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THE WALLACE PROBLEM: A COUNTEREXAMPLE 
FROM MACOUNTABLE AND ̂ -COMPACTNESS 

ARTURH.TOMITA 

ABSTRACT. We construct, under MAcountabie, a countably compact topological sub-
semigroup of 7* which is not a group, hence a counterexample for the Wallace problem. 
We also show that there is no /7-compact counterexample for the Wallace problem, 
answering a question of D. Grant. Finally, we show that—in some sense—our coun
terexample for the Wallace problem constructed under MAcountabie cannot be done in 
ZFC. 

Introduction. We call the Wallace problem the question 3L. 1 in [1]: Is every count-
ably compact topological semigroup with two-sided cancelation a topological group? 
It was asked by Wallace in 1953 at the annual meeting of the American Mathematical 
Society in Baltimore, Maryland. 

Robbie and Svetlichny showed recently under CH [10] that there is a counterexample 
for the Wallace problem using Tkachenko 's group [ 11 ]. We have shown in [ 12] that there 
is a countably compact free abelian group without non-trivial convergent sequences under 
MA (cr-centered), modifying van Douwen's example in [2]. An immediate corollary of 
the existence of such a group is the existence of a counterexample for the Wallace 
problem. We show here that there is a counterexample to Wallace's problem under 
MAcountabie directly, without finding such a group as above. We remind the reader that 
there is no free abelian group whose o;-th power is countably compact [12], hence one 
cannot have this example as a subsemigroup of a free abelian group, since our example 
contains an ^-bounded subgroup. 

We note that what makes the solution presented here simpler is the fact that we 
were able to give a solution to Wallace's problem without having to deal with the 
product not being countably compact (in [12], our simplest example would contain two 
counterexamples for the Wallace problem whose product is not countably compact, by 
using van Douwen's argument of finding two countably compact groups whose product 
is not countably compact from a countably compact group without non-trivial convergent 
sequences). 

We can get from MAcountabie a counterexample for the Wallace problem whose square 
is not countably compact. The construction is longer and more complicated and it is part 
of our Ph.D thesis. 
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WALLACE PROBLEM AND MACOUNTABLE 487 

In the first section, we give a self-contained proof of the existence of the counterex
ample for the Wallace problem, applying a strong form of the Baire Category Theorem 
that is equivalent to MAcountabie-

In the second section, we show how to modify the construction to obtain other non-
isomorphic counterexamples for the Wallace problem which are subsemigroups of P. 

In the third section we show that there are no regular/7-compact counterexamples for 
the Wallace problem, answering a question from [4]. We apply it to show that certain 
type of counterexamples for the Wallace problem are independent of ZFC. 

The first submitted version of this work is part of the third chapter of my thesis [14]. I 
would like to thank my supervisor Prof. Steve Watson, for his continuing support during 
my Ph.D studies at York University. 

1. A counterexample for the Wallace problem from MAc0Untabie • We will first give 
a general idea of the construction, then we will give the details. We recall the following 
definitions: 

DEFINITION 1.1. A topological semigroup is a semigroup whose addition is continu
ous. 

DEFINITION 1.2. A space is ^-bounded if the closure of any countable subset is 
compact. 

We remind the reader that MAcountabie is Martin's Axiom restricted to countable posets. 
This axiom is equivalent to a strong form of the Baire Category Theorem: 

,n. The circle T is not the union of fewer than continuum many closed nowhere 
dense sets. 

In this work we will only use (#), so no familiarity with partial orders and generic sets 
will be required. 

For someone who is more comfortable with the Continuum Hypothesis but unfamiliar 
with Martin's Axiom, note that under the Continuum Hypothesis, (#) is just the usual 
Baire Category Theorem. We recall that MA implies MA (a-centered) and MA(<J-

centered) implies MAcoimtabie and that the reverse of either implication is not true. A 
proof of the consistency of MA can be found in Kunen's book [6]. More on MA and its 
variations can be found in [16]. 

1.1. General framework. We remind the reader that Robbie and S vetlichny 's counterex
ample was a semigroup that was not a group. The same is true for our counterexample 
we constructed under MA (a-centered). In fact, if one is looking for a Tychonoff coun
terexample for the Wallace problem, that must be the case, since a Tychonoff countably 
compact group which has continuous addition is a topological group (Reznichenko shows 
in [9] that it is also true for pseudocompact instead of countably compact). 

The semigroup S we construct here will be the (algebraic) direct sum of an ^-bounded 
group G and a semigroup generated by an element*. As in the previous examples of the 
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Wallace problem, the semigroup will be a subsemigroup of P, where Tis the circle with 
the usual group topology. 

More precisely, our semigroup S will be the subsemigroup {nx + g : n G CJ, g G G}. 
Clearly S is a both-sided cancellative topological semigroup, since S is a subsemigroup 

of a topological group. 
To make S not a group, we will make sure that x does not have an inverse in S. For 

that, it is enough that 

(*) for all n e to, ifnx G G then n = 0. 

In fact, suppose there exist n G UJ and g G G such that (nx + g) + x = 0. Then 
(n + l)x = — g G G. Therefore, by (*), « + 1=0 , contradicting that «Gw. 

Countable compactness of S will be achieved using Hart-van Mill's idea from [5], 
that is, we will make sure that 

(**) every infinite subset of {nx : n G UJ} has an accumulation point in G. 

As we will see in Lemma 1.1, this will be enough since G is unbounded. 
We note that unlike in [5], our ̂ -bounded group is fixed from the beginning and might 

be definable in ZFC. 
Instead of using an ^-independent family on c as in [5], we will use a proper cr-ideal 

on c containing all subsets of size less than c. We also would like to mention that the 
cj-bounded group in [5] has size c, but ours will have size at least sup{2a : a < c}. 

Before giving more details about the construction, we will need some basic definitions: 

DEFINITION 1.3. An ultrafilter/? on a; is a non-empty family of subsets of a; satisfying 
the following: 

( 1 ) 0 g/>. 
(2) The intersection of finitely many elements ofp is an element of p. 
(3) Every subset of UJ containing an element of/? is an element ofp. 
(4) For each A CUJ, either A G u or u\A G oo. 
A free ultrafilter/? on u is an ultrafilter which does not contain finite subsets of a;. 

Let/? be a free ultrafilter on u andXa topological Hausdorff space. 

DEFINITION 1.4. An elements G Xis a/?-limit of a sequence {xn : n G UJ} if for 
every open neighbourhood U of x, {n G u : xn G U} G /?. 

Note that by Hausdorffhess, the /?-limit of a sequence is unique. We will denote 
this unique point (if it exists) as p-\im{xn : n G UJ}. We remind the reader that the 
/?-limits have nice properties of usual limits of a converging sequence, for instance, for 
a topological semigroup, the sum of/?-limits of two sequences equals the/?-limit of the 
sum of those sequences. 

We will show now that (**) is sufficient to have S countably compact: 

LEMMA 1.1. Let S be the semigroup generated by x and G, where G is uj-bounded. If 
(**) is satisfied then S is countably compact. 
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PROOF OF LEMMA 1.1. The proof of this lemma is as in [5], but we will give it here 
for completeness sake. 

Let {yk : k E of} be an infinite subset of S. Then for each A: G a; we can find nk E u 
andg£ E G such that y^ = n^x + gk. We have two cases to consider: 

(i) There is an infinite subset^ of a; such that «* ^ n\ if £, / E A and £ 7̂  /. 
From (**), fax : k eA} has an accumulation point y in G. Let/? be a free ultrafilter 

over^f such that y is a/?-limit of {n^x : k EA}. Since G is ̂ -bounded, there exists g E G 
such that g is /7-limit of {g# : k E ^4}. Clearly j + g E G Ç S is a accumulation point of 
{yn '> n E u} and we are done in this case. 

(ii) NOT CASE (i). In this case, we can find an infinite subset B of u and n! E u 
such that for each k E B we have «* = n'. Since G is countably compact, there exist 
g £ G such that g is an accumulation point of {gk : k G B}. Clearly, n'x + g E S is an 
accumulation point of {yw : « E ui} hence we are also done in this case. • 

From our discussion above, in order to get a counterexample for the Wallace problem, 
it suffices to find x G f and G an ^-bounded subgroup of T satisfying properties (*) 
and (**). 

1.2. More details. We start by telling exactly what G will look like. 

DEFINITION 1.5. Given y E F9 suppy = {a < c : y(a) ^ 0}. Given a a-ideal J, on 
c, the group generated by / is the group G\ = {y E T : suppj> E / } . When it is clear 
which / we are using, we will denote it simply by G. 

We remind that a a-ideal / on c is a family of subsets of c, satisfying the following: 

(1) 0 G / , 
(2) every subset of an element of / is an element of / and 
(3) the union of countable many elements of J is an element of L 
We have now defined all we need to state our goal in this section: 

EXAMPLE 1.1 (MAcountabie)- There exists x E T such that for each proper o-ideal 
I containing all bounded subsets of c, the semigroup generated by x and Gj is a 
counterexample for the Wallace problem. 

We will shortly see the reason to restrict ourselves to proper cr-ideals containing all 
bounded subsets of c. 

We will denote by 0 the neutral element of T or T^ for £ < c and this will be clear by 
the context. 

How will we get (*) and (**)? 
We already know what the ^-bounded group G will be, but we need yet to say how 

we are going to get x. At stage 7 + 1,7 < c, we will define x(7). 
For (*) and (**) to be satisfied, we will need a couple of inductive hypothesis that 

must be satisfied during the construction of x. 
To show (*), it suffices to show that for each n E u, and for every y E G, there is a fj 

in c such that nx(ji) ?y(j3). In fact we will have (3 E c such that y(J3) = 0 f nx(J3). This 
can be done by making supp nx = c, as suppy is a proper subset of c. 
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In order to explain the inductive hypothesis needed to get (**), we have to fix first an 
enumeration {Ea : a < c} = [UJ]U of all infinite subsets of a;. 

This will be used to code every infinite subset of {nx : n G UJ}, that is, for every 
subset^ of {nx : n G UJ} there exists a < c such that A = {nx : n G Ea}. 

To show (**), we need to guarantee an accumulation point for each infinite subset of 
{nx : n G UJ}. Roughly speaking, during the inductive process we will promise to the 
countable subsets of {nx : n G UJ} an accumulation point. 

As we said earlier, we only will know completely x and consequently {nx : n G UJ} 
in the end of the construction, but we know more about the sequence as we know more 
about x because of the coding we mentioned earlier. More precisely, at stage (3, we will 
know x\j3, therefore we can code {nx\(3 : « G ^ } . We will assign a function gp G F 
such that suppg^ is bounded and gp \(3 is accumulation point of {nx \(3 : n G Ep}. From 
then on, we will make sure that for each a > f3, the point gp \a is accumulation point 
of {nx\a : n G Ep}. In particular, at the end of the construction, gp G G will be an 
accumulation point of {nx : n EEp}. 

As every subset of {nx : n G UJ} is coded by some Ep, every subset of {nx : n G UJ} 
will have an accumulation point in G and (**) will be satisfied. 

Note that the x we find works for any group generated by a proper a-ideal containing 
all bounded subsets of c, as (*) and (**) will be simultaneously satisfied for x and any of 
the groups just described. 

Summarizing what we have done so far: 

LEMMA 1.2. Suppose that there exist {xa : a < c} and {gp : {3 < c} Ç {g E F : 
suppg is bounded in c } such that the following are satisfied: 

(0) for each /3 < c we havexp G T&. 
(1) if (3 < a < c then for each n G N we have nxa(/3) ^ 0 andxp Ç xa. 
(2) if/3 < a < c then gp\oc is an accumulation point of{nxa : n EEp}. 
Then (*) and (**) are satisfied for x = xc and any Gj, where I is a proper a-ideal 

containing all bounded subsets oft. Therefore the semigroup generated by x and each 
G j is a counterexample for the Wallace problem. 

Therefore, to get Example 1.1, it suffices to show that we can produce {xa : a < c} and 
{gp : j3 < c}. For some a-ideals, such families do not exist in ZFC. In fact, in Section 3, 
we will see that there is a model in which for the a-ideal / of all bounded subsets of c, 
there is no x such that the semigroup generated by x and Gj is a counterexample for the 
Wallace problem. 

1.3. The induction. We will show now that using (#), the conditions in Lemma 1.2 can 
be satisfied. 

We will be done with the construction of Example 1.1 by proving the following: 

LEMMA 1.3 (MAcountabie)- There exist {xa : a < c} and {gp : (3 < c} satisfying 
conditions (0)—(2) from Lemma 1.2. 
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PROOF OF LEMMA 1.3. These families are constructed by induction. 
How g1 is chosen: At stage 7 + 1, we will fixy1 any accumulation point of {«JC7 : n G 

F7} and define g7 = y1 U 0 \[7, c). 
How to define xa 's. 
We will do it in cases, we note that we will use MAcountabie (in fact (#)) only in the 

successor stage: 

CASE 1. a - 1. Let x\ G Tl be any function such that for each n G N we have 
nxi(0)?0. 

CASE 2. a limit. Let xa = U/Ka*/?-
Clearly the inductive hypothesis are satisfied in both cases so we will now show how 

to deal with the successor case. 

CASE 3. a = 7 + 1. As mentioned before we define g7 G P such that g7 f7 is an 
accumulation point of {«x7 : n G F 7}. 

For every f} < 7, F G [7]<a; and £ G u; define 

S(/?,F,*) = {H e £/, : Vt, € /WfZ) -©fo)l < JtTï)-

Note that S(/3, F, £) is infinite. Now, we have to choose xa(l) which fulfill the promises. 
Note that it suffices that for all /3, F and A: as above the set {n G S(J3, F, k) : 

|rt*a(7) - g/3(7)| < ppy} is infinite and that nxa(l) f 0 for all n G N. 
In order to apply (#) we define now fewer than c many dense open sets: 
(a) ForeachH G N letOn = {a e T: na^O}. 
(b) For each /? < 7, F G [1]<U} and k, m G u, let 

0(j5,F,k,m) = {a G T: 3n G S(j3,F,*)[« > m and |™- g / 3 (7 ) | < ~ ] } 

CLAIM 1. The sets defined above are dense open in T. 

PROOF OF THE CLAIM, (a) Each On has finite complement and hence is open and 
dense in T. 

(b) Fix<9(/3,F,A;,m). 
We will show first that this set is open. Let b G 0(/3, F, k, ni). By definition, there 

exist n G S(/3, F, k) such that w > m and |«fe — g/j(7)| < £KT- By continuity, clearly there 
exist an open set W containing b such that for all a G FF we have |«a — gig(7)| < ^ . 
Therefore ^ Ç 0(fi, F, £, m) and we are done. 

We will show now that #(/?, F, £, w) is dense in T. Let F be any open subset of T. Let 
n eS(J3,F,k) suchthatn >mmdnV= T.Lzta G F such that \na—gp(y)\ < ^-.Then 
a G 0(/3, F, A:, m) as well, therefore, V H 0(/3, F, £, m) ^ 0 so 0(/3, F, A:, m) is dense. • 

By (#), fV,M, 0(8, ^ *, "0 n aeN o„ ^ 0. 
Let a be any element of C\(3,F,k,m 0(Pi Pi K m) ^ OneN On- To end the proof of the 

Lemma 1.3, it suffices to show the following 

CLAIM 2. xa=x1U {(7, a)} satisfies the inductive hypothesis. 
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PROOF OF THE CLAIM. Clearly (0) is satisfied by xa. Also it is easy to see that (1) 
is satisfied, since *a(7) = a G On = T \ {b G T : nb = 0}. Let us show now that 
(2) is satisfied for xa and we will be done. As noted before, to show that gp\a is an 
accumulation point of {nxa : n G Ep}, it suffices to show that for every F G [a]<u and 
kGuwQ have that the set {/ G S(J3,F, k) : |Zxa(7) - gp(l)\ < ^ } = {/ G Ep : (Vrç G 
FU {7})|/xa(r/) - g / , f o ) | < ^ } is infinite. 

Let m G N. By construction, xa(7) G 0(8, F \ {7}, &, m), that is, there exists n G 
S(/3, F \ {7}, *) such that n > m and |«xa(7) - g/?(7)| < j ^ . Therefore {/ G S(/3, F, Jfc) : 
I^«(7) — ©(7)| < ^j-} is unbounded in a; and we are done. • 

NOTE. We could have made {nx : n G u} dense in V by adding some new dense 
open sets at successor stages. • 

REMARKS. It is a short proof (in ZFC) to show that 

every countably compact torsion free group such that every countable subset 
(+) of it has closure of size at least c contains a semigroup that is a 

counterexample for the Wallace problem. 

Our example has convergent sequences as well as elements of finite order hence it 
could not be obtained by Robbie-Svetlichny's approach, since they relied on (+) to obtain 
their counterexample under CH. 

We remind that every countably compact free abelian group without convergent 
sequences satisfies (+). 

In [12] we showed that every countably compact free abelian group without non-
trivial convergent sequences contains at least \a\ + &o non-isomorphic counterexamples 
for the Wallace problem, where c = Na. 

We also showed that under MA (a-centered), there exist a semigroup and sup{/c < 
c : K cardinal} non-homeomorphic topologies that make it a separable counterexample 
for the Wallace problem whose square is not countably compact (also, under MA (a-
centered), there are sup{« < c : K cardinal} non-homeomorphic topologies that make 
the free abelian group generated by c many elements a countably compact separable 
topological group whose square is not countably compact). 

2. Some non-isomorphic counterexamples inside T. We will show now how to 
get some other non-isomorphic counterexamples inside 7* by choosing some special 
<j-ideals. 

DEFINITION 2.1. A topological space X is «-bounded if every subset ofXof size less 
or equal to K has compact closure. 

NOTATION. The cofinality of /c will be denoted by cf(«). 
Let z be the unique non-zero element of T such that z + z = 0. Given a subset A of c, 

we will denote by \A the function from c into {0,z} such that XA(O) = z if and only if 
a G A. We will call it here the characteristic function of A. 
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EXAMPLE 2.1 (MAC0Untabie)- Suppose K < cf(c) is an infinite cardinal. Then there 
exist x G 7* andGK Ç 7* that is K-bounded but not K+-bounded such that the semigroup 
generated by x and GK is a counterexample for the Wallace problem. 

In order to get a «-bounded group, we will choose a proper «-ideal. For this, we will 
use the fact that n < cf(c). 

THE CHANGES. AS mentioned above we choose some special ideals. Fix ft = {Aa : 
a < c} such that for all a < c Aa is a subset of c of size c and if a f f} t h e n ^ HAp = 0. 

Let IK be the «-ideal generated by ft U {a : a < c}. (Since « < cf(c), IK is proper). 
Let GK be the group generated by IK. 

Clearly GK is «-bounded. To check that GK is not «+-bounded, first note HbsXAa G IK 

and Ua<«+ Aa$IK. 
T h e n ^ U ^ : F G [K+]<^ G tG«r+, X U - K ^ € { x a ^ « : F E [*+}«*}, but 

Xi I A $ GK. Hence G« is not «+-bounded. Since lK satisfies the conditions from 
Example 1.1, we are done. • 

REMARK. I would like to thank the referee for pointing out that an enumeration we 
were using to obtain a condition weaker than (*) was not necessary and for suggesting 
the sets On to obtain (*). From that we could use more general a-ideals as well (our 
cr-ideals used to be the ones generated by ft. U {a : a < c}). Previously, because of the 
enumeration, the example above was not a particular case of the example in Section 1. 

We note that we could use On for T but not for 2, since {0} is open in 2. In [13], we 
constructed a subgroup of 2C whose square is countably compact but whose cube is not. 
In that case, it seems we need our original condition related to (*) using the enumeration. 

COROLLARY 2.1 (MAcountabie)- F contains at least \l\ many non-isomorphic coun
terexamples for the Wallace problem, where cf(c) = Ry. 

PROOF OF THE COROLLARY. From Example 2.1, for all a < 7 there exist x and G^a 

such that the semigroup Sa generated is a counterexample for the Wallace problem. We 
claim that for a < (3 < 7, the semigroups Sa and Sp are not isomorphic. For this, it 
suffices to notice that the set of elements ofSa that have inverse is G#a and that G#a is 
not homeomorphic to G^ . m 

REMARKS. All the semigroups we have constructed here so far have size at least 
sup{2A : A < c}, as it contains all elements of Ie whose support is bounded. However, 
using closing-off arguments one can get a counterexample for the Wallace problem of 
sizec. 

3. Further results and limitations. As we discussed in the introduction, the first 
counterexample for the Wallace problem was only obtained in 1994. Some authors 
have proved before that a counterexample for the Wallace problem cannot have certain 
properties. In 1957, Ellis [3] showed that a locally compact group whose addition 
is assumed only to be separately continuous is a topological group, in particular a 
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counterexample for the Wallace problem cannot be algebraically a group and locally 
compact. 

We recall that a locally compact topological semigroup is not necessarily a group, in 
fact, [0,1) with the usual multiplication is an example. In 1972, Mukherjea and Tserpes 
[7] showed that there is no first countable counterexample for the Wallace problem. 

Pfister [8] showed that every (locally) countably compact regular paratopological 
group (addition is continuous, but the inversion is not necessarily continuous) is a 
topological group, in particular, a counterexample for the Wallace problem cannot be 
algebraically a group. 

Grant [4] gave some other properties that a counterexample for the Wallace problem 
cannot have, among them, sequential compactness. He also mentioned that it was known 
that there is no cj-bounded counterexample for the Wallace problem. 

3.1. p-compactness. We recall the following: 

DEFINITION 3.1. A/?-compact space is a HausdorfY space such that every sequence 
hasa/?-limit. 

We remind that every ^-bounded space is ̂ -compact for every free ultrafilter/? on u. 
More on/?-limits and ̂ -compact spaces can be found in [15]. 

The fact that there is no sequentially compact or ^-bounded counterexample for the 
Wallace problem motivated the following question asked in [4]: 

QUESTION 3. Is every p-compact (T^k), cancellative topological semigroup a topo-
2 

logical group? 
We have shown the following: 

THEOREM 3.1. Letp be a free ultrafilter Then every p-compact both-sided cancella
tive semigroup is a group. 

From Theorem 3.1 and Pfister's result mentioned above, we answer Question 3. We 
note that one can modify the proof of Theorem 3.1 below to show that every sequentially 
compact both-sided cancellative semigroup is a group. 

PROOF OF THEOREM 3.1 . Suppose there exist an S that is /^-compact both-sided 
cancellative semigroup but is not a group. Without loss of generality we can assume that 
S has the neutral element 0. In fact, if S does not have the neutral element then let 0 £ S 
and define SU {0}, where {0} is an open subset and we consider the topological sum of 
Sand{0}. 

Note that we still would have a ^-compact both-sided cancellative semigroup that 
is not a group. Although the semigroup is not assumed to be abelian, we will use + to 
denote the binary operation. Since the addition is continuous, it is easy to see that given 
{an : n G u} and {bn : n G UJ}, p-\im{an + bn : n G UJ) = p-\im{an : n G UJ} + p-
\im{bn : n G UJ}. S is not a group, therefore, there exist x G S that does not have inverse, 
that is, for all y G S we have x+y^0ory + x^0. 
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Define/, G S" as follows: 

fïft -\(n — î)x iîn > i 
I 0 otherwise ' 

For all/ G u, let/(i) =p-lim{fn(i) : n G ^}.Notethat/(/) = (n — tyc for all but finitely 
many w's. Therefore,/(0 + ix = /?-lim{/^(0 : « E CJ} + /x = /?-lim{/^(/) + ix : « G o;} = p-
\xm{nx :neu} =/(0). Hence (*) Vi G uf(i) + à =/(0). 

From (*),/(0) = p-lim{f(2i) + (2i> : / G a;} = /?-lim{/*(2/) : i G u} +p-lim{2(ùr) : 
/ G CJ} =p-lim{f(2i) : / G u} +p-lim{ix : i e v} +/?-lim{zjc : / G Ù;} = p-lim{/'(2/) : / G 
a;} + 2/(0). By the cancelation property, p-\\m{f(2i) : i e u} +/(0) = 0. 

However, from (*) applied to 1, we have/(l) + x =/(0), therefore, (p-lim{f(2i) : / G 
^ } + / ( l ) ) + ^ =p-lrm{f(2i) : i G w} + (^(l)+x) = p-\\m\f(2i) : / G w}+/(0) = 0. Since 
S is cancellative, this means that x has inverse, contradiction. • 

3.2. Products. As we mentioned before the proof of Theorem 3.1, no counterexample 
for the Wallace problem is/?-compact. 

We recall that if the 2c-th power of a space is countably compact, then the space 
is /7-compact for some free ultrafilter p. Therefore, no counterexample for the Wallace 
problem can have the 2c-th power countably compact. 

From this, it is natural to ask: which is the minimal power we have to consider in 
order not to have a counterexample for the Wallace problem? 

As we mentioned earlier we can obtain a counterexample for the Wallace problem 
under MAc0untabie whose square is not countably compact, but it is not known yet whether 
one can obtain a counterexample for the Wallace problem whose square is countably 
compact. We have shown in [12] that the o;-th power of a subsemigroup of a free abelian 
group without non-trivial convergent sequences is not countably compact. 

We have also shown that the same is true for semigroups without identity that are 
subsemigroups of a free abelian group. Therefore, the previously known counterexamples 
for the Wallace problem, namely the one we have obtained under MA (a-centered) in 
[12] and Robbie and Svetlichny's CH example in [10] have the o;-th power not countably 
compact. Related to this, we also showed in [12] that the cj-th power of every free abelian 
group is not countably compact. 

I believe it is still unknown whether one can find a free abelian group whose square 
is countably compact. Related to these type of construction, in [13] we have obtained 
a group under MAC0Untabie whose square is countably compact but whose cube is not. 
However that proof relies on the fact that we are working on 2C so the same arguments 
would not be enough to get a counterexample for the Wallace problem whose square is 
countably compact. 

PROPOSITION 3.1. Let H be a topological abelian group and 0 its neutral element. 
Let E 3 Obea subsemigroup of H of size at most c and G be an u-bounded subgroup of 
H. Then (E + Gf countably compact implies that E+Gis not a counterexample for the 
Wallace problem. 
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PROOF OF THE PROPOSITION. Suppose that (E + Gf is countably compact. It suffices 

to show that E + G is a group, since it is a subgroup of a topological group. Since H is 

abelian, E + G is a subsemigroup. Clearly E + G is cancellative, since is a subsemigroup 

of a group. Eu has size at most c, since £ has size at most c. For each n G u define 

Fn G ( £ + G f as follows: 

For each/ G ̂  let Fn{f) = f(n). By the countable compactness of (E + G)£W, there 

exist F e (E + G)£u} that is an accumulation point of {Fn : n G a?}. Let/? be a free 

ultrafilter suchthatF = /?-lim{Fw : n G ÙJ}. 

CLAIM 3. E + Gis p-compact. 

PROOF OF THE CLAIM. Let {xn : n G a;} be a sequence in £ + G. Fix an e E and 

bn E G such that aw + Z?w = JCW. Le t / G iï^ such that/(«) = aw, for all n E UJ. 

Then F(/) is the p-\im{Fn(f) : n £ UJ} = /7-limit of {an : n E UJ}. Since G is UJ-

bounded, there exist b G G such that 6 is the /7-limit of {Z?w : n G <u}. Hence F(/) + 6 is 

the the/7-limit of {xn : n e UJ}. Since the sequence of x„'s was chosen arbitrarily, we are 

done. • 

Now, E + G satisfies the condition from Theorem 3.1, hence E + G is a group and we 
are done. • 

An immediate corollary of this: 

COROLLARY 3.1. The Example 1.1 has the c-th power not countably compact. 

3.3. Limitations. We recall that our counterexample for the Wallace problem presented 
in this paper is, algebraically, a direct sum of {ny : n G UJ} for some y G T and an 
^-bounded group which could be {x G F : suppx is bounded}. 

In this sense, such a counterexample cannot be achieved in ZFC. Before we give more 
details, we recall that Kunen's Axiom (KA) is the following statement: 

There exist a free ultrafilter p on UJ that is generated by a basis of size Hi. 

Note that CH implies KA trivially. We will use the fact that KA+c = UJ2 is consistent 
(see Exercise VIIIA.10 in [6]). 

DEFINITION 3.2. A space is initially UJ\-compact if every open cover of size at most 
Hi has a finite subcover. 

We recall that a space is initially UJ\ -compact if and only if every infinite subset X of 

size at most Hi has a complete accumulation point x, that is for each open neighbourhood 

£/ofjc,pf| = |£/nJf|. 

PROPOSITION 3.2 (KA). Every initially uj\-compact both-sided cancellative semi
group is a group. 
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PROOF OF THE PROPOSITION. Ifp is any free ultrafilter generated by Hi many el
ements, then every initially UJ\ -compact space is /7-compact. We are done by applying 
Theorem 3.1. • 

We are ready now to show that the type of counterexample for the Wallace problem 
we obtained needs some set-theoretic assumption. 

THEOREM 3.2 (KA). Let H be a topological abelian group. Let E be a countable 
subset of H and G be an unbounded subgroup ofH. Let S = SH(E, G) be the smallest 
semigroup containing EUG. Then S is not a counterexample for the Wallace problem. 

PROOF OF THE THEOREM. Suppose by contradiction that S is a counterexample for 
the Wallace problem. In particular, S is countably compact. Since E is countable and G 
is u\ -bounded, it is easy to show that S is initially u\ -compact. Then by Proposition 3.2, 
S is a group, hence a topological group, since it is a subgroup of a topological group, 
contradiction. • 

LEMMA 3.3 (MAC0Untabie+cf(c) > Hi). There exists an initially uj\-compact coun
terexample for the Wallace problem. 

PROOF OF THE LEMMA. In Example 2.1, we have seen that under MAcountabie + cf(c) > 
Hi, there exist x and an UJ\-bounded group H (for instance the group generated by the 
ideal of bounded subsets of c) such that the semigroup generated was a counterexample 
for the Wallace problem. 

It is not difficult to show that this semigroup is initially u\ -compact. • 

THEOREM 3.4. The existence of an initially u\-compact Tychonoff counterexample 
for the Wallace problem is independent oj\ = H2. 

We could have considered any cardinal arithmetic for c, as long as KA and MAcountabie 
are consistent with it and cf(c) > Hi. 

PROOF OF THE THEOREM. KA and MAC0Untabie are consistent with c = H2. Lemma 3.3 
gives a model where such a counterexample exists. 

Proposition 3.2 gives us a model where every initially u\ -compact cancellative semi
group is a group. From results mentioned earlier, such Tychonoff groups are topological 
groups, hence they are not counterexamples for Wallace's problem. • 

Related to Theorem 3.4, we have shown in [12] that the existence of a initially 
UJ\ -compact free abelian group is independent of c = H2. 

COROLLARY 3.2. Let G = {y e F : suppj> is bounded in c}. 
Then the following is independent of c = H2: There exist x G T such that the 

semigroup generated by x and G is a counterexample for the Wallace problem. 

FINAL REMARK. D. Grant has also asked in [4] whether a counterexample for the 
Wallace problem could have the square countably compact or pseudocompact. It is easy 
to see that our example is pseudocompact for any of its powers, since it contains a dense 
^-bounded subgroup. 
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