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Abstract

In recent papers we have considered the numerical solution of the Hammerstein
equation

f k(t,s)g(s,y(s))ds, / e [ - l , l j ,

by a method which first applies the standard collocation procedure to an equivalent
equation for z{t) := g(t,y(t)), and then obtains an approximation to y by use of
the equation

y(t) = / ( ' ) + / _ k(t,s)z(s)ds, / € [ - ! , ! ] .

In this paper we approximate z by a polynomial zn of degree < n - 1, with coeffi-
cients determined by collocation at the zeros of the nth degree Chebyshev polyno-
mial of the first kind. We then define the approximation to y to be

Vn{t) := f { t ) + f k ( t , s ) z n ( s ) d s , t€[-l, 1],

and establish that, under suitable conditions, lim yn(t) = y(t), uniformly in t.
n—*oon

1. Introduction

This paper is concerned with the Kumar and Sloan method [10] for the nu-
merical solution of the Hammerstein equation

y(t)=f(t)+f k(t,s)g(s,y(s))ds, / € [ - l , l ] , (1.1)
J-i
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320 Sunil Kumar [2]

where / , k, and g are known functions, with g{s,v) nonlinear in v, and y is
the solution to be determined.

The Kumar and Sloan method is a collocation method applied not to equa-
tion (1.1), but rather to an equivalent equation (see (1.4)) for the function z
defined by

z(t):=g(t,y(t)), te[-l,l]. (1.2)

The desired approximation to the solution y of (1.1) is then obtained by the
use of the (exact) equation

y(t) = f(t)+ f k(t,s)z(s)ds, *E[ -1 ,1 ] . (1.3)
J-\

Kumar and Sloan established that, under suitable conditions, the approx-
imation to y converges to the exact solution at a rate at least equal to that of
the best approximation to z from the space in which the collocation solution
is sought. For the particular case where the collocation approximation to z
is sought in certain piecewise polynomial function spaces, Kumar [9] showed
that the approximation to y may exhibit (global) superconvergence, that is,
it may converge to y at a faster rate than the collocation approximation does
to z.

In this paper we approximate z by a polynomial zn of degree < n - 1, with
coefficients determined by collocating the equation

k(t,s)z(s)ds), *€[-!,!], (1.4)f
- i

at the n zeros {T,,,}"=1 of the «th degree Chebyshev polynomial of the first
kind. Thus zn is that polynomial of degree < n - 1 which satisfies the n
nonlinear equations:

/•i

Zn(Tni) = g^ni,f{rni)+ / k{xni,s)zn{s)ds), J = l , . . . , / 1 . (1.5)

We then take

yn(t) := f(t) + f k{t,s)zn(s)ds, te[-l,l], (1.6)
J - I

as the approximation to y, and establish that, under suitable conditions,
\im yn{t)=y{t),

n—>oo

uniformly in t. We also establish a rate for the convergence of yn to y that is
fast enough to yield, in favourable circumstances, impressive accuracy even
for polynomials of low degree (for an example, see Section 6). Obviously, low
degree polynomials imply small nonlinear systems, something which is highly
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desirable in practical computations. We remark that the above convergence
result is the analogue of that proved by Sloan and Burn [15] for the iterated
(polynomial) collocation solution of (linear) integral equations of the second
kind.

It should be noted that the major difference between the present analysis
and that in [10] is the fact that for polynomial interpolation, uniform con-
vergence of the interpolants cannot be guaranteed for every continuous func-
tion, regardless of the choice of the interpolation points. Hence, the present
analysis is based on a mean-convergence property (see (3.5)) of polynomial
interpolation.

2. Basic assumptions and operators

The theoretical analysis of (1.1) will be carried out in the Banach space
C = C[— 1,1] of continuous, real-valued functions on [—1,1]. This space is
equipped with the uniform norm

Woo= sup \x(t)\, xeC.

The following assumptions are made on the functions / , k, and g in (1.1):
Al: / e C ;
A2: the kernel k satisfies

• I

sup / \k{t,s)\pds <oo,
-\<t<\J-\

and
l i m y 1 \k(t,s)-k(t',s)\»ds = O, t'e[-l,l],

for some p > 1;
A3: the function g(t, v) is defined and continuous on [-1,1] x R;
A4: the partial derivative gv(t, v) := §^g{t,v) exists and is continuous on

[-1,1] xR.
With p as in assumption A2, let q be the number given by

Furthermore, let Lq = Lq{-\,\) denote the Banach space of measurable,
real-valued functions on (-1,1) which have integrable qth power. It then
follows from the results of [7] that, under assumption A2, the linear integral
operator K, defined by

,)(t) := f k(t,
J-\

{Kw){t):= k{t,s)w{s)ds, t e [-1,1], w e L,
q,
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is a compact operator from Lq to C, and hence also from C c Lq to C.
Being both compact and linear, it is necessarily (see [8], p. 244) completely
continuous. It is also worth mentioning that [7] gives certain tests for deciding
whether A2 holds in a given case. In particular, we note that A2 is satisfied
for every continuous kernel, and for some weakly singular kernels.

We define another completely continuous operator T: Lq —> C by

T(w){t) := f{t) + (Kw)(t), te[-l, 1], w e Lg,

and a continuous, bounded operator G: C —> C by

G(x)(t):=g(t,x(t)), / e [ - l , l ] , x e C .

With the above notation, the integral equations (1.1) and (1.4) may be
written in operator form as

y = TG(y), yeC, (2.2)

and
z = GT(z), z e Lq, (2.3)

respectively. The two equations are equivalent in the sense of the following
lemma.

LEMMA 1 [10]. The sets

eTG:={yeC:TG{y) = y}

and
eGT:={zeLq:GT(z) = z}

are in one-to-one correspondence. Specifically, G is a one-to-one operator from
QTG onto QGT, with inverse T.

For later use we note that, under assumptions Al to A4, the operator GT
is continuously Frechet differentiable on Lq. Its Frechet derivative at z e Lq

is the completely continuous linear operator (GT)'(z) given by

[(GT)'(z)w](t) = gv(t,f(t) + (Kz)(t))(Kw)(t), te[-l, 1], w G Lq.

3. The polynomial interpolation operator

For w e C, let Pnw denote the unique polynomial of degree < n - 1 that
satisfies

{Pnw)(Tnj) = w(TnJ), j=\,...,n, (3.1)
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where

•cnj = cos J
2n it, j=l,...,n. (3.2)

The points {Tn;}"=1 are known as the classical Chebyshev points, and are the
zeros of the nth degree Chebyshev polynomial of the first kind Tn, defined by
rn(cos 6) := cos nd. Recall that polynomial interpolation based on the points
(3.2) is relatively well behaved [14, Section 1.3] compared to that based on
equally spaced points [5, p. 78].

In the Lagrange form Pnw is

J2)lnj(t), f € [ - l , l ] , (3.3)
7=1

where /„; (a 'fundamental Lagrange polynomial') is the unique polynomial
of degree <n—\ that satisfies

lnj(Tni) = Stj, 1 < i,j < Tl,

where <J,y is the Kronecker delta. Clearly, Pn is a linear operator on C, with
the property P2 = Pn. It is therefore a projection, whose range is PM, the set
of all polynomials of degree < n - 1. Furthermore, Pn is a bounded operator
on C, with

||PB||= sup £ > , « | .

Since Pn is the interpolatory operator defined by (3.3), and the collocation
points are given by (3.2), it follows [1, 2, 6, 11, 12] that

/•I
lim / \{Pnw)(s)-w(s)\"(l-s2)-l'2ds = 0 (3.4)

for every w e C, and for every real number q in the range 0 < q < oo. As in
Section 2, we choose q to be the number given by (2.1).

Let p be the weight function

p(s):=(l-s2rl/2, *e(-U),
and let Lq<p = Lg>p{-1,1) be the space of functions x e L , for which the
weighted Lq norm defined by

1/9

is finite. In terms of this norm, (3.4) may be written as

lim \\Pnw- w||,,, = 0, (3.5)
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from which it follows that

sup\\Pnw\\q>p < o o
n

for all w e C. Thus, if Pn is considered as a linear operator from the space
C to the space Lq>p then, from the Banach-Steinhaus theorem [8, p. 203], it
follows that there exists a constant C\ > 0, which depends only on q, such
thai

I|JVK||W»<CI| |*| |OO, xeC.

REMARK 1. The analysis given in this paper will hold for any set of collo-
cation points and any weight function p, provided that (3.5) is satisfied for
the q fixed by (2.1), and that l/p is bounded. In the case of Jacobi weight
functions and interpolation at zeros of the associated Jacobi polynomials, the
values of q for which (3.5) holds are easily obtained from [1, 2]. It should
be pointed out that while the Jacobi case considered here permits q in (3.5)
(ignoring (2.1)) to be any positive number, the other cases are less generous
with the values q may assume. For example, 0 < q < 4 for the Legendre
points (p — 1).

4. Convergence results

The mean-convergence property (3.5) suggests that an appropriate space
for the analysis of (1.4) is the Banach space Lq,p c Lq equipped with the
norm || • \\q,p. Then the theory of [10] goes through in an obvious manner for
the equations

z = GT(z), zeLq>p, (4.1)
and

zn = PnGT{zn), z n e P , c Lq,p. (4.2)

(Note that (4.2) is the collocation equation (1.5) written in operator form.)
Below we give results analogous to those in [10, Section 4].

THEOREM 1. Let y* EC be a geometrically isolated solution of'(2.2), and let
z* be the corresponding solution o/(4.1). Suppose Al to A3 hold.

(i) Ify* has a nonzero index, then there exists an «o such that for n > no,
(4.2) has a solution zn e Pn satisfying

\\z* - zn\\q,p-> 0 asn^oo.

(ii) Suppose A4 holds, and that 1 is not an eigenvalue of the linear operator
(GT)'(z*). Then there exists a neighbourhood of z* and an n\ such that for
n>n\ a solution zn o/(4.2) is unique in that neighbourhood, and

c2\\z* - Pnz'\\q,p < \\z* - zn\\q,p < c3\\z* - Pnz*\\q,p,

where C2, c3> 0 are independent ofn.
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COROLLARY 1. Under the conditions in Theorem 1 (ii) there exists a constant
c4 > 0 such that

\\z* -zn\\qtP<c4 inf | | r*-p| |oo.
p6P

PROOF. For any <p e Pn,

\\z* - Pnz*\\qtP = ||(z* -cp)- Pn(z* -

[/> (s)-<p(s)\"p(s)ds\

1/9

z* -<p\\oo,

where the second last step follows from the fact that Pn is uniformly bounded
as an operator from C to Lq<p.

It should be noted that the quantity

inf | |z*-p||oo

approaches zero as n —> oo because of the Weierstrass approximation theo-
rem [5, Theorem 6.1.1], and may be bounded above by use of the Jackson
theorems [4, p. 147].

THEOREM 2. Let y* eC be a geometrically isolated solution of {2.2), and let
z* he the corresponding solution of (4.1). Suppose Al and A3 hold.

(i) Ify* has a nonzero index, then with zn as in Theorem 1 (i), and n > «o,
(1.6) defines an approximation yn€ C satisfying

||j'*-J'n||oo->0 asn-*oo.

(ii) Suppose A4 holds, and that 1 is not an eigenvalue of the linear operator
(GT)'(z*). Then for n > n\ the approximation yn given by (1.6), with zn as
in Theorem 1 (ii), satisfies

lb'-^||oo<c5 inf ||r'-p||oo,

where c$ > 0 is independent ofn.

PROOF, (i) Since T maps LQtP to C, it follows immediately from the definition
yn := T(zn) that yn e C. Now from Lemma 1,
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and

\y

hence

•(0- Vn{t)\ = f k(t, s)[z*

Sunil

(s)~

Kumar

zn{s)]ds

[8]

\k(t,s)/p{s)\ \z*(s) - zn(s)\p(s)ds

J^\k(t,s)/p(s)\Pp(s)ds\ x\J^\z*(s)-zn(s)\«p(s)ds\ ,

where in the last step we have used the Holder inequality for the distribution
p(s)ds. Now for/? > 1,

sup

Therefore,

and hence

where

\y*(t)-yn(t)\< Jjk{t,s)\" ds z - zn

\\y' - < C\\Z* - Zn\\q,p - » 0 aS « - • OO,

c= sup / \k(t,s)\" ds\ <oo.
-I<KI [J-l J

(ii) This follows similarly, with the aid of Corollary 1.

Thus yn converges uniformly to y* as n —* oo.

5. Implementation note

In practice, it may be worthwhile expressing zn as a finite Chebyshev series
of the form

n-\

zn{t) = Y,anjTj{t), /€ [-1,1], (5.1)

where 7} is the jth degree Chebyshev polynomial of the first kind. Then (1.5)
yields a system of n nonlinear equations

n—1 n - 1 - i

Y^anjTj{xni) = gtni, f{xni) + J2anj I k{*m,s)Tj(s)ds,
y=o j=o • / - 1

i = ! , . . . , « , (5.2)
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for the n coefficients ano,... ,an<n-\. Once these coefficients have been com-
puted, yn can be calculated from

»- i z-i
yn(t) = f(t) + Y,anJ k(t,s)Tj(s)ds, r e [-1,1]. (5.3)

j=o J-1

Clearly, the main practical difficulty lies in calculating the integrals

KTj(t)= k(t,s)Tj(s)ds, / e [ - l , l ] ,
J-\

which are required in both (5.2) and (5.3). It is here that the advantage of
expressing zn as the finite Chebyshev series (5.1) appears: for many kernels
of practical interest, the integrals KTj(t) (where t has any fixed value) may
be evaluated recursively [13], hence saving much of the computational work.

6. A numerical example

In this section the proposed method is used to solve an integral equation
reformulation of the nonlinear two-point boundary-value problem

y"(t) - expy(t) = 0, tG (0,1); y(0) = y(l) = 0,

which apparently is of some interest in magnetohydrodynamics [3, p. 41].
This problem has the unique solution

y'(t) = -In2 + 21n̂ c/cos [^[t-^jjj, tG [0,1],
where c = 1.3360556949... is the root of c/cos(c/4) = \fl. It may be
reformulated as the integral equation

y(t) = f k(t,s)expy(s)ds, t G [0,1],
Jo

where

1 -t(l -s), s> t,
is the Green's function for the homogeneous problem

y"(t) = O, tG (0,1); y(0) = y(i) = 0.

From the integral equation it follows that y(t) is symmetric about t — 1/2.
Taking advantage of this symmetry, the solution z*{t) = txp(y*(i)) of the
integral equation

/ k(t,s)z(s)ds , tG [0,1],
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E [0,1],

was approximated by the Chebyshev series
m - l

Z2m-l(0 = 53fl2«-l,2j72y(2/- 1),
7=0

with the coefficients fl2m-i,2y determined by collocation at the points

„_,,,= ^ ( 1 +cos

Note that these points are just the classical Chebyshev points on the interval
[0, 1] shifted linearly to the interval [1/2,1]. All required integrals were
calculated exactly by Gaussian quadrature of appropriate precision.

The results, which are displayed in Table 1, show that very high accuracy
is obtained even when the polynomials are of low degree. Note that the
degree is 2m — 2, and the size of the corresponding nonlinear system is m.
It should be mentioned that the present problem has been solved in [9, 10]
by the corresponding piecewise polynomial scheme. There very much larger
nonlinear systems had to be solved to obtain accuracy of comparable order.

m

2

3

4

5

6

TABLE

\\y'-y

5.27

2.57

1.47

8.79

7.97

1

2m

E

E

E

E

E

-llloo

- 5

- 7

- 9

- 12

- 14
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