkhoff to any linear combination of higher products
of the basis elements of M, we arrive at the fact that the F-ring (M) generated by M and the
unit element consists of all linear combinations of the elements
(N vt vt (0 <ey).
N

From (5) it follows that the degree of the basis element vy 03’ ... vp* is equal to E a; p¥
i=1
and that the highest term is equal to a? “a2"™ ... a2
For a non-trivial linear combination

= a1, 0o T
x E Asyay... 2,01 V5" o0 U,
m

of the elements (7), denote by d the maximum of all the numbers E a;pt with Ay, o, #0.

=1
It follows that d(z)=d
and . s(x) = E Acsey . ,,Maf"“lag”'“: e AP
u
summation being over all sets of values of «;, «,, ... «, for which E ap¥ =d.
i=1
From this it follows that the elements (7) form a basis of (M) over F. This proves (c) for
perfect ground fields.
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Now assume that

(MI~L* % M.

T
E Masayrn 2, V1 Vg oo O

in L* which is not in M. Since z is not in M, it follows that z #0. Among all the elements in
{(M)~L* but not in M, let x be one of minimum degree. It follows that

E 1/ 3/ 0’
$ (x) = Aalal . a“a/f alag L aﬂ a“,
’ [

summation being over those sets of values of «,, «, ... , a, for which E a;p" =d(z). But

1=

Then there is an element

u .
gince x ¢ L*, it follows that d (x) = p* and that s(z) = E . lhia{’". Thus Ayg,...s, =0 whenever
=

m .
E a;p¥ =d(x) and two indices «; and «; do not vanish. Furthermore
im1

w—1’ X
z= E A{U? + E Aa;a, a"vilvg' ees 1/;"‘
-4

u
the second summation being over all sets of values of «y, ay, ... , «, for which E a;p¥ <pr.
i=1

Thus &’ =2 —- E )\ivg’”"i' is not contained in M, but z’e(M)~L* and d(z')<d(z). This
Ly

contradicts the minimum property of z. It follows that
My~ L*=

This proves (d) for perfect fields.

We now prove that the elements

{ﬂ»ﬁ’k, 0<h<t’, po<t<p,
a’ipk) 'L> 12
form a basis of L* modulo M over F.
Suppose that the elements (8) do not span L* modulo M over F. Then there is an element

n @D
2 § k
= A 0¥
i=1 k=0

of L* which is not a linear combination of the elements (8) modulo M. It follows that = 0.
Among all such elements choose an element « of minimum degree, p*say. If for any coefficient
Aix 20, either 0<Ch <</, uy<<t<<p; or i>p, then we could subtract the corresponding term from z
and the remainder would have the same property and would have one less non-vanishing term.
Continuing this reduction we find that among all the competing elements of the same degree,
the element x may be chosen so that no contribution is made to it by the elements (8). It

follows that
E E ,ka = E ,,v”"" (mod L+L?+...+ L™,
k=i
( . 2 A,,v”“"><d()
VY

(8)
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Since = and the element
! pa E v—14'
T =z i ’\ivvg
i<y

both belong to L, and since d(x’) <d(x), it follows from the minimal property of = that 2’ is con-
gruent to a linear combination of the elements (8) modulo M. The same then applies to

— ! y—1i
r=x"+ E e Aivvg’ s
XV

so that we arrive at a contradiction. We conclude that the elements (8) span L* modulo M
over F.
Now assume that there is a non-trivial congruence relation

n
z= E E Apa?* =0 (mod M),
1=1 ki’

where, for convenience, we define (u+1)'=(n +2)'=... =oc0. Let m be the maximum of all
the indices k for which an inequality A;; #0 holds. It follows that x belongs to M,, and so

m—i A
= m—
T = i LA
1< oty +...+um k=0
m m
s(z)= E Aim@} " = E N000} s
m<t m=>1

which contradicts the linear independence of the elements a;’m, cee s aﬂ"‘.

Hence the elements (8) form a basis of L* modulo M over F.

Inspecting this basis, we find that dimp (L* - M) <co if and only if x=n. The number of
basis elements is then given by the formula indicated under (e).

We now prove that the elements

a,

9) apaz...a

n Witvh 0<a,~<_’pi'
“form a basis of 4 (L) over (M).
Assume that there is an element = in 4 (L) which is not a linear combination of the
elements (9) over {(M). It follows that x#0. Let z have minimal degree. Writing

= %1 s n
z E )\,l,._,,,nal az...am,

we may subtract any term contributed by the elements (9). Hence we are allowed to make the
additional assumption that at least one of the inequalities a;>p% holds in each case in which
Asay...an #0. Then, by the Euclidian algorithm,

o;=q;p¥ +r; with 0<r,<<p¥, for =1, 2, ... , .
Now
oy qa ) — 71¢9)7a T o714 T 4 %ut+1
s(apag...a ) =s(pup...vltarar g al ..r)

Hence z has the same highest terms as the linear combination

. 1 i g1 i qout1
Y= E Asay .. an Al AR
oyt eyt +ay=d(z)

of the elements (9) over (M). It follows that z - y has lower degree than z. Hence it must be
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a linear combination of the elements (9) over (M. The same must then apply to z. Since this
contradicts our assumption concerning z, it follows that every element of 4 (L) is a linear com-
bination of the elements (9) with coefficients in (M). For any non-trivial linear combination

(10) x= E ,Aala,..-an anap...a)
0 <o <pl

of the elements (9) with coefficients 4, , ..o, in (M), there are some coefficients #0. For the
corresponding terms we find

’
. ll' 27 ’
8(Auyay...0n) = E )\ala,...un;ﬂ,sz...ﬂ,‘afl” ag”’ ...aﬁ“”“,

where the accent on the summation symbol indicates that only those u-tuples 8;, 8, ..., B,
are admitted for which
D B e,
It follows that -
(11) 8(Auye, . apapaP...az) = Z,/\,I,P_ an; 1By ... By a;,+8,p" a‘:‘“+3"p“’ apit....

Under what circumstances does it occur that in the development (11) for the leading members
of two summands on the right hand side of (10) there are proportional terms #0? Suppose that

in the development of s(A,, .. o ayaz: ... a;") there is a term

b

+8,p" +Buph’
Mgy an; Bify... By QB0 _qrutBut ganis )

and in the development of s(4,,,, ..,, al'a} ... a’®) there is a term

My 88,8, W @ut o gruta ),
such that

a;+Bipt =y + 8,07 (1=1,2,..., p),

Opts = VYusi (j=1: 2,..., n - ),
and hence there hold the congruences
a;=v, (mod p¥), (1=1,2,..., ).

From these congruences and the conditions

0<a;<pf, 0<y;<p’, (i=1,2, ..., p),

it follows that a;=y,;(¢=1, 2, ..., u) and hence that 8;=6;(¢=1, 2, ..., u). In other words,
the highest terms of the summands on the right hand side of (10) are linearly independent.
This shows that 2 does not vanish. Therefore the elements (9) form a basis of A (L) over
{M), which proves (e).

Inspecting the number of basis elements in the case in which p ==, we obtain for the num-
ber of such basis elements the value pt'+e+- -4+

This completes the proof of the lemma for perfect ground fields.

Now let F' be an arbitrary field of characteristic p. Then there is a perfect extension F of
F.

We determine a basis u;, %y, ... , u,, of M, modulo My over F, a basis %4, ... , Wiy,
of M, modulo M] over F, a basis %, 1, 11, -+ » Upotp +p, of M, modulo M3 over F, and so on,
the number y; being defined as the dimension of M; — M; over F.
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On the other hand, we construct the extension A4 (L) of A (L) as the product ring of
A(L) and F over F. This contains the Lie-algebra LF over F and in fact
A(L)y=A(LF).
We find that MF satisfies the requirements of the lemma with respect to F. Hence we may
construct vy, vy, ... , v, as previously, where
pi =dimp[(MF); - (MF)]] =dimp (M ; - M5).
We find that

“=Zi0m= ,_OdimF(Mi—Mz)=z__0dimf [(MF), - (MFY),

and therefore 0<p<<m. This proves (a).
We prove (b) exactly as before.
It is easily shown that

(MFy=(M)F,
(LFy* =L*F,
(MFy~(LEy =[(MYF)~[L*F] = (MY~ L)F
We have proved that (MF) ~(LF)y* = MF. Since (M)~ L2 M and (My~L)F =MF, it follows
that (M)~ L =M, which proves (d).
We prove exactly as before that the elements ufug: ... wi® (0<a;) span (M) over F.

In order to prove the linear independence of the elements u3'u3? ... w:® over F, we proceed as
follows. From the construction of the elements u,, u,, ... , u, and v;, v,, ... , v, there follow
relations

ph' =
(12) E E fhz:r ’
vSh .
(13) Up = E E nh;:up
EY Y =

We consider the subset S, formed by 0 and all elements of (M F of degree f or less with
respect to the basis a,, a,, ... , a, of LF over F. Obviously S, is an F-module containing all
linear combinations of the elements
(14) vPYRr..L U
satisfying

n
(14a) E wp'<f.
=1

If the element
z= E Auyay .. ay VPV . (el

of S, is not a linear combination of the elements (14) satisfying (14a), then let z be chosen so
that no contribution is made to = by the elements (14) satisfying (14a). It follows from the
construction of the elements v,, s, ... , v, that

8(%) =S( E Aala,..,a#v:lv;’ ver v;“) s
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where not only
L
E apt =d(2)
i=1

N

but also E o;p*>f for any coefficient /\a,a,_,_,“ #0. Hence d(x)>f, contrary to our
i=1 '

assumption. Hence the elements (14) satisfying (14a) form a basis of S, over F. From (12)

it follows that d(u,)<p*. Hence all the elements

(15) UPUG ... UuH
satisfying
m
E V< f
i=1
belong to S,. From the construction of the elements u,, u,, ... , u, there follow commutation
rules

- E pl
U; 0 Uy = Xijier Uk -
Lk it

Using these rules, we may substitute the right hand side of (13) in (14) and straighten out the
expression so that each element (14) will be expressed as a linear combination of the elements
(15) over F'. Since the two sets (14) and (15) have the same number of elements, it follows that
the set (14) forms another basis of . Consequently the elements (14) are linearly independent
over F.

Since f is arbitrary, it follows that the elements

upug .. wr (0<<ery)
are linearly independent over F'.
The statement (e) follows from the corresponding statement for the difference module
(LFy* - MF. This completes the proof of lemma 4.}
From lemma 2 it follows that to each element z of L there corresponds a derivation g
defined by the formula
u
g'v:(xou)’ (wel).

x>

The correspondence

yields a representation P* of the F-Lie-ring L* by linear transformations of L. Since there are
at most n? linearly independent linear transformations of the Lie-algebra L, since it is of
dimension » over F, it follows that the difference ring of L modulo the kernel L, is of finite
dimension.

Each element of L}, is permutable with each element of L. Since L generates the ring
A (L), it follows that L%, is contained in the center § of A (L). Conversely, each element of
& ~L* belongs to the kernel of P* and so

LE =3 ~L*.

1 This proof can be used to cover more ground by using the language of filtered and graded rings (see Colby
Summer Institute Lectures, Appendix to Zassenhaus, “ Representation Theory of Lie-algebras of prime
characteristic’). ’

https://doi.org/10.1017/52040618500032974 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500032974

REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 13
We denote by o the F-rinig generated by the unit element and & ~.L*, i.e.,
o =<F s 5 ~ L*).

Now o appears as a subring of the center of 4 (L). By lemma 4, o is isomorphic over F to the
polynomieal ring in n variables over F.

There are n elements u,, #,, ... , %, of 3 ~ L* such that every element of o can be expressed
uniquely as a polynomial in u,, u,, ... , 4, with coefficients in F. The elements u?’ (1=1,2, ...,
n; §=0,1,2,...) form a basis of §~L* over F.

If F is perfect, then, according to lemma 4, there is a basis of 4 (L) over o consisting of p?
elements, where | =dimp(L* -3~ L*).

§ 2. In this section we introduce the new concept of a quotient ring, which is needed in
the sequel. Since the results are of some independent interest, they will be developed some-
what more fully than is strictly necessary for the present purpose.

Definition : A scalar of a semi-ringt D is any single-valued mapping v of D into itself
satisfying the conditions

(1) via+b)=va+vd
(ii)) v(ad)=(va)b=a(vb)
for any two elements a, b of D.

The set of all scalars forms a semi-ring of operators of the additive semi-group of D with
the identity mapping I as unit element. If D is a module, then the scalars form a ring of
operators of the additive group of D. If DD =D, the scalars form a commutativering. Atany
rate, the scalars of D induce & commutative semi-ring on the additive semi-group of DD.

Definition : A scalar v of D is called a denominator if

(i) va=0 implies a =0,

(ii) vpu=pv for any scalar u.
The zet of all denominators of D forms a multiplicative abehan semi-group with unit element
and cancellation law.

Definition : The guotient ring Q(D) of a semi-ring D consists of the set of all quotient
symbols

e
14
with a ¢« D and v a denominator of D.
Equality of two quotient symbols is defined by the rule
a b . .
P if and only if pa=vb.
Addition and multiplication of two of these symbols is defined by the rules

a b _pa+b
...+ )
v ou v

a b _ab

v vl

t A semi-ring is defined to be a commutative additive semi-group (¢.e., & semi-module) in which there is
defined & multiplication assigning to any two elements a, b of the semi-module a third elament ab of the semi-
module, such that from a =a’ and b =b’ it follows that ab =a’b’, and furthermore the two distributive laws
a(b +¢)=ab +ac and (b +¢)a =ba +ca hold.
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It follows that the quotient ring of a semi-ring D is itself a semi-ring.
There is an isomorphism

a
a—>~

1

between D and a subsemi-ring of the quotient ring. This isomorphism is used to embed D into

its quotient ring, by replacing the quotient symbol % in @ (D) by the element a of D without

interfering with the laws of equality, addition and multiplication governing the semi-ring
@(D). Everyscalar v of D is extended to a scalar of the quotient ring by the definition

<a> va

v{—}=—.

B

The scalars of D then form a subsemi-ring of the semi-ring of scalars of Q(D) such that the

semi-ring of scalars of Q(D) of the form ~ , where v is derived from a scalar of D and p is derived
7

from a denominator of D, is isomorphic to the quotient ring of the scalar semi-ring of D. Here

Z is defined by the rule

[ 23
A
p\A) pd’

The scalar ~ of @ (D) is a denominator of ¢ (D) if and only if vis a denominator of D. The set of
7
all the denominators of @ (D) of the form z , where v and p are denominators of D, forms an
!.L

abelian group which is isomorphic to the quotient group of the multiplicative semi-group
constituted by the denominators of D.

If D is finitely determined, ¢.e., if there is a finite number of elements a,, a,, ..., @, of D
such that D is the smallest two-sided ideal of D containing a,, a,, ... , a,, then every scalar of
@ (D) is a quotient of a scalar of D and a denominator of D. If D has a unit element, then D
is finitely determined.

We call a semi-ring closed with respect to quotients if it coincides with its own quotient ring.
This happens if and only if its denominators form an abelian multiplicative group. The
quotient ring of a finitely determined semi-ring is closed with respect to quotients.

If a given semi-ring D is embedded into a semi-ring D, in such a way that any denominator
of Disinduced by a denominator of D, then for each denominator v of D there is a denominator
v" of @(D,) such that v'vinduces the identity operator of D. It then follows that the correspon-
dence

a ’
-—>v'a
14
is an isomorphism between (D) and a subsemi-ring of @(D,) over D.

If D is a semi-ring over a commutative ring o with a unit element*, then the scalars form

an associative o-semi-ring. We usually impose the additional condition

(16) Av=vA (Aeo)
on the scalars v of D, a condition which is automatically satisfied in the case when DD =D.

* This means that for every element of A of 0 and every element a of D, there is uniquely defined the
product Aa as an element of D, such that (A, + )@ =M\a +2A,a, A(a, +a,) =Aa, +Aa,, (AA)a =X ()a), la=a,
where 1 is the unit element of 0.
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The previous definitions are used as before.

The quotient ring of D is again an o-semi-ring.

If the elements of the semi-ring D form an additive group and hence a module, the same
is true for the quotient ring Q@ (D).

If the semi-ring D is associative, then @ (D) is also associative. If D isan associative semi-
ring with a unit element, then the scalars of D are realised by the multiplications by elements
of the center of D. The denominators of D are realised by the non zero-divisors in the center
of D.

This shows that our concept of a quotient ring coincides with the usual concept, for com-
mutatve rings with a unit element.

An algebra over a field F is closed with respect to quotients. This, of course, only holds if
the scalars are restricted by the condition (16).

If D is a semi-algebra over a field F, i.e., if D is a linear space with basis a,, a,, ... , @, over
F with the multiplication rule

() (S-S

with arbitrary multiplication constants 1/, e F, then the scalars of D (restricted by (16)!) form
an algebra over F' and D is closed with respect to quotients.

If o is an integral domain, then the quotient ring of o is a field, the quotient field of o.

If the o-semi-ring D has the finite basis a,, a,, ... , a, over the commutative ring o with a
unit element*, then @ (D) has the basis a,, a,, ... , @, over @ (o) and the rule of multiplication for
Q(D) over Q (o) turns out to be the same as the rule for multiplication for D over o.

But even when we do not know of a basis of an o-semi-ring D over a commutative ring o
with a unit element, it may happen that the quotient ring of D is a @(0)-semi-ring. In other
words, we may raise the question under what circumstances it is possible to define a product
AU for any element A4 of ¢(0) and any element U of Q(D), such that Q(D) becomes a @(0)-
gemi-ring and the new multiplication coincides with the old one if A¢0 and U ¢ D. We shall
give an answer under the assumption that o is an integral domain.

As a necessary condition we find that D must be an o-semi-module without torsion ; 7.e.,
from A0 in o and Aw=2v it must follow that v =v». In factif @ (D) isa ¢ (0)-semi-ring of the
kind described above, then from A0 in o and Au = Av, with %, ve D it follows that

w=lu=(ATA)u=2"1(2u) =21 () =(A1A)v=Tv=v.

Conversely, if D is an o-module without torsion, then to each element A0 of o there
corresponds a denominator of D and hence ¢ (D) has a denominator X’ satisfying A’A =1, which
proves that @(D) is a @{o)-semi-algebra if D is a finite 0-module without torsion over the
integral domain o.

The quotient-ring of a Lie-ring is itself a Lie-ring.

After these preliminary remarks we make an application to the universal embedding
algebra 4 (L) of a Lig-algebra L over a field F of characteristic p>0.

Since 4 (L) is without divisors of zero, it follows that A4 (L) is an o0-module without torsion.
Hence the quotient ring K of A(L) is a @(o)-ring. It has no divisors of zero ; for from

0#XeK, 0#YecK
it follows that

z 7
x-3, r=4,
m
* Ie., D is a vector-module with basis a,, ay, ... , a, over 0.
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where 0 #d¢o0, 0%peo, 02z A(L), 0 #ye d(L). Hence

%Y +0

xy-3

since zy #0.
Since o belongs to the center of 4 (L), we may consider @ (o) as a subfield of the center of
K. Furthermore

K=Q(o)A(L).
Hence there is a basis B of K over @(o) contained in A(L}).
Let F be a perfect algebraic extension of F. Then we find that the product ring L x Fof
L and F over F is a Lie-algebra of dimension # over F which has as its universal embedding

algebra A (L x F), the product ring of 4 (L) and F over F. The center 5 of 4 (L x F) is the
product ring of 3 and F over F and furthermore

(LxFy*=L*x F<L*F,

(LxP*n&=(L~3) xF=(L~3)F,

((LF)*ng) =oxF=0oF.
The quotient ring K of A (L x F) contains the quotient ring K of 4 (L), with the natural
embedding. It follows that Q(0)F =@ (o) x F has no divisors of zero. Since F is algebraic
over F, it follows that (Q (o) x )z is a field. Hence (Q(0) x F)r=Q((0 x F)5).

From lemma 4 it follows that 4 (L x F) has a finite basis B over o x F'; hence K is an

algebra over Q((o x F)z). It follows that

K=A(LxMQoxF=4(L)Q(o)F=KF
=K xF=(BF xQ(0)) x F=BF x (Q(o) x F)
=BF xQ(ox I ;

i.e., Bis a basis of K over @ (o x F'). Since any basis of K over Q(o x F) is finite, it follows that
B is finite ; in fact it consists of p' elements, where ! =dimy(L* ~L*~3). Hence K is an
algebra of dimension p! over @ (o) and has no divisors of zero ; i.e., it is a division algebra.

The center of K is the quotient field @ (&) of the centerd of 4 (L). According to the general
theory, the dimension of a division algebra over its centre is a square number. On the other
hand,

(K:Q0)]=[K:Q@]QB):Qo)]=p"
Hence [K : Q(&)]=p*,

where m is a non-negative rational integer.

§3. Lemma 5. A(L) is @ maximal order of K.
Proof: We have to prove that 4 (L) coincides with any subring @ of K satisfying
A(L)=Q=A7A(L),
with 4 #0 an element of 3.
Here we may replace /A by an element £ #0 of o.
Denoting the regular representation of K over @(o) by R, we find that

R(A)R(A™)=R(1) =Iix:q0n
Det R (A) =0.
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If F is a perfect field we use a basis of 4 (L) over o for computation of E(A).

If F is not a perfect field, let F be a perfect extension of F and use a basis of 4 (L x F)
over o xF. At any rate, the coefficients of the characteristic equation of R(A) are in
ox(F~K)=o0. Since the last coefficient is equal to the determinant of R (), up to a factor
+1, it follows that it is an element { #0 of 0. Furthermore, since the highest coefficient in the
characteristic equation of RB(/) is 1, there is an equation { =74, with 4, a polynomial ex-
pression in /A with all its coefficients in 0. Hence /4, ¢&. Thus

(AL AA (L) = A A7 A, A (D) =414 (D)= Q2 A(L),

go that, in fact, { may take the place of A.
Assume now that, for a certain subring Q of K, A(L)=Q={"24(L). Then

{Q=A(L).
Among all the elements of £2 not contained in 4 (L), choose X such that d({X) is minimal. Let

Y=(X.
Forv=2,3, ..., we have

Yr=({Xp=0X={(X) e () = 1 A(L),
and, in the notation of lemma, 1,

¢ S(Y ¢ V-IF[xl’xm"',xn],

(%((‘;((_Y> e (s(0)) 2 Flzy, 2, ... T,],

Fla, 2 .o ,x"]E<F[ml, Ty orr s ] ¢‘fs‘(§))))>s¢(s(g>)—l Flay, @y .. ) ,]

Since F[x,, &, ... , ,] i8 integrally closed, it follows that

B(s(7))
Ba() < T e 2l
_ya (BN
-+ (56 4
Since both polynomials ¢(s(Y)) and ¢(s({)) are homogeneous, their quotient is also homo-

geneous ; hence U =s(U) and so

BELUN =46 @S0 =4S - Q@) FEl ) =467

Hence Y ={U + V, where either Ve 4 (L) and d(V)<d(Y)or V=0. Butsince X ={-1Y isnot
in A (L) it follows that V #0, d(V)<d(Y),
W=y Y-{tU)=X-U.
Since X is not in 4 (L) and U is in 4 (L), it follows that {-1V is not in A (L). But then
a(g. V) =d(V)<d(Y)=d({X),

contrary to the minimal property of X. Consequently our assumption concerning £ must have
been wrong. Hence 2=4(L); q.e.d.

B G.M.A.
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LeEMMA 6. 3 s an algebraic variety of dimension n over F.

We have to show that

(1) 3 is an integrally closed integral domain,

(2) F is a subfield of 3 such that every element of § which is algebraic over F belongs to F,

(3) B is finitely-generated over F,
(4) There are n algebraically independent elements %, u,, ... , %, in & such that

Q@) : F(uy, uy, ... , u,)<c0.

Proof : (1) 3, being the center of the integrally closed ring 4 (L) without divisors of zero,
must itself be integrally closed and hence must be an integral domain ; in fact, if there is a
subring 2 of @ (%) satisfying §=2=4-13 for some A contained in 3, then there is a subring
QAYL) of Q(A (L)) satisfying 4 (L)=RA4(L)=A"1A (L), contrary to lemma 5. A consequence
of this statement is the customary statement : 3 is integrally closed in the sense that every
element of Q(3) which satisfies an algebraic equation with all its coefficients in 3 and highest
coefficient 1 must belong to 3.

(2) Obviously F is a subfield of 3. Let = be an arbitrary element of 4 (L) which does not
belong to F. It follows that d(z)>0. Now if
AeF and A, #0,d (A, 2™+ A, 2™ 1+ ... + ) =m d().

Hence 2 is not algebraic over F.

(4) By lemma 4, o is generated by » algebraically independent elements u,, u,, ... , u,
over F. We have already seen that @(3) : @(0)<<co ; observing that @ (o) =F (u, u,, ... , u,),
we have (4).

(3) We observe that A4 (L) is finitely-generated over 0. Let a,, a,, ..., a, be a basis of L
over F. The derivations a,, a?, a?, ... of L are not all linearly independent over F. Hence

there is a linear relation
P z :”'1 i
a4+ Azaf =0 (A;eF),
j=0 -

. K-l
ie., a{.’t‘+ E ' )\,.,.ag’=b,.e5nL*.

j=0
According to lemma 4, the elements

ajiaz ... ajn, with O<a,-<pl'.

form a basis of 4 (L) over the ring generated by F and b, b,, ... , b,. These ph+ph+... +pin
elements generate A (L) over 0. Furthermore, by Hilbert’s theorem, o satisfies the maximal
condition for ideals. From the theorem of Lasker-Macaulay it follows that the o-subring 3 of the
finitely-generated o-ring 4 (L) is itself finitely-generated over o. Since o is finitely-generated
over F, it follows that 3 is finitely-generated over F ; q.e.d.

We summarise the results of lemmas 1-6 in

TreorEM 1. The universal embedding ring A(L) of a Lie-algebra L over a field F of
characteristic p>>0 is a maximal order of a division algebra K of dimension p*™ over the quotient

field of the center & of A(L); furthermore, 3 is an algebraic variety of dimension n over F.
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§4. Let P be a commutative F-ring with a unit element, and let 11T be a P-module.
A homomorphism § of P onto another F-ring 6P is called a homomorphism over F if
G(AI)=2A0(1) for all Ae F. The ring 0P is a commutative ring over F with 1 as unit element,

such that
8(Ax)=0(AI . z) =0(A1)(x) = A0 . 6 = Abz.
We want to define a homomorphism 6 of 117 onto a 8P-module 4™ N1 in as general a
manner as possible. For this purpose we define 81T to be the module with generators
00y, (uwell),
and the defining relations
00U (y +v) =0T + My, (u, v € ),
68U (Au) =0 if A belongs to the kernel P of 6.
Since the correspondence
00y 490y = W (4u), (A e P, uell),

carries over each defining relation of M 11 into a consequential relation, as can easily be seen,
it follows that there is assigned to each element 84 of 8P an operator of §UNT. Furthermore
it follows easily that in the correspondence defined above 4 may have added to it any element
of the kernel of P without changing the operator of 60N assigned to 4. Hence there is
uniquely assigned to each element of 8P an operator of 8. Tt is not difficult to see that
this assignment also satisfies all the other rules which are imposed on 8P-modules.

If ¢ is any operator-homomorphism of !1T onto a §P-module $1T such that

¢ (Au)y=04 ¢u for all 4 e P, u e,

then it follows that the relations
U +v) =du + v
BB e acry

hold and hence that there is mapping 6% u—>¢u (u € 1) which is an operator homomorphism of
the 8P-module 6T onto the OP-module 1. Hence 8UDINT is the most general §P-
module which is operator homomorphic to 1.

The operator-homomorphism between 1T and a 8P-module is called a specialization of

1 over 6.
Let T be a P-ring, i.e., let 1T be a ring and let there be defined, for any pair of elements

A e P and u € 11T, a product element A in 117, satisfying, besides the conditions for a P-module,
namely,

(1) Au=A'wif A=A4", u=v,

(2) A(u+v)=Au+Av,

3) (A+A4Yu=Au+ A"y,

(4) (44)u=A(A'u),
the following further conditions

(6) A (uwv)=(du)v=u(4v)

(6) Ipu=mu.

The correspondence

Wy W (yp), (u fixed, v arbitrary),
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between 9@ (M1) and a subset of §UMNT carries over each defining relation of 60U into
a consequential relation. Hence to each element u e l1T there is assigned an operator « of
6UVNT carrying 6Mw into 6@ (uv). The rules

Uy + Uy =Uy + Uy,

Au =A’L_L,
Au =9,

can easily be verified. Hence the correspondence

}(u, Uy, Up e U1, A e P, A€ Py)

Mgy

establishes an operator homomorphism between 8T and the §P-module §®VN formed by
all the operators u acting on 64N ; in fact in 6T there is defined a unique multiplication

v+ by the formula

UMMy = 4§ (1) = FTV) (yw),

Consequently 81T is a ring homomorphic to the ring 1. In fact 8UNT is a 6P-ring, as
follows from the following computations :
0.4 (64U ) = .40 (uv) = U (Auw) = (0.40My)HW)y — HUTy(6.400My),
0160V = GU(1g4) = GU)yy,

We call 8™ a specialization of the P-ring 1T over 6.

It may happen that P is a part of the P-ring 11T in the sense that 11T possesses a unit element
Iy and that Ay =0, with A e P, implies that 4 =0. The correspondence 4—A41(4 ¢ P)
then provides an isomorphism between P and a subring in the centre of 1.

If this happens it cannot be inferred in general that 6P is a part of UM in the same

sense.

Exzample. Let F have characteristic not equal to 2, let

M=F + Fz + Fz, + Fa, + Fa,

with multiplication table
1

%

%

a

)
and let

4

[

[ =R e e Y )

@
z, O
0 0
0 =z
-2, 0

P=F { Fz { Fz,,
0(8)=¢ (mod Fz,) for { ¢ P,
Py=Fz,,
(M) =NT/(Fz, + Fz,).

Then 2,601 =0 but 2,01 #0.

We call § an extendable homomorphism of P over F if 6P is part of 60N in the sense

considered above.

If N1 has a basis B over P, i.e., if there is a set B of elements of 1T such that for each element
z of 11T there is one and only one equation

x= E A
veB

with all but a finite number of the coefficients vanishing and the non-vanishing ones belonging
to P, then 8™N1 has the basis 8B over 6P. We prove this as follows.
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Each element u of 11T is equal to a linear combination of elements of B :

u= E Ap, (4,eP);
veB
Hence HM)yy — E 94,000y,
vel

On the other hand there is a §P-module {1 with basis elements 5(ve B). We define an operator
homomorphism between 111 and IIT by the formula

U= E A U= E 84 .
ve B veB

Since the elements % satisfy the defining relations of §®1I1, it follows that there is an operator-

homomorphism
E 64,600y E 04 ,v
ve B vel

between 4T and 1T, which proves that from E 04,00y =0 it follows that 64,=0

ve B
for all ve B. The elements 0™y therefore form a basis of the 6P-module §MVIN,
If M is finitely-generated over P, then to each set of generators uy, u, ..., u, of T over

P there belongs the P-module R(uy, s, ... ,%,; P) consisting of the set of all r-rows
(44, 4y ... , 4,) (d;e P, i=1, 2, ..., r) which satisfy the relation 4 u, + Au, +... + 4,4, =0.
Using such a relation module R (u,, u,, ... , %, ; P), one defines the elementary ideals

€T ; P), & UT; P),...
as follows :
If 0<<i<r, €;(UT; P)is defined to be the ideal of P generated by the set of all (» —7)-rowed
minors of all matrices consisting of (r - ¢) rows of RB(u,, uy, ... , u,; P); if izr, €, is defined
to be P. It follows that

=t =t=...

and that the elementary ideals depend only on 1T and not on the special set of generators
%y, Uy, -.. , %, which we had to choose in order to be able to give a definition of &, &, &,, ... .
Hence we may write &, =E;(1T; P) without any ambiguity resulting from the particular
choice of the system of generators u,, u,, ... , u, (see [9], p. 87).

&, is usually called the order ideal of Ul over P ; it always satisfies the relation &1 =(0)
(c¢f. [9], p- 89). The rank of Nl over P is the number p=p (N1 ; P) defined by =&, =...
=€, ;=0,& #0; if € =0, the rank is defined to be 0. If 1T has a basis u,, u,, ... , u,over P,

then R{u;, uy, ... , 4, ; Py=0and hence § =€, =...=E€,_; =0, € =P, so that the rank in this
case is equal to the number of basis elements, ¢.e., the dimension of the vector module 11T over
P.

If P is a field, then N1 will have a basis over P and so the rank of 1T over P is equal to the
dimension of 1T over P.
In the more general case of semiprimary rings we can state

TurorEM 2. A module N1 finitely-generated over a commutative semiprimary ring P with
untt element is a P-vector module of dimension p if and only if

(17) €I ; P)=&,(T; P)=...=E,_,(Il; P)=0, &,(IN1; P)=P.
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Proof : A ring P is called semiprimary if the difference ring of P over its radical R (..,
its maximal two-sided nilideal) is semi-simple ; e.g., fields and direct sums of fields with finitely
many summands are semiprimary.

We have already seen that (17) is & necessary condition for 11T to be a vector module of
dimension p over P. Let P be a commutative semiprimary ring with a unit element and let
N1 be a finitely-generated P-module for which (17) holds. We have to prove that U1 has a basis
of p elements over P.

Let uy, u,, ... , u, be a system of as few as possible generators of NTover P. In view of (17)
it follows that o=p.

Since the difference ring of P modulo R is semi-simple, and hence a principal ideal ring,
we may transform the matrix of all relations between the given o generators by suitable
elementary transformations to its canonical form modulo R, thus showing that there is a
certain set of o generators vy, v,, ... , v, of 11 over P between which there are relations of the

€V + E rae=0 (=1,2,.., o),
ki

with 7, ¢ R, € _;(111; P) + R=Pee, ... ¢; + R (cf. [9], p. 92).
Now assume that o>p ; we then have

&, (0 ; P)y=Pc=Pe, +R.

form

Since P has a unit element it follows that Pe, = P and so I = ¢, for some £ e P.  On multiplying

the relation
a
Y + E 7V =0
E=2

by £, we obtain a relation by means of which »; may be eliminated from the set of generators,
thus establishing the existence of a set of less than o elements which generate 11T over P. This
contradicts the minimal property of o ; hence o>bp, and therefore 6 =p. But from

€, ,(; P)=0

it follows that R(u,, uy, ..., u,; P)=0, i.e., the elements u,, u,, ... , u, constitute a basis of
01 over P.

If P is an integral domain and the finitely-generated P-module 111 is torsion free (i.e., such
that Au =0, with A e P and 0 #u ¢ 11T, implies that /4 =0) then the rank of 11T over P turns out to
be equal to the dimension of the extended module @ (P)N1 over the quotient field @(P). This
follows from the obvious fact that any system of generators of 11T over P is also a system of
generators of Q(P)IM over Q(P) and any relation between such generators with coefficients in
@ (P) is a multiple of a relation with coefficients in P. Hence

P) if &(W1; P)=+0,
e oEn=ep&ans p={20 Leaiio

For a homomorphism 6 of P over F it follows that the set of all rows (64, 04,, ..., 04,)
with (4,, 4, ..., 4,) e R(uy, uy, ..., w,; P) forms a §P-module OR (u,, gy +.. , %, ; P} con-
tained in R (6®™u,, ,,, , §®Wy, ; 6P). On the other hand let 11T be the difference module of
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the §P-module of all r-rows with coefficients in 6P, modulo 6R (u, %, ... , %, ; P). Then m
is & P-module and the mapping

4
E 04,00y (04,, 04, ..., 04,) +0R(u,, ... , u,; P)OR(uy, %y, ..., u,; P)
i=1

defines an operator-homomorphism between 6T and IMT. It therefore follows from

r
E 04,04y, =0
{e=1

(64,, 04,, ... , 04,) € OR (uy, Uy, .. , u, ; P).

that

Hence
R0y §0qy, ..., 00y 6P)=0R(u,, %y, ..., u,; P),
E, (60U ; OP)=60E&,(I1; P).
The order ideal of the specialised module 8®T is obtained by applying 8 to the order
ideal of UT.
The rank of the specialised module 81 is not less than the rank of U1 :
p(BUVIT; 6P)p(MT; P).

We recall that a bilinear form on the P-module I is defined to be any function f(u, v)
ranging over N1 with values in P such that

Sy +ug, v) =f(uy, v) +[f(uy, v),
Flu, vy +v,) =f(u, v;) +f(u, v,) } y (U, 0, Uy, Uy, ¥y, Ve NT; AeP).
f(A'lL, ’U) =f(u) A’U) =Af(u: ’U)

It follows trivially that f(0, v) =f(u, 0) =0. The bilinear form is called symmetric if
flu,v)=f(v,u) for all u,vell.
The h-th discriminant ideal of f is defined to be the ideal Diyp 4,5 of P generated by the
set of all the determinants
[ flun v |, Gok=1,2,...,k; uy, Uy, ..., Up,y Uy, Vg, -ee 5 Uy € HT).

Dy, o0, is defined to be P.
It follows from the Laplace development of the determinants concerned that

Duyp, byt by 1 = Dyp, by 5 - Diyip by 1 5
in particular
P=Dmr,0,y=2Dmip,1,y2Dmp,2, 12 -

If 11 is generated by a subset B over P then we may restrict the elements uy, u,, ... , u,,
¥y, Vg, ... , Uy Occurring in the determinants generating Dyyp, 5 s to the elements of B. Hence,
if B consists of a finite number of elements, say r elements, it follows that Duyp, 3 s is finitely-
generated over P and that

Duyp,r+1,7=Dmyp, r12,5=-.. =0,

while Dyyp, 5,y is the principal ideal generated by | f(b;, by) |, by, by, ... , b, being r elements of B.
If 8 is a homomorphism of the F-ring P onto the F-ring 0P over F, then the bilinear
form f on 11T is mapped by 6 onto the bilinear form 6f on §@VNT defined by

0f (6Wy, §My) = 6f (u, v),
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and accordingly for the discriminant ideals we have
Doy, 4, o9 =Dmyp, a1+

If M is torsion free over P, then P must be an integral domain. U1 can then be uniquely
extended to a @(P)-module generated by N1 over Q(P), which is bound to be Q(P)N.
The bilinear form f can be uniquely extended to a bilinear form f on @ (P) T according to the

formula
r 8 r 8
f( E A;uy, E Bkvk)= E E A; By f(wy, vy,
i=1 k=1 =1 k=1

for arbitrary A;, B, e @Q(P) and u;, v, e 1.
The h-th discriminant ideal of f on @ (P) 11 is generated by the A-th discriminant ideal of f
on I:
Darymiee), b, =Q(P)Dmyp, 4,5
If 111 is finitely-generated over P, then it has a rank r which is equal to the dimension of
Q(P)IT over Q(P). It follows that

Dryp,ri1, r=Dayp,riz,s=... =0.

The bilinear form f is called degenerate or non-degenerate according as Dyyp,, ;=0 or
Dmyp,r,s#0. The bilinear form fis degenerate if and only if there are elements % =0 in 11T such
that f(u, v) =0 for all v in 21T ; an equivalent condition is of course that there are elements u # 0
in 01 such that f(v, ) =0 for all v in 1.

Theideal Dy p,», sis called simply the discriminant ideal f defined on Uil over F'; we denote
the discriminant ideal by Dyyp,s. More generally, if 11T is finitely-generated and of rank 7 over
the commutative ring P with a unit element, then for any bilinear form f on 1T over P, the
ideal Dpmp,,, s is called simply the discriminant ideal of f and is denoted by Dmp, ;.

§ 5. In this section we study the representations of a Lie-algebra L over a field F of
characteristic p, a representation 4 of L being a single-valued mapping a—4a of the elements
a of L onto a set of matrices da of a certain degree f and with coefficients in F, such that

d(a +b)=da + 4b,
4(Aa) = Ada,
d{aob)=4da . 4b-4b . da=4a 0 4b.

The representation 4 of L induces a representation 4 @) of degree f of the enveloping algebra,
A (L), mapping each element ¢ of L onto 4da and the unit element of 4 (L) onto the identity
matrix of degree f; hence every proper representation of finite degree over F of 4 (L) induces
a representation of L, by which it is itself induced as described above.

For every proper representation 4 of 4 (L) by matrices of finite degree over F we obtain a
specialisation § of the center 3 of A (L) by an algebra 4(3) over F. The representation 4
appears as an extension of the specialisation 6 to a specialisation of 4 (L) onto the algebra
4A4(L) over F. Hence every representation of finite degree over F of 4 (L) may be obtained
in the following way.

(1) Find extendable specialisations 6 of § by an algebra 63 over F such that 63 can be
considered as part of the center of 4@ A (L). The latter also will be an algebra over F.

(2) Form all proper representations of finite degree over F of the algebra §(&NA4 (L)
obtained under (1). These induce proper representations of finite degree over F of 4 (L) and
hence representations of L. ’
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An indecomposable proper representation 4 of A (L) of finite degree over F is, according
to the theory, characterised by the fact that the ring of all matrices commuting with 4 is
primary. Since 43 is part of this ring, 43 itself will be a primary ring. Accordingly, in the
construction just described, it is only necessary to consider specialisations of § by primary
algebras over F.

It is now necessary to take up the question whether every specialisation of 3 by a primary
ring over F is extendable to a specialisation of 4 (L) over F' and, if this is not the case, whether
there is a criterion for extendability.

- An irreducible representation 4 of A (L) of finite degree over F, which is not the null
representation, is certainly proper, and for it the set of all matrices commuting with 4 forms a
division algebra over F. Consequently 43 is an extension of ¥.

Let us now consider a specialisation 8 over F of 3 onto an extension 63 of F. Since 3 is
finitely-generated over o, it follows that 43 is finitely-generated over 4o, an integral domain
contained in 43.

Quite generally we have

THEOREM 3. If a ring S with a unit element coincides with its quotient ring and if S is finitely
generated over an integral domain o, then o is a field and consequently S is an algebra over o.

Proof: We have
8
S= E oa,
i1

with a finite number of generating elements I =a,, a,, ... , a, of S over 0. Since o is contained
in the center of S, it follows that @(0) =@Q(5)= 5. In fact, @ (o) even belongs to the center of

8 .

S. Since S= @ (o)a; and since §(0), as the quotient ring of an integral domain, is a
i=1

field, it follows that S is an algebra over @ (o). It is possible to choose the basis 7 =a,, a,, ... , @,

of S over o so that I=a,, a,, ..., @, i8 a basis of S over @(0) ; then

k=1 Mix

zr by )
a;= —Lkak,WIth )\ik,;l.,-keo, for1,=1‘+l,r+2, eee s S

Introducing
0+ w= H:::;,-}-l Hz=1ll'ik»

we see that all the elements a,,a,, ...,a, are contained in the o-module with basis
a . , .
2. 2 y vees % Tt follows that S, t.e., the set of all linear combinations of a,, a,, ..., a,over o,
pp

is contained in this o-module. For an arbitrary element A of @ (o), we find that

A4 0%, Lo0%
p 7 7

a a a
=/\1.j+)\2f+... +A,;’,

with coefficients A;, Ay, ..., A,in 0. Since the elements 1 =%, %, ,% form a bagis of S
over Q(o) it follows that 4 =2}, A;=2A;=... =}, =0, and hence /4 belongs to 0. Hence @(0) =0,

1.e., 0 is a field.
For the special case under consideration, we conclude that 6o is an extension of F. In
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other words, every specialisation § of § onto an extension 83 of ¥ over F induces a specialisa-
tion ¢ of o onto an extension ¢o =00 of F over F.

Since the rank of 4 (L) over 3 is p*™, it follows from the theory developed in § 4 that the
rank of 0U4INA (L) over 85 must be at least p?™. Consequently we have §UINA (L) =0,
6U4@N] £0. Since there is an operator-homomorphism between 63 and 6¢4UN3 0 and since
63 is a field, we have in fact an operator-isomorphism ; ¢.e., §4(L)) extends to 4.

We know that A (L) is finitely-generated over 3, say

Aan=> " 3
i=1

It follows that
9UINA (L) = E ) 83 . 64w,
i=1

and that § maps the general element

of A(L) over 3 onto the general element

b = E ", gung,
i=1
of 64ID 4 (L) over 03.

Since & is the center of an integrally closed ring, it is itself integrally closed, as we have
seen before. Since the quotient ring of 4 (L) is centrally simple of dimension p?™ over @(3),
it follows that there is a minimal polynomial

pm
P@)=t*"+ E (—~ 1) Py(my, Ty --. , T)tPT—F
i=1

)

of the general element a over 3, where Py(x,, z,, ... , z,) is a homogeneous polynomial of degree
¢ contained in & [z, «,, ... , x,] (¢f. Deuring, AJgebren, p. 50). The homomorphism 6 maps
P(t) onto the polynomial

pm
0P (t) =t*™ +Z_ . (=1)10P;(x,, zy, ... , T)EP".
i=

From P(a) =0 it follows that P(fa)=0.

Hence 8P is divisible by the minimal polynomial of fa over 63.

The degree of any minimal polynomial of 64N A4 (L) over 83 is consequently at most p™.

The discriminant ideal of A (L) over & can be defined in the usual fashion (¢f. Deuring,
Algebren, p. 87). It does not vanish, since K is centrally simple, and so separable, over the
quotient field of 3. It is known that the degree f of the minimal equation of a separable
algebra S over a field F satisfies the inequality f2>dimz S, equality holding if and only if S is
centrally simple over F. From these and other known results, we deduce

TureorREM 4. Any specialisation 0 over F of the center 3 of A (L) onto an extension 03 of F
can be extended to a specialisation 04D of A (L) over F onto an algebra §4LNA (L) of dimension
not less than p*™ over 08. There is a general element of A (L) over 3 and it is mapped by 6 onto a
multiple of the minimal polynomial of the corresponding general element of §4UNA (L) over
63. The algebra 14UNA (L) is separable over 63 if and only if it is centrally simple of dimension

https://doi.org/10.1017/52040618500032974 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500032974

REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 27

p'™ over 03. In this case, 8 maps any minimal polynomial of A (L) over 3 onto a minimal
polynomial of 0AINA (L) over 05. The discriminant ideal of A (L) over 3 does not vanish.

Furthermore we have

THEOREM 5. Let 0 be a specialisation over F of 3 onto an extension 3 of F. Then

0(Dazy5#0,
where D 415 15 the discriminant ideal of A (L) over 3, if and only if 04EVA (L) is centrally
simple of dimension p*™ over 03.

Proof :* (1) Let §4NA4 (L) be centrally simple over 8F. Then, according to theorem 4,
the dimension of #4@ENA (L) over 63 is p?™ and any minimal polynomial of 4 (L) over 3 is
mapped onto a minimal polynomial of §4ENA4 (L) over 3. The second highest coefficient
of the minimal polynomial is the linear form which is used to define the discriminant ideal.
It follows that

0D 413153 = Dot 4D 401635
and since §‘4(L)4 (L) is separable over 63, it follows that Dy 405 #0-

Conversely, let 6D, 5+0. The discriminant ideal D,z 5 is obtained as the p?m-th
discriminant ideal of a bilinear form f(a, b) =tr(ab) on 4 (L) over 3, where tr z is defined to
be the trace of = for an absolutely irreducible representation of @ (4 (L)) over @(&). Hence

f(a') b) =f(b: a’) ) f(ab: c) =f(a: bc):

and, for characteristic >0,
f(a?, b?) ={f(a, b)}®.
Furthermore
D a3 ="Ds2m, 1,5
0= Dﬂzm'*'.l,f,é'
By application of 8 it follows that
Dp2m’gf,95 =ODp2m’,’5 = GDA(L)/g #O,
Dy2mi,67,08 =0Dpomq 1,5 =0
0f (w, v) =6f (v, u),
of (u, vw) =0f (uv, w),
0f (u?, v?) = {8f (v, v)}*,
for u, v, w contained in
S =0U4UN4(L).
It follows that the set of all the elements » of S which satisfy the condition
flu,v)=0forallveS

forms a two-sided ideal A of S such that dim,z(S/A)=p?", and 6f induces a non-degenerate
symmetric bilinear ‘form ¢ on S over 03 satisfying g(@?,9?)={g(4, ¢)}* and hence
g (42, 979y ={g (4, 9)}#", for all 4, ¥ contained in S/A. Now for any element # of the radical of
S/, & =0 for some j. Hence {g(, )} =g (£, $») =0 and therefore g (£, #) =0 for all ¢ in
S/A; hence £=0. Since this argument still holds after any extension of the ground field
63 of S/, it follows that S/ is separable over 3. From theorem 4 it follows that the
degree of a minimal polynomial of S over 63 is not greater than p™. This holds a fortior: for
S/U. Since S/ is separable and of dimension p®™ over 63, it follows that S/ is centrally
simple over 83 and hence that the degree of S/ over 03 is equal to p™. But the degree of

* For a simplification of this proof and for other valuable advice, I am indebted to W. E. Jenner.
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the minimal polynomial of an algebra S with a unit element over the ground field is at least
equal to the sum of the degrees of the minimal polynomials of the simple components of $
modulo its radical, and is certainly greater than this sum if the radical of S is not zero. Since
we have already proved that there is a simple component of S over its radical with minimal
polynomial over 3 of degree p™, it follows that the degree of the minimal polynomial of S
over 83 is at least p™ and is equal to p™ only if S is simple. But, according to theorem 4, the
degree of the minimal polynomial of S over 63 is not greater than p™. Hence the degree is

p™and Sissimple ; i.e., S~ S, i.e., A=0. Hence §4EN4 (L) is centrally simple of dimen-
gion p*™ over 63 ; q.e.d.
Theorems 4 and 5 find convenient expression in

THEOREM 6. The degree of any absolutely irreducible representation 4 of the Lie-algebra L
over F is at most p™. It is equal to p™ if and only if 4 does not map the discriminant ideal of
A (L) over 3 onto zero.

The representation 4 is given as the representation of the Lie-algebra (L x @)y =Ly over
a suitable extension @ of F, such that the proper representation of 4 (L) =(4 (L) x ®)p over
@ induced by 4, which may also be denoted by 4, maps A (Lg) onto the full ring of matrices
of degree f over @. The representation 4 induces a specialisation 8 of 4 =(5 x @) onto a set
of matrices which commute with 4. According to Schur’s Lemma, 4 maps o onto @I,.
We consider the specialisation 8 of 3, over @ defined by

01, =4() (L€ Bo)-
There is an operator-homomorphism
04Ty s A

" of §4Lo)) A (Ly) over 8% onto 44 (Lg). In other words, 4 induces an absolutely irreducible
representation of degree f of §(1(Le) 4 (L) over 63 ; t.c., there is a difference algebra of the
algebra 64N A4 (Le) over 03¢ isomorphic to the full matrix algebra of degree f over 65e.
According to theorem 4, the degree of a minimal polynomial is not greater than p™, and hence
f<p™. 1If the degree is equal to p™, then the argument given in the proof of theorem 5 shows
that the algebra (4Ze) 4 (Ly) is itself isomorphic to the full matrix algebra of degree p™ over
3. Furthermore it follows from theorem 5 that f=p™ if and only if

0D awoy50 #0-
Since D 4(14)/50 = PD5(1) 4, the previous inequality is equivalent to the inequality D 4, 5 #0;
q.e.d.

Though it is probably not true that the image of the minimal polynomial P belonging to
the general element a of 4 (L) over 3 under any specialisation 8 of 3 over F onto an extension
of F will be a minimal polynomial again, it can be proved that 6P is the characteristic poly-
nomial of fa for a suitable representation of 64 4 (L) over 63.

From theorem 2 and the general theory developed in § 4, we derive

TrEOREM 7. The specialisation 8 of 3 onto a semiprimary ring over F is extendable to a
specialisation 84 LY of A (L) onto a 05-ring with exactly p*™ basis elements over 63 if and only if

. 0€2m, 4(1y15 =03,
in other words, if and only if
& =Ep2m, 415 +3Bes
where 3 denotes the kernel of 0.
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We have seen that for any indecomposable representation 4 of L over F, the algebra 43
is primary. Consequently all irreducible constituents of 4 will lead to specialisations of § with
the same kernel, <.e., to (weakly) equivalent specialisations. On the other hand, corresponding
to any specialisation 6 of 3 by a finite extension of ¥, there are indecomposable representa-
tions of L which are not irreducible, such that all the irreducible components lead to specialisa-
tions of & which are weakly equivalent to 6. In order to prove this we use a method of W.
Krull, :
Assume that there is an ideal a #0 of 3 such that a4 (L) =a24 (L). We shall show that
a=9

In fact, since B satisfies the maximal condition and A4 (L) is finitely-generated over &,
it follows that a4 (L) is finitely-generated over 3, say

ad (L) =Zq b3
i=1

Since a%4 (L) =ad (L), there must be equations

. q
b= E apb; (k=1,2,...,q),
i=1
q
E (B —aa)b; =0 (k=1,2,...,9),
i=1

from which it follows that

with «,; in a; hence

Det (1, - (i) =0,
since not all the b, vanish and 4 (L) has no divisors of zero. Hence

1=Det I,=0 "(mod a),
e, leaand so a=3.
If, for an ideal a of §, a4 (L) =4 (L), then a #0 and a?4 (L)=aAd (L) ; hence a=3.
It follows that any proper ideal of & also generates a proper ideal of A(L); e.g., the
kernel 3, of 8 generates a proper ideal of A4 (L).
Since the image 63 is of finite dimension over F but & is not, it follows that

0=3,=3.

Hence the two-sided ideal A =3, 4 (L) satisfies
0=A=A(L).
Now forj=1, 2, ... ,3}#0 and W/ =(F,4 (L)) =Fi(A (L)) =B}A(L). Since 4 (L) has no divi-
sors of zero it follows that (0)=A/=A=A(L) and hence, as we have already seen, that
(A9)2 =29, If 217 were equal to A1, it would follow that AUAT=2AUA+L, i.e., that Ui+ =22,
and therefore that A7 =27+2 and, by induction, that
W=y =Yi2 =, ;
and hence that A7 =i+ =A% = (2, contrary to our previous result. Hence
Uit =20,
Hence we have the infinite chain
AL)=2U=2U=Ws... .
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For j>1, the algebra* S=A4(L)-33A4 (L) over F contains in its radical the two-sided
ideal B =3,4 (L) -334 (L) #0, for which S - 8~0UIN4(L). It follows that S admits only
proper representations such that all their irreducible constituents induce specialisations of 3
over F which are weakly equivalent to . But the regular representation of S over F induces
a representation which is not fully reducible. This is because the radical of S does not vanish.
Hence we have

THEOREM 8. Every representation of finite degree over F of the Lie-algebra L decomposes into
a sum of representations leading to specialisations of 3 by primary algebras over F. For any
specialisation of B by a finite extension of F there are indecomposable representations of L of finite
degree over F which are not fully reducible and such that each irreducible constituent leads to

specialisations of & which are weakly equivalent to 6.

Example 1. Let L be a nilpotent Lie-algebra. We know from [6] that for every absolutely
irreducible representation 4 of L each matrix da has only one characteristic root A(a) and that
any two absolutely irreducible representations with the same distribution of characteristic

roots are equivalent. Furthermore, for any element a of L, a? =0 if p/ is a power of p greater
than the class of L. Hence a® belongs to the ring o previously constructed. It follows that

for every specialisation ¢ over F of o onto F the algebra ¢4LV4 (L) over ¢o has only one
absolutely irreducible representation, up to equivalence. Since dimp¢d@N 4 (L) =p4(D); 0) = pl,
we find, by reduction of the regular representation of $(4EN A4 (L) over F, which is of degree
Y, that every absolutely irreducible representation has a power of p for its degree.

This is one of the results proved in another way in [3] and in [4].

We may consider @ (o)L as a nilpotent Lie-algebra over (o). In the regular representa-
tion R of @ (A4 (L)) over @(o), every element

Z&l l

of (o)L has only one characteristic root A (a), namely the one defined by the equation

Za ) Y Qo

Since @ (o)L generates @ (A4 (L)) over @ (o) it follows that all absolutely irreducible constituents
of R are equivalent. We find
THEOREM 9. If L is a nilpotent Lie-algebra over F, then Q{(R) is a pure inseparable extension

of Q(o)
It is not always true for nilpotent Lie-algebras that @ (3)=@ (o), or what amounts to the

same thing, that §=o.

* We observe that égA(L) =W, where A =34 (L), is a two-sided ideal of A (L) for which
dimp[A(L) -l<».
We have to prove that dimp[A4 (L) -[7]<w. This follows from the general result that if for two ideals
X, J) of an F-ring P there are equations
. t
immP Y =E:‘=1p-’/7' P=X+Z,_  Fa=9+Z,_,F,
then
t ¢
pPp=x) +Zgy Zymr Fartr+ Xy E;=1F“ky9 + i Zymr Pt

and from the fact that every ideal of 4 (L) is finitely-generated over &).
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Example. Let L have four basis elements e,, e,, 5, ¢, over a field of characteristic p>2,
and multiplication table e;0e, =0, ¢, 0e,=¢€;0¢,=¢,, ¢,0e3=¢,. We see immediately that ¢,
e, ef, ¢f belong to o~ L*, that e, is the basis of the center of Z and that

L* =Fe, + Fey + Fe, +[{e,, €5, €5, efyp ~ L*].

Since no non-trivial linear combination of e,, e,, ¢, is in the center of L, it folows that

4 © .
onL*=Fe, E E Fe,
i=1 j=1

0 '-—"<81, eg) eg) ef)F,
l=dimp(L*-0~L*)=3, dimgAd(L)=p% 1 <d1mQ(@)Q (4 (L)) =p*™[p®,
dimgz, @ (A (L)) =p2<p?, m=1, o=3.

It is an interesting problem to find out whether for all non-nilpotent Lie-algebras it is the
case that @ (%) is not pure inseparable over @ (o).

Ezxample 2. The simple Lie-rings of Witt (¢f. [2]) are obtained by taking a finite sub-
module'!1T of a field F of prime characteristic p and forming the Lie-algebra L (11T, F') with basis
elements e,, g, e, ... over F, where «, 8, y, ... range over 1T and the multiplication rule is

€, 0eg=(B —a)e 1.
We deal only with the case in which 1T is the prime field of ¥ and p>2. We note that for
a #0, Lie-multiplication by e, applied p times annihilates each element, and that Lie-multiplica-
tion by e, applied p times has the same effect as when applied once. It follows that the
elements
€0=eg —€g, Cax =€Z, (“ 9&0)1
belong to o~L*; and clearly they are linearly independent over F. They generate the

p-invariant F-Lie-ring
-1 © '
nm= E E g'r
i=0 j=0

contained in § ~ L*, and the F-subring 0, ={&,, {y, ... , {p_1)r of 0. Since 0, ~L*=2 LP+ L, it
follows that L*=(L +o0,)~L* and therefore that o~L*=(0~L)+(0;~L*). Since L has
center (0) it follows that 0~ L =(0), 0~ L*=0;~L*, 0 =(0~L*)p =(0; ~L*)p=0,. We note
that dimg(L* - UT) =p, and so A4 (L) has p? basis elements over o namely, the p? elements

€o% 6:1’ cee s emp—l (0<o; <p).
It follows that dimgA (L) divides p?. Since dimgd4(L)=p*" and p>2, it follows that

dimgA4 (L)<p?; hence 0=3.
Choose the basis of L over F in the order ¢y, ¢, ..., ¢,_;. Let

(18) g=§ M, 76 oo €251

be an element of 3 in canonical form. Denote by v, =v,({) the highest power of e, occurring
among the terms of highest degree in (18), so that there is a term

Aogyy ... ecey ... e P 1#0, with vy +v+ o +vy =d(0),

vp—1

in (18).
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Suppose, for some such term, that there is an exponent i>0 for which p does not divide
v;. If welet A =/\,,°.,,_~, vp—1 W€ have

O0=¢_;0{=...+e_;0 /\e"(ge;x e;ﬂ_—ll +oenn
Computing the value of e_; 0 Aeaoe;r e;}’_"ll and straightening it out, we could find a term
Ziv;deptt el #0
1

which, because of the maximum property of v,, could not be cancelled out by any other term.
Hence
v;=0 (mod p), fori=1,2,...,p~1.
Substituting {; for e if i>0 and substituting § +e¢, for e} and continuing in this way
for as long as possible, we transform the canonical expression (18) for {, after a finite number
of steps, into the form

(19) {= E K eey ... el
0 n;<p,fori=o,1,...,p—1 oy p—1 50 -1’
which expresses { as a linear combination of the p® basis elements of A (L) over o. Writing
for (19),
L 1 X Xp—
(20) (= E a1ttt gy L0 ooe L1 . 1
0x; <P

(=01, ..., 1)
with &0y 15 x0...xp_y € F» We may associate with each term on the right hand side of (20)
a weight, the weight of the term shown being

-1
E %P+ Xse
i=0

In the process of transforming (18) into (20), we find that at each step a term of a certain weight
is replaced by a term of the same weight, with the same coefficient,and perhaps an additional
term of lower weight. At any rate the terms of highest weight in (20) are obtained from the

terms of highest degree in (18) by replacing, as far as possible, pth powers of ¢; by {;, for =0,
1,..., p—1. After this has been done none of the terms of highest weight is cancelled out ;
there are highest terms, not equal to zero, of the form

Avo, 9B, .. DBy e ., ezﬂ_l’l—l

in (18). Writing vy =4 +ppB,, we find that there is a term of highest weight of the form

Bo vB Bp—1 ,5
AvO)pﬂh"-rz’pp—]_ 00{11 ove Czﬁ_ll el?) 9&0

in (20). We thus find that, in (19),
Kjoo...0 # 0.

It follows that the operator-homomorphism

p-1
{— Kjoo...06)
=0

of the o-module & onto the o-module with the p basis elements 1, ¢, ..., e2=1 is an operator-
isomorphism. The rank of 3 over o is therefore less than or equal to p.
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It follows that
. 1< dimg)@(3)<p,
dimg)@(3)/dimge) @(A(L)) =p?,
dimg0,@(3) =,
dimgz) (4 (L)) =p?~1 =p*™,
m=4(p-1).

Our result may be stated thus :

T'he enveloping algebras of the Lie-algebras of Witt of dimension p over a field of charactercistic
p>2 are maximal orders of a division algebra of dimension p?-* over its center. Each absolutely
srreducible representation is of degree pt(®~1) or less, and the wpper bound is actually attained.

From [2] it follows now that (%) is separable over @ (o).

For more detailed results, see [2].

§ 6. For certain purposes, in particular for the discussion of Kronecker-Lie-products (¢f.[6])
it is of advantage to deal with 4 (L) as a ring over o instead of as a ring over &.

We know that after a suitable extension of the ground field there is a basis of 4 (L) over o
consisting of p! elements, where I =dimp(L* -3 ~L*). It follows that

Cayo,:=0, fori=0,1,...,p' -1,
€10,

Hence for any homomorphism 6 of o onto an algebra over F, it follows from theorem 2
that there will always be p' basis elements of §4NA (L) over §o. Hence all these homo-
morphisms are extendable.

Again, for the discussion of the irreducible representations of 4 (L) of finite degree over
F, we have to deal with the homomorphisms of o over F onto finite extensions of ¥, and there
will belong to any of them only a finite number of non-equivalent irreducible representations
of L.

For the discussion of the indecomposable representations of 4 (L) of finite degree over F,
we have to deal with the homomorphisms of o over F onto primary algebras over F,

Any homomorphism @ over F of 4 (L) into an F.ring R®, mapping I onto the unit element
of R®, may be called a specialisation of 4 (L) into this F-ring. Two specialisations @ and &’

of A(L) into RO and R¥, respectively, are called equivalent if there is an isomorphism between
RO and R? over F mapping Oz onto @z for all ze A(L). This notion meets the usual three
requirements for an equivalence relation. Two specialisations @ and @’ of 4 (L) into the
F-rings R® and R?', respectively, are added by the rule

(O +0)x=0zx+ O,

which defines a specialisation of 4 (L) into the algebraic sum of R¢ and R?'.
The Lie-Kronecker product of two specialisations @ and @, denoted by @ ® @, is defined

by the rules
00 (a)=Ige . O(a)+0O(a). Iye, forael,
00 O'(1)=1y° . 1°,
@® &’ ( E Aala,...un a:‘a‘;" .o a:")
= E Aoy .. 0 (0@ O (a))} ... {O0@ @ (a,)}™,
c G.M.A,
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by which, in fact, a specialisation ® ® @’ of 4 (L) into the product ring of X° and &% over F is
defined, as can be easily verified. Furthermore, it is easy to verify that the substitution laws
of addition and multiplication with respect to our equivalence notion hold, and that the classes
of equivalent specialisations form a commutative semi-ring S(4 (L)) with that specialisation
0, of A(L) onto F which is defined by the rules

©O,(a)=0 forael,
6,(1)=1,

@1( E z\q,a,...u”a:‘a;’... a:")=Aoo___0

acting as unit element. The semi-ring S(4 (L)) contains as a subring the set D (4 (L)) of all
classes of equivalent specialisations containing all representations of 4 (L) in the ring of all
matrices of a certain finite degree, and the equivalence notion defined above coincides with the
ordinary equivalence notion for representations.
" From the theorem of Wedderburn—-Remak—Krull-Schmidt-Fitting, it follows that

THEOREM 10. The set of all classes of specialisations of A (L) over F containing indecom-
posable representations of finite degree over F forms a bastis of the commutative semi-ring D (A (L))
consisting of the set of all classes of equivalent specialisations containing representations of A (L)
of finite degree over F, relative to the natural numbers as multipliers.

Any specialisation © of 4 (L) into the ring R® induces a specialisation ©F of L into X9,
i.e., & homomorphism over F of the Lie-algebra L over F into the F-Lie-ring attached to the
associative F-ring R®. In this way there is defined a (1-1)-correspondence between the
specialisations of 4 (L) and those of L. Furthermore, the specialisations of L may be distri-
buted into classes of equivalent ones, and added and multiplied as above, the Lie-Kronecker
product this time being defined simply by the formula

0RO (a)=1g6.0a+0a. Iys.

It follows that the correspondence
60— 6L

induces an isomorphism between the semi-ring S(4 (L)) and the semi-ring S(L) of all classes
of equivalent specialisations of L containing representations in the ring of all matrices of fixed
finite degree over F.

All this can be stated with L* in place of L, if the specialisations of L* are defined as
Lie-homomorphisms @ of the F-Lie-ring L* over F into arbitrary associative F-rings R® with
unit elements, satisfying the additional condition

O(x?)=(Oz)® for all z in L*.
We then have to use the rule
00 &'(27)={0c O'(x)}”,

which is easily verified, for the product definition.

Any specialisation @ of 4 (L) into R® induces also a specialisation 80 of o into RS, i.e., a
homomorphism over F of the F-ring o into the F-ring X® which maps the unit element of o
onto the unit element of X°. Equivalence, sum and product are defined as above, the Lie-
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Kronecker product of two specialisations 8, @ of o into R® and R, respectively, being de-
fined by the formulas

O® O (u)=1Ige . Ou+Ou.Ige, forueo~L*

@@@'( E Aa,u,...q_nu:‘u;’...u:")

=ZAa,a,...a,,{@®@'<ul>}~x . (08O (),

and

for an arbitrary element of o as represented according to lemma 4 of § 1.

But this time we find only a homomorphism of S(A4 (L)) onto the semi-ring S(o) of all
classes of equivalent specialisations of o, and only a homomorphism of D(4 (L)) onto the semi-
ring D (o) of all classes of equivalent specialisations of o containing representations by matrices
of finite degree over F.

We call two specialisations @, @ of any one of the systems A (L), L, L* and o weakly

equivalent if
]

Oz=0 ifandonlyif ©z=0.

Weak equivalence again satisfies the necessary three requirements, and is implied by ordinary
equivalence. It also satisfies the substitution laws of addition and multiplication ; so the
sets of all classes of weakly equivalent specialisations form subrings W (4 (L)), W (L), W (L*)
and W (o). The sets of all classes of weakly equivalent specialisations containing representa-
tions by matrices of finite degree over F form semi-rings WD (4 (L)), WD(L), WD(L*) and
WD (o). .
The semi-rings W(4 (L)), W(L) and W{L*) are homomorphic to S(4 (L)), S(L) and
S (L*), respectively ; WD(A(L)), WD(L) and WD (L*) are homomorphic to D (4 (L)), D(L)
and D(L*), respectively ; and W (o) is homomorphic to both S(o) and W (4 (L)).

Instead of referring to classes of weakly equivalent specialisations containing representa-
tions by matrices of finite degree over f we might equally well refer to classes of weakly

equivalent specialisations containing specialisations onto algebras over F. Instead of theorem
10 we have

TrEOREM 11. The sets of all classes of weakly equivalent specialisations of A(L) and o,
respectively, containing a specialisation onto a primary algebra over F, constitute bases of the
commautative semi-rings WD (A (L)) and WD (o), respectively, of all classes of weakly equivalent
specialisations of A (L) and o, respectively, conlaining specialisations onto algebras over F,
relative to the natural numbers as multipliers.

Furthermore we have

THEOREM 12. The units of the semi-ring W (o) of all classes of weakly equivalent specialisa-
tions of o over F are represented by the specialisations of o onto F, over F.

Proof : If © represents a unit of W (o), then @ may be chosen as a specialisation of o onto
an F-ring @o. There will be another specialisation @ onto an F-ring @0, such that @® 6’
maps all elements of L* ~3 onto zero :

lgg . Ou+0Ou.lgo=0, foralluin*~3.
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From the relation
190 .Ou=~-0Ou. ]9’0 (ueL*né)

in the product ring @o® @0 over F, we conclude that
Ou=A(u)lgy, Ou= -A(u)leo, where A(u)elF ;
hence both ®o and @0 coincide with F.

Conversely, if there is a specialisation @ of o onto F, then there is another one, @’ say,
‘defined by @ = — Gu. It follows that their product maps each element of L* ~ 3 onto zero,
which means that this product represents the unit element of W (o)

If ® and 6’ are two specialisations of o onto F, say

=Aw)eF, Ou=Au)eF, foruel*~3,
then it follows that
O O0'(u) =A(u) +A'(u).
This proves the corollary to theorem 12.

The specialisations of o onto F over F form an abelian group of characteristic p isomorphic to
the group of units in W (o) and also to the group of units of S(o).

We define two specialisations @ and 6’ of 4 (L) to belong to the same family if they induce
weakly equivalent specialisation of 0. This relation satisfies the three necessary requirements
for an equivalence relation.

Weak equivalence of two specialisations of 4 (L) implies that they both belong to the
same family. Again the substitution laws of addition and multiplication are satisfied. The
set of all families forms a commutative semi-ring ¥ (4 (L)), and F(4 (L)) is isomorphic to
W (o). Each family contains among its members at most a finite number of non-equivalent
irreducible representations of finite degree over F.

The set of all families containing an absolutely irreducible representation forms an abelian
group of characteristic p which is isomorphic to the group of units of S(o).

This group may be recognised by making use of lemma 4 of §1 as the additive group
defined by the vector module of » dimensions over F.
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