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Abstract

In this paper, we give a general definition for f(T) when T is a linear operator acting in a Banach space,
whose spectrum lies within some sector, and which satisfies certain resolvent bounds, and when / is
holomorphic on a larger sector.

We also examine how certain properties of this functional calculus, such as the existence of a bounded
H°° functional calculus, bounds on the imaginary powers, and square function estimates are related. In
particular we show that, if T is acting in a reflexive Lp space, then T has a bounded H°° functional
calculus if and only if both T and its dual satisfy square function estimates. Examples are given to show
that some of the theorems that hold for operators in a Hilbert space do not extend to the general Banach
space setting.

1991 Mathematics subject classification (Amer. Math. Soc): 47A60.

1. Introduction and notation

Operators whose spectrum lies in some sector of the complex plane, and whose
resolvents satisfy certain bounds, have been extensively studied, both in abstract
settings and for their applications to differential equations. For example the m-
accretive and m-sectorial operators studied in [12] fall into this class. An extensive
list of examples of such operators may be found in [17], which also includes a good
description of some of the applications: diffusion semigroups, Stokes' operators, etc.
Many problems in analysis depend on finding bounds on certain functions of such
an operator, such as square function estimates, or bounds on the imaginary powers
(see, for example, [5, 8, 10, 16, 17, 18]). Similar estimates and bounds have been

Research supported by the Australian Research Council and the Centre for Mathematical Analysis,
Canberra.
© 1996 Australian Mathematical Society 0263-6115/95 $A2.00 + 0.00

51

https://doi.org/10.1017/S1446788700037393 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037393


52 Michael Cowling, Ian Doust, Alan Mclntosh and Atsushi Yagi [2]

proved by transplanting techniques from harmonic analysis, for special cases of such
operators, particularly for generators of contraction semigroups (see [3,4, 19]), but it
has not been clarified to what extent these results depend on the particular properties
of the operators used.

If T is a closed operator in a Banach space, with non-empty resolvent set, then the
Riesz functional calculus allows us to form the bounded operator f(T) for functions
/ which are bounded and holomorphic on some neighbourhood of the spectrum of T,
including a neighbourhood of oo when T is unbounded. See, for example, {6, p. 600].
In many of the above applications however, the spectrum of T belongs to a sector of
the complex plane with vertex at zero, while the function / is holomorphic on the
interior of a larger sector, but not in a neighbourhood of zero or a neighbourhood
of oo. The most common examples in applications occur when the functions fs are
defined by fs(z) — z's, where s is real, in which case f(T) = T's.

Our first aim in this paper is to r"efine f(T) for such holomorphic functions of T.
The functions / do not need to be bounded at zero or oo. However it is of interest to
know whether f(T) is a bounded operator whenever / is a bounded function. In the
case when T is acting in a Hilbert space, necessary and sufficient conditions on T for
this to be so have been given by Mclntosh [15]. See also [16].

Our main aim is to examine the relationships between the various types of estimates
that arise naturally in applications, and the boundedness of f(T) for bounded holo-
morphic / , when T is acting in a general Banach space, or, more specifically, in an Lp

space. It is hoped that by considering these matters in this more general framework,
we may be able to cast light on the connections between many of the results in this
area.

We remark that, for particular operators, it can be quite difficult to determine
whether f(T) is bounded when / is bounded, or, more particularly, whether T's is
bounded when 5 is real.

Throughout, X denotes a complex Banach space. By an operator in X we shall
mean a linear mapping T : @(T) —> X whose domain $t(T) is a linear subspace of
X. The range of T is denoted by &(T) and the nullspace by j¥(T). The norm of T
is the (possibly infinite) number

|| 71 = sup {|| rii || m e 0 (7 ) , ||«|| = 1}.

We say that T is bounded if || T || < 00 and defined on X if S>{T) = X. The algebra of
all bounded operators on X is denoted by _£?(X). We call T densely-defined if 3>{T) is
dense in X and closedif its graph {(«, Tu) : u € $(T)} is a closed subspace of X x X.
The spectrum and resolvent set of T are denoted by o(TJ and p(T) respectively. The
former set is the complement of the latter, which is the set of all complex k for which
there exists a bounded operator, called the resolvent and denoted Rr(k), such that
(A/ — T)RT(k) is the identity operator /, and RT(k)(kI — T) is the identity operator
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on S>(T).
For 0 in [0, n), we define the open and closed sectors of angle 8, and the corres-

ponding strips, in the complex plane C:

S* = { z e C \ { O } : | a i g z | < 0 } ,

Se = {zeC\{O}:|argz|<0}U{O},

E° = {z e C : |Imz| < 9},

I» = { z e C : |Imz| <0}.

DEFINITION 1.1. An operator T in X is said to be of type co, where co e [0, n), if
T is closed, o(T) c 5a,, and for each 6 in (co, rt),

\\(T-zI)-l\\ < C\z\~l VzeC\5f l .

Our aim in this paper is to examine the holomorphic functional calculus possessed
by an operator of type co. If 0 < /x < n, we denote by H(S^) the space of all
holomorphic functions on 5°. For the moment, let x/r denote the rational function
£ H> £/ ( l + f )2. We shall employ the following subspaces of °

where ||/||00 = sup{|/(z)|:zeS2},

*(5°) = {/ € H(Sl) : 3s e R+, ff~s e //°

4>(S°) = {/ e //°°(5°) : 3 f l , 6eR , / - f l -6 ( l +

and
( ) = {/ €

so that
) C //°°(5«) C

In Section 2, following [15], we describe a functional calculus for an operator T
of type co, which is one-to-one and has dense domain and dense range. If /x > co,
then f(T) is defined for any / in «^(S°). It is clear from the definitions that f(T) is
bounded if / e *(5°). It is of interest to examine when the H°° functional calculus
is bounded, that is, when f(T) is automatically bounded for every / in //°°(S°),
and various results on this question make up the bulk of this paper. More precisely,
in Section 3, we consider operators of type co whose domain or range is not dense,
and we examine when there are restriction and quotient operators with dense domain
and dense range. In Section 4, we consider the H°° functional calculus proper. We
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establish a condition on T, called (W(ir)), a type of weak square function estimate,
which is equivalent to the functional calculus of T being bounded. We also show
that more classical functional calculi, such as Lp multiplier theory on R", fit into
our general framework. Section 5 is devoted to consideration of the purely imaginary
powers T". In the Hilbert space case, the boundedness of T's for all real s is equivalent
to T having a bounded H°° functional calculus, but in general, as we show here, this
is not true. In Section 6, we consider square functions (also known as g-functions),
and show (for Lp spaces) that square function bounds are equivalent to a bounded
H°° functional calculus.

We use here the "variable constant convention", according to which C, Cu . . . ,
denote constants (in R+) which may vary from one occurrence to the next. In a
given formula, the constant does not depend on variables expressly quantified after
the formula, but it may depend on variables quantified (implicitly or explicitly) before.
Thus, in Definition 1.1, C may depend on X, T, co, and 9, but not on z.

The Fourier transformation and its inverse are denoted " and v respectively.
Thanks are due to Stefano Meda and Alastair Gillespie, for suggestions improving

early versions of Theorem 4.10 and Section 6 respectively.

2. A functional calculus for operators of type a>

In this section, we review a number of known results on functional calculus for
operators of type co. We start by recalling the definition of r(T), where T is a one-
to-one operator of type co with dense domain and dense range, and r is a rational
function with no poles in a{T) (from [6, VII.9]). In [15], Mclntosh showed that when
X is a Hilbert space, then such an operator T has a natural functional calculus for the
functions «^(S°) where 0 < a> < fi < n. Here we sketch this theory and observe
that it extends to Banach spaces. Finally, we recall one of the key theorems of [15],
on equivalent conditions for an operator on a Hilbert space to have an H°° functional
calculus. In sections 4 to 6, we will examine analogues of these conditions on Banach
spaces and consider the implications between them which continue to hold in this
more general context.

Let T be a one-to-one operator of type co with dense domain and dense range-
in a Hilbert or Banach space. If p is a polynomial, then p(T) may be defined
in a natural way, and, because the resolvent of T is nontrivial, p(T) is densely
defined. If q denotes a polynomial with no zeros in o(T), and r = p/q, then r{T)
is defined by r(T) = p{T)q(T)~l. This too is a densely defined operator, which
is independent of the choice of p and q used to represent r. Its domain is 3>{Tn),
where n — max {0, deg/? — deg^}. If T is of type co, then so is T~\ so r(T) is also
well-defined when r is a rational function which is holomorphic at infinity and has no
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poles in a(T) \ {0}. Combining these facts, r(T) is well-defined, with dense domain,
if r is rational with no poles in a(T) \ {0}.

This functional calculus may be extended to =^(S°) as follows. For \jr in *(5°),
ir(T) is defined by a contour integral. More specifically, suppose that co < 6 < fi
and that y is the contour defined thus:

if - oo < t < 0,

if 0 < t < oo.

Then f(T) in i f (X) is defined by

(2.1)

This integral converges absolutely in the norm topology of i f (X). It may be shown that
the definition is independent of 0 in (co, ix), and that, if \jr is a rational function, then
this definition is consistent with the previous one. Further, (\jt\lt')(T) = \J/(T)\j/'(T),
for \ff, \fr' in *(S°). As a consequence, if 0 6 $(5°), then we may define <p(T) by
the rule

(p(T) =al + b(I + Ty1 + [</>- a - b(\ + •)"'] (T),

where <p — a — b(l + -)~l e ^(5°). This definition is consistent with the previous
definitions, and always defines a bounded operator. In particular, if co < n/2, then by
taking <p(z) = e~'z, where t e R+, we obtain the well known result that — T generates
a bounded semigroup.

Suppose now that / e =^(5°), so that f^s is bounded for some positive s, where
Vf(£) = £ / ( l + £ ) 2 . Choose an integer k larger than s. Then %lrk is a rational function
with no zeros in a(T) \ {0}, and f\p-k e ty(S^), so we may define f(T) by

f(T) = \lr~k(T)(f\lrk)(T).

(The domain of f(T) is the set of all u for which (ffk)(T)u is in S>(t~k(T))). We
remark that the operator ijfk(T) is one-to-one with dense range. Thus f(T) is a closed
operator which is densely defined, because its domain includes &(\j/k(T)), as may be
seen by noting that

f(T)fk(T) =

It is not difficult to show that this definition is consistent with those above. Moreover
if / , / , € ^ (5°) and a e C, then
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(i) «(/(T)) + MT) = (af
(ii) MT)f(T) =

It should be noted that f(T) may be unbounded even if / is bounded and it is
an interesting problem to show that for certain operators T, the operators f(T) are
bounded for all / in //°°(5°).

It should also be noted that the above procedure is just one way of defining a
functional calculus for these functions. It is possible to show however that any other
functional calculus for ^"(5°), subject to the requirement that pk(T) = Tk for all
nonnegative integers k (where /?*(£) = z* for all complex numbers z), and a minimal
continuity condition, agrees with the one just described. The proof requires the
repeated use of the following result, whose proof copies that when X is a Hilbert
space [15].

LEMMA 2.1. (Convergence Lemma.) Suppose that T is a one-to-one operator of
type to with dense domain and dense range in X, and that fi > eo. Let {/„} be
a uniformly bounded net of functions in 4*(S°) which converges to a function f in
H°° (S^) uniformly on compact subsets ofS^. Suppose further that the operators fa(T)
are uniformly bounded on X. Then fa(T)u converges to f(T)u for all u in X and
consequently f(T) is a bounded linear operator on X, and \\ f(T) \\ < supa || fa (T) \\.

The Convergence Lemma is a useful technical tool. In many cases, it allows us
to prove that a formula which holds for analytic functions also holds for functions
of an operator. Many authors have worked hard to show just this in particular cases.
In Theorem 5.1 an example of this use may be found. Another use is in proving the
following result.

COROLLARY 2.2. Suppose that T is a one-to-one operator of type co with dense
domain and dense range in X, and that fi > a>. Suppose that

Then f(T) e Sf(X) and

PROOF. It suffices to find a uniformly bounded net of functions in *(S") which
converges to 1 uniformly on compact subsets of 5°. One such net is {/e,jv}, where

5°, We, N e R+,

where e -> 0 and N —> oo.
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One use for this result is in proving boundedness theorems by transference meth-
ods. For example, Theorem 1 of [4] is best proved by applying the Coifman-Weiss
transference theorem [3] to show that f(T) is bounded on LP(M) for all / in ^(5°),
and then using the above corollary to deal with general / in //°°(S°).

We end this section by summarizing some of the related Hilbert space results.

THEOREM 2.3. Let T be a one-to-one operator of type co in a Hilbert space. Then
T has dense domain and dense range.

The proof of this will be given in the next section.

THEOREM 2.4. Let T be a one-to-one operator of type co in a Hilbert space Jff.
Then the following statements are equivalent:

(i) for every /x in (co, n), T has a bounded //°°(S°) functional calculus, that is,
for all f in H°°(Sl), f(T) e Jz?(X) and

(ii) there exists [i in(co,n) such that T has a bounded H°°(S^) functional calcu-
lus;

(iii) [Tis : s 6 R} is a C° group, and for every /x, in(co,n),

|| T" || <Ce^ VjeR;

(iv) if A and B are non-negative self-adjoint operators and U and V are isometries
such that T = UA and T* = VB, then for all a in (0, 1), 9{Ta) -
3>{T*a) = 9){Ba), and

C~l \\Aau\\ < \\Tau\\ < C \\Aau\\ Vw e

and

C~l \\Bav\\ < \\T*av\\ < C \\Bav\\ Vw e

(v) for every /x in {co,n), and every \jr in *(S°),

C-l\\u\\<\j U(tT)u\\2j\ <C\\u\\

and

*) M | | 2 - - l < C | | H | |
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(vi) there exist /u, in {co,n) and \)r, i/s in *(S°) such that \jr(x),\lr{x) > ^whenever
x > 0, and

\j ||VK?7>||2y <C||ii|| VueJf,

and

,1/2

\\rfr(tT
dt~\'

*)u\\2j\ <

Theorem 2.4 is essentially proved in [15], which is based on earlier work of
Yagi [21] and many others before him.

Even in a Hilbert space, there exist invertible closed operators of type co which
do not have a bounded //°°(5°) functional calculus. Examples are given in [16] (for
which co > 0) and [1] (for which co = 0).

3. Decompositions and dual pairs

The functional calculus described in the last section requires that T is a one-to-one
operator with dense domain and dense range. In this section we shall discuss how one
may deal with operators of type co for which these conditions do not hold.

An important concept in what follows will be duality. We say that the Banach
spaces (X, Y) form a dual pair if there is a bilinear form (•, •) on X x Y such that

|<«,v>|<Col|u||NI V M G X , VveY,

\\u\\ < C, sup{|(«, w)| : v e Y, \\v\\ = 1} VueX,

\\v\\ < C2sup{|(M, v)\ : u G X, \\u\\ = 1} Vi; e Y.

It is clear that X and Y form a dual pair if and only if Y and X do. If Xo and Yo

are closed subspaces of X and Y respectively, and if (X, Y) and (Xo, Yo) form a dual
pair, with the same bilinear form, then we call {Xo, Yo) a dual subpair of the dual pair
(X,Y).

EXAMPLE 3.1. From the classical theory of Banach spaces, (lp, ip) (where 1 <
p < oo and 1/p + l/p' = 1) and (c0,11), equipped with the bilinear form (u, v) =
YlT=i ukvk, form dual pairs. In these cases we may take Co = C\ = C2 = 1.

More generally, in the case when X is a Hilbert space, then we may take Y — X and
use the inner product for the duality. (The fact that the inner product is conjugate linear
rather than linear in the second variable causes no problems.) When X = LP(Q),
1 < P < oo, for some measure space £2, then we may take the usual dual pairing
with the conjugate space Lp (Q).
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It is clear from our definitions that if (X, Y) form a dual pair, then Y is isomorphic
to a closed linear subspace of X*, the Banach space dual of X (and of course X is
isomorphic to a closed subspace of Y*). Indeed, the Hahn-Banach Theorem (which
of course requires the Axiom of Choice in general) implies that (X, X*) always forms
a dual pair of Banach spaces. Another consequence of the Hahn-Banach Theorem is
that if (X, Y) form a dual pair and X is reflexive, then Y must actually be isomorphic
toX*.

DEFINITION 3.2. Suppose that {X, Y) form a dual pair and that T and S are operators
in X and Y respectively. Then T and S are said to be dual operators, or S is said to
be dual to T, if both T and 5 are closed and

(Tu,v) = {u,Sv) VM e 9{T), Wv e 9{S).

PROPOSITION 3.3. Suppose that {X, Y)form a dual pair, and that T and T are dual
operators in X and Y respectively. IfTe Jz? (X), then \\T'\\ < C2C0 \\T\\, where the
constants Co and C2 are those in the definition of dual pairs.

PROOF. This is routine.

(We cannot conclude that T e Jif (Y) in Proposition 3.3, because @(T') may be a
proper closed subspace of Y.)

This proposition raises the questions of the existence and uniqueness of dual op-
erators. If T e if(X), the existence of T in ££(Y) such that T and T are dual
operators is not guaranteed. Consider for example the operator l o n l 1 defined by
Tn = (X^li Uj,0,...). This has a dual operator T'\ = (i>i, vu ...) on i°° but no
dual operator on c0. However, if a dual operator T exists in i f (Y), then it is unique.

LEMMA 3.4. Suppose that T, T are dual operators in the dual pair (X, Y). Then
T2, T'2 are dual operators.

PROOF. Since ®{T2) c @(T) and 3>{T'2) c ®(T'),

(T2u, v) = [Tu, T'v) = lu, T'2\ VM e 9{T2), Wv e 3>(T'2).

The same methods clearly enable us to prove the following.

PROPOSITION 3.5. Suppose that T, T are dual operators in the dual pair {X, Y)
and that p is a polynomial. Then p(T), p(T') are dual operators.

PROPOSITION 3.6. Suppose that T, T' are dual operators in the dual pair (X, Y)
and that X e p{T) n p(T'). Then RT(X), RT,(k) are dual operators.
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PROOF. Clearly (XI - T) and (XI - 7") are dual operators. Further, RT(X) and
/?r(A) exist and have domains X and Y respectively. Thus, for all u in X and v in Y,

(RT(X)u, v) = (RT(X)u, (XI - T')Rr(X))

= ((XI - T)RT(X)u, Rr(X))

It is a corollary of this result and the above remarks that T may have at most one
dual operator T for which p(T) fl p(T') is nonvoid. In particular, an operator T of
type a) may have at most one dual operator T of type co. (We are not assuming that T
has dense domain.)

COROLLARY 3.7. Suppose that T, T are dual operators in the dual pair (X, Y),
and that both T and T are of type (o, where 0 < u> < n. If ix > a>, and <j> e $(5"),
then (/>(T) and 0(7") are dual.

PROOF. Suppose first that f e *(5°). Then (2.1) (the definition of ty(T)) and
Proposition 3.6 show that

(f(T)u,v) = — / ir(X)(RT(X)u,v)dX
2ni JY

= / x/riX.) (u, Rr(X)v) dX
2ni JY

= (u, t(T')v) Vu eX,Vve Y.

In general, 0(-) = 0(oo) + [0(0) - 0(oo)](- + I)"1 + ir(-), where \ji G *(5°), and
so

, v) = ((</>(oo)/ - [<P(0) - <t>(oo)]RT(-l) + ir(T))u, v)

= (u, (0(oo)/ - [0(0) - <P(oo)]Rr(-l)

= {u,<p(T')v) VM € X, Vv € 7.

Our aim in the remainder of this section is to show that, at least in reflexive spaces,
one may always factor off the nullspace of an operator of type co. Similar results in
slightly different situations may be found in [11] and [13]. See the discussion after
the proof of the following theorem.
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THEOREM 3.8. Let T be an operator of type co in X, and define Xo, Xw, and Xoo
thus:

Xo = \u e X : lim(/ +nT)~1u exists) ,

Xoo=\ueX : l im( / + «7)-1M = o ] ,

Xoo = \u e X : hm(I + n~1Tylu = u\ .
I n-»oo J

Then these are all closed linear subspaces of X, and Xo = i/Y(T) © &(T), XOo =
Wf) and Xoo = 9{T).

Let To be the restriction of T to the domain &{T) n Xo, and define Too and T^
analogously. Then these are operators of type co in Xo, XOo and X^ respectively,
and Too is one-to-one with dense range, and T^ has dense domain. Moreover, the
restriction TofTto the domain 3>{T) = ^(Too) n ^ (7^) is a one-to-one operator
of type co with dense domain and dense range in X = X0o n X^.

IfX is reflexive, then X = Xo = X^.

PROOF. Recall that since T is of type co,

(3.i) Hcz + n r r 1 ! ! = -
n

i c< = c.
- n \/n

This implies that Xo, XOo, and Xoo are closed subspaces of X; we shall give the details
of this for Xo only. Suppose that « lies in the closure of Xo. Then, for any v in Xo,
and positive integers n, n',

(I + nT)'lu - (/ + n'T)~lu = [(/ + nT)~xu - (I +

+ [(/ + n'Tyxv - (/ + n'JT'ii].

Since the norms of the terms in the first and last square parentheses on the right hand
side may be made small, uniformly in n and «', by taking v close enough to u, and the
middle term may then be made small by taking n and n' large enough, the sequence
(/ + nT)~lu is Cauchy, and so converges, that is, u lies in Xo.

Let P : Xo -+ X be the linear map given by

Pu = lim(7 + nT)~1u.
n—>oo

Then ||P|| < C, from (3.1). We shall first show that #(/>) = jY{T) = JT{J - P)
(whence P2 = P - (/ - P)P = P), and then that oY(P) = &(J).
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The required set inclusions will follow from repeated use of the identity

(I +nT)~l = 1 -nT(I + nT)~\

If u e <JV{T), then (/ + nT)u = uandu = (I +nT)~lu for all n, whence

Pu = lim (/ + nT)~lu = lim u = u,

so u e ffl(P). Suppose that w € M{P) and w = Pu = limn^0O(/ + nT)~]u. Then

T(I + nT)-lu = - « - - ( / + nT)~lu -+ 0,
n n

as n —> oo. Hence (/ + nT)~xu —> w and T(I + nT)~lu —»• 0. Since T is closed,
this implies that w € S>{T) and that Tw = 0. Thus Jf(T) = &(P).

Suppose next that w e JV(J). This implies, as above, that Pw = w. In other
words, JY{T) c jY{l-P). Conversely,if w e «yK(/ - F ) , thennTCZ+nr)-^ ->
0 as n —>• oo, and another argument using the fact that T is closed shows that
w € <yT(r).

It now follows that Pis a bounded projection on Xo, andthatX0 = &{P)@jY(P).
We now proceed to show that JV(P) = BS{T). If w e JV(P), that is, (/ +

nT)~lu -» Oas« ->• oo, then r c r + rt"1/)"^ -^ w, and sow e ^ ( T ) . On the other
hand, if w e &{T), with w = Tu say, then

(Z + zzr)-1!^ = - M - - ( / + « 7 " ) - ' M -+ 0

asn -> oo, and sow e ^Y{P). Since ̂ ( P ) is closed, it follows that ̂ (T ) =
A similar (but easier) calculation shows that Xx = 3>(T).
It is straightforward to verify that To, Too, and 7^ are of type co in the Banach

spaces Xo, XOo, and Xoo, by using the facts already established about domains and
ranges. So we may define the subspace (Xo)o thus:

(Xo)o = I u € Xo : lim (/ + nT)~xu exists | ,

and define similarly (Xoo)oo and (Xoo)^. Clearly (Xo)o = Xo, (Xoo)oo = ^oo, and
(•̂ 00)00 = ^oo- The statements about domains and ranges follow.

If X is reflexive, then X is locally weakly sequentially compact, by the Eberlein-
Smulian theorem (see [22, p. 141]). Then for any u inX, the sequence (7 +nT)~1u has
a weakly convergent subsequence, that is, there exist v in X and an increasing sequence

of integers {nk} such that (/ + nkT)~[u -^> v in X. (The symbol —^ indicates weak

convergence.) ThennkT(I+nkT)~lu -^» u — v. NownkT(I+nkT)~lu isabounded
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sequence in the closed subspace &{T), so u — v e &(T) C Xo. We shall now show
that v e JY(T) = JZ(l — P). For any positive integer m,

mT{I + mT) lv — v — (I + mT) iv.

Now bounded operators are weak-weak continuous, so for all y in X*, by the resolvent
identity,

(mT(I + mTylv,y)

= {v, y) - lim ((/ + mTyx (I + nkT)~lu, y)

= (v, y) — lim ( (/ +nkT)~lu, y\ + lim ( (/ + mTyvu, y

= (v,y)-{v,y)+0

= 0.

It follows then that u e Xo.
Similarly, if X is reflexive, then for all u in X there exists v in X and an increasing

sequence of integers {nk} such that (/ + n^Ty^u -^> v as k ->• oo. Note that
(/ + nk

lTyxu is in @(T), so, as before, v G @(T) = X^. It follows from weak-
weak continuity that, if A. > 0, then

(T
nk )

as k -> oo. Now, by using the resolvent identity, we see that

(T+xiyl (i + —T) -(T+xiy1 = — \k(T + xiy1 - 1U1 + — T) -^ o
V nk ) nk

l \ nk J
inj£f(X).Thus

- l

u

This implies that (T + XI)~]u = (T + A/)" V and so u = v. Thus u e @(T) and so

One particular case of the above theorem states that every operator T of type co in a
Hilbert space satisfies ^(T) = X and ̂ K(7) ®BS{T) = X. This proves Theorem 2.3.
Another special case is when (X, Y) is a pair (LP(C2), LP'(Q)) where 1 < /J < oo.
Again we get that 3>(T) = X and Jf{T) ®0t(J) = X. The result that 3>(T) is dense
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when X is reflexive is essentially due to [11]. We have extended the technique to deal
with the range of T as well.

Theorem 3.8 shows how one may deal with operators which are not one-to-one.
Suppose that T and T are dual operators of type a> in (X, Y), and that X is reflexive.

Wfj and Y =Then* = '). Further the annihilator of M(T)
in Y is JY{T'), and the annihilator of 3HT') in X is J/(J). Thus &(T') is isomorphic
(though not necessarily isometric) to the dual space of ) , and vice versa, that is,
lM(T), &(T')) form a dual subpair of the dual pair (X, Y). If we define operators
T = T\mj) and T' = T'\-^f^, then T and T are densely defined dual operators of
type oi in the dual pair (&(T), &(T')y The results of this section then, show that at
least in reflexive spaces, there is no essential loss of generality if we assume that a dual
pair of operators are one-to-one and have dense range, provided that we are happy to
work with dual subpairs.

The following examples illustrate these theorems.

EXAMPLE 3.9. Suppose that X = C[0, 1] and that Tu(s) = su(s). Suppose that
Tu — 0. Then su (s) = 0 for all s and so u (s) = 0 for all s ^ 0. Since u is continuous,
it follows that u = 0 and that T is one-to-one. However it is easy to see that T
is not onto since every function in the image of T vanishes at 0. Thus in this case

x 3 x0 = Wn-
EXAMPLE 3.10. This example illustrates the idea behind the proof of Theorem 3.8.

Suppose that X = C and that

/0 \

T =

0
0

where kj > 0 for each j . Then as n -> oo,

n \
0

(/ +nTYx = 1

1+nA.i

0 ^

(J
\oo o

say. This constructs a projection /> for which £%(P) = JY{T) and JY(P) =
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4. H°° functional calculus and the condition (W(ir))

We shall return now to the discussion of the relationships between some of the
many properties of functional calculi for operators in a Banach space. We also relate
our functional calculus to more traditional functional calculi.

We assume throughout this section that 0 < co < fi < n and that T is an operator
of type co in X, which is one-to-one, with dense domain and dense range. We shall
say that T has a bounded //°°(S°) functional calculus if it satisfies the following
condition:

[b{T) e J?(X) Wb e

j
Note that if b e //°°(S°), the functions x//s, defined by the formula

\frs(z) = b(z) Vz € S*, Vs e R+,

are in *(5°) and satisfy

II^IL<
(1+Z)2 e R+.

Furthermore, as 5 tends to 0, the functions fs converge to b uniformly on compact
subsets of 5°. It follows from the Convergence Lemma that, in order to show that T
satisfies (FM), it suffices to show that \\f(T)\\ < C \\f\\x for a l l - i n

THEOREM 4.1. Suppose that T, T' are a dual pair of operators of type co which are
one-to-one, with dense domain and dense range, acting in the dual pair of Banach
spaces (X, Y).lfT satisfies (FJ then T also satisfies (FM) andb{T)' = b{T')forall
b e //°°(Sp.

PROOF. The fact that T' satisfies (F^) follows immediately from the above remark
and Corollary 3.7. Suppose that b e //°°(5°), and define \frs in *(5°) as above.
Using the Convergence Lemma and Corollary 3.7 we get

(b(T)u,v)= lim (xlrs(T)u,v)
i-i-0+

= lim (u, Ir.vnv)

= (u, b(T')v) VM e X, Vv e Y.
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Suppose now that {X, Y) is a dual pair of Banach spaces, and that ^ € * ( 5 )
Consider the following condition which the operator T might satisfy:

f
Jo

Our aim in this section is to show that the conditions (FM) and (W(\js)) may be
regarded as being almost equivalent. To show that (FM) implies (W(t/0) is relatively
straightforward, and we do this first.

THEOREM 4.2. Suppose that T is a one-to-one operator of type co in a Banach space
X, with dense domain and dense range. IfT satisfies (FM) and x/r e ^(5°) then T
satisfies (W(x/f)).

PROOF. Fix u in X, v in Y and positive real numbers £ (small) and N (large). It is
easy to see that there exists a Borel function h of modulus 1 such that

fN dt fN dt
/ \W(tT)u,v)\ — = (ir(tT)u,v)h(t,u,v) — .

Je ' Je '

Define b : 5° ->• C by the rule

_ fN dt

Je t '

Then, since \\r € *(SjJ), there exist positive C and s such that

\f(t^)\— <Csup /

' tsS° Jo
— <

Note that although b depends on a, v, e and N, the bound on 11611̂  depends only on
the function \\r and the angle [i. We have then that

\MtT)u, v)\ - = (b(T)u, v) < \\b(T)\\ \\u\\ \\v\\

Taking limits as s —> 0 and N —> oo gives the result.

We need to impose some extra conditions on the function \j/ to ensure that (W(i{r))
is strong enough to imply (FM).
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An important tool in our work is the following variant of the Mellin transform, xfre.
Suppose that xfr e ^ (5°) . The function ifre is defined to be the function i/r o exp on the
strip £° . The Fourier transform of TJre thus satisfies the condition that

-iXxfe(x)dx= /
JO

dx

)

Thus

/

° dr

In particular,

A similar proof shows that

<Ce -n\\\

/fl) — VA G R,
x

V A G R .

VA G R .

d -

dk^e( VA € R.

DEFINITION 4.3. Suppose that 0 < v < it. Then

- i
—vl-l G L°°(R) V/x G (0, v),

and

THEOREM 4.4. Suppose that T is a one-to-one operator of type a> in a Banach
space X, with dense domain and dense range, that co < /x < v < it, and that
2v — ix < rj < it. Suppose also that i]/ G ̂ ( S " ) . IfT satisfies (W(\fr)), that is, if

dt

t ~

then T satisfies (F,,).

VM eX,Wve Y,

PROOF. Choose a such that 2v — fi < a < r], and b in //°°(5°). We must find a
bound on ||fe(r)|| .

We define y : R+ —> C as follows: y o exp = ye, and

(4.1)
1

^ (A) cosh (a A)
V A G R .
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Clearly we have

[18]

YeW\ < Ce("-aW VA e R.

Furthermore,

'e(k) cosh(aA) + fe(k)a sinh(aA.)

^ 2 (A) cosh2 (a A)

It follows that |yc| and \%\ are both bounded by Cel2v~ll~aW. Now

(1 + ix)ye(x) = —

< Ce(2v-'M'am VA. e R.

e R,

SO

/
JO

e(x)\ dx
J — 00

Or°°
1(1 + ix)ve

-oo

Oroo

IKW -
-00

\J-OO

I/2 / /-oo/ /•<» \ 1/2

1/2

1/2

< oo

because a > 2v — ix.
We now define functions )3+, )8~ : R+ -> C by

and

V U R

P~(k) = ^ye(k)be(k)eak VI G R.

Since yc e L'(R) and

= \be(r + ia)\ < VT € R,

(and similarly p~) are in L°°(R+) and < C
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Note that

(4.2)

be(X)eaX
 ?

+ - T — ——- ire (X)
2xlre(X) cosh(aX) 2xfre (A.) cosh(aA)

= be(X) VI € R.

Inverting the Fourier transforms gives

/•CXI i»OO

be(z) = / # ( T ) I M Z -r)dr+ P;{x)fe{z - r) dx Vz e R,

and by analytic continuation, this continues to hold for z in E°. By changing variables
(t — eT and £ = ez) we deduce that

For small positive e and large postive N, we define be,N by the formula

(y) y + j[" /J"(0̂  (7) 7

As e and N tend to 0 and oo,be<N tends to b uniformly on compact subsets of S°, and
the functions be,N are uniformly bounded. Moreover,

e,AT)u, v)\ = I jf" p

)<t()u, v)\ — + f0 Kt(sT)ut v)l
S Jo S

c (fdffoo ff«ff ffwff v« e ^r, \rw e r,

because T satisfies (Wif)). Therefore, by the Convergence Lemma, b(T) e

The following corollary is immediate.

COROLLARY 4.5. Suppose that T is a one-to-one operator of type co in a Banach
space X, with dense domain and dense range. If T satisfies (W(\fr)) for some x/s in
1*V(S°—), where 0 < v < n, then T satisfies (F,,) for any r) in (v, jr).
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There is a problem in applying Theorem 4.4 and its corollary, namely that if we

use a function r/r for which > Ce~vW for all real k, we cannot obtain (F,) for

any t] in (0, v), no matter how small co is. For instance, if f (z) = ze z for all z in
5°, then, as shown below, v = n/2. The next result presents a way to get around this
limitation. (The idea of introducing the extra parameter 9 may be found in [2].)

THEOREM 4.6. Suppose that T is a one-to-one operator of type co in a Banach space
X, with dense domain and dense range, that co < [i < v < n, that 0 < 0 < fx — co,
and that 2v — /z — 9 < rj < n. Suppose also that \(r e ^,,(5°). If

/

°° dt

\(ir(teeWT)u, v)\ — < C \\u\\ \\v\\ Va e X, Vu e Y, Ve € {±1},
t

then T satisfies (F^).
PROOF. Some straightforward modifications to the proof of Theorem 4.4 estab-

lish this more general result. We list these here, and leave the reader to fill in the
details.

(i) y is redefined: (4.1) is replaced by

ye(k) = VA € R,
fe(k)cosh((a+9)k)

so that y e L'(R) as before;
(ii) fi+ and fi~ are unchanged, and so (4.2) is replaced by

e-exp+(k)ire(V + eekp-(k)jre(k) = be(k) VA e R;

(iii) the integral expression for | (b(T)u, v) \ involves the integrals involved in this
variant of condition (W(\j/)). Equality (4.3) is replaced by

Next we give a few examples of how this theorem may be used. We begin by
looking at some functions in the class ^V(S^). In particular we obtain some of the
results from [2].

EXAMPLE 4.7. RecaJJ that 0 < u> < /u, choose Z in S° \ S^, and consider the
rational function \j/:

z-Z z-Z (z-Z)(z-Z)
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Clearly f e *(S°). Further,

/•O

eW=
J — O

r)dr VUR,
J — OO

where

/ ( T ) = =- VT e R.
(*' - Z)(e* - Z)

As is easily checked, / ( • + 2ni) = e2nXf{-). Now

1 f°° 1 Z 1 0 0

/ f(r)dr / f(r + 2ni)dr = Res(/, log Z) + Res(/, log Z)
2*/ Ĵ oo 2jri y_TO

(where the branch of the logarithm has imaginary part in the range [0, 2*)). Thus

/ /< T ) d T = i _ 2,x t R e s ( / ' l o§ Z ) + R e s ( / ' lQg Z ) ]
2ni

2*/e-'xlog|Z| sinh((* - argZ)X)
sinh(*A.)

It follows then that

2* sinh((* — arg Z)X)
= VA. € R,

sinh(*A)

so if v = arg Z, \{r e ^V(S°—).
Corollary 4.5 shows that if T satisfies (W(\(r)) for this choice of t/r, then T satisfies

(F,,) when r) > arg Z.
Similar calculations show that the properties of ^r2 are similar to those of \[r. The

key fact is that

EXAMPLE4.8. Define ^(z) = ze~\ forallz in S°/2. If ^ < ?r/2, then ^ e
Further,

Jo

and since i r ( l - ik)\ > Ce"11^1/2 for all X in R, f e *r t
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Suppose that T is an operator of type co, where co < n/2. If

[ \(Te-'Tu, v)\ dt<C \\u\\ \\v\\ V« e X, Wv e Y,
Jo

then Corollary 4.5 shows that T has a bounded H°°(S°) functional calculus whenever
rj > TT/2.

More generally, suppose 9 e (0, n/2 — co). Note that by a simple change of
variables, and a little simplification,

jf" \{nteieT)u, v)\ y = j f \(Te-'°Tu, v)\ dt.

Thus, if

[ \(Te->e"°Tu, v}\ dt <C \\u\\ \\v\\ V« G X, Vv e y, V£ G {±1},

then by Theorem 4.6, taking /x to be smaller than, but close to n/2, T has a bounded
H°°(S°) functional calculus for any r\ greater than n/2 — 0.

Similar reasoning shows that if ijr(z) = z2e~2z, then ^ G ^/2(5°/2—).

EXAMPLE 4.9. Suppose that f(z) = z/(l + z)2, for all z in 5°. Again it is clear
that when 0 < /x < n, f G *(5°). Now

Thus

/

°° 1 kn

(1 + r)2 sinh(Ar)

> Ce~wW and so ^ €

kn

sinh(A.7r)

Again suppose that T is an operator of type co, where co < n, and that 0 < 6 <
n — co. As above, a simple change of variables shows that

JO
ewT)u, v)\ - =

If we can find a pair of estimates of the form

\(T(t + e±ieT)-2u, v}\ dt <C \\u\\ \\v\\ VM G X, Vw e 7,

then by Theorem 4.6, T has a bounded H°°(S°) functional calculus whenever)
n — 9. In particular, one may establish a bounded functional calculus for a small sector
5°, if one can establish these estimates for large values of 9.
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Examples 4.8 and 4.9 show that our methods give a different approach to the results
of [2], and put the results there in a more general light.

It is interesting to compare our H°° functional calculus with more classical theories.
Hormander's multiplier theorem, applied to radial functions, tells us that if m : R+ ->•
C satisfies the conditions

(4.4) <C\t-\~k

whenever 0 < k < fln/2]] + 1 ([[*]] denoting the integer part of x), then w(A) is a
bounded map on LP(R") whenever 1 < p < oo. This result may be improved slightly,
but all variants require a little more than n \ l/p — 1/2| derivatives behaving well.

With a view towards proving Hormander type theorems using our H°° functional
calculus, we establish a connection between the two types of calculus. To obtain a
reasonably precise statement, we need another definition. Given a function m on R+,
we write me for the function on R obtained by composing with the exponential, that
is, me = m o exp.

For any positive real number a, let A^ , (R+) be the set of all bounded continuous
functions m on R+ such that ||/w || A« < oo, where

Here, for all £ in R,

neZ

= ( 2 - 2 | £ | ) + - ( 1 -

= (1 - 2|£ - 1|)+ + d / 2 - |£ -

and

<t>nAS) = <f>x(2l-"eH) Vn e Z + , V£ e {±1}.

This space is sometimes called a Lipschitz space, and sometimes a Besov space.
It is not hard to check, using Fourier analysis, that if condition (4.4) holds when
k = 0, 1, 2 , . . . , K, then m is in A^ ,(R+) when a < K. The key to doing this is
the observation that, if Q) denotes differentiation and <& integration on R (that is,

me*<j>n =

coupled with the estimate that
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THEOREM 4.10. Suppose that T is a one-one operator of type 0. Then the following
conditions are equivalent:

(i) T admits a bounded //°°(5°) -functional calculus for all positive /x, and there
exist a and A in R+ such that

\\m(T)\\ < An~a IMIoo Vm 6 //°°(5°), V/i € R+;

(ii) T admits a bounded A^ l (R
+) functional calculus.

PROOF. We first show that (i) implies (ii). Take m in A^ t and write

me = > me *q>n = > mM o exp,
neZ neZ

say.
By the Paley-Wiener theorem, me * <pn continues analytically to an entire function

£{me * 4>n), and, for any b in R+,

sup
xeR
\y\<b

< e° me * 4>J .

Thus, w(n) has a bounded analytic extension ^mM into 5^ for each positive /A, and
taking (i to be 2~|B|, we have the estimate

< e2 \me * 4>n

Since 7 has a bounded //""(SP-in^-functional calculus, and

we may define mM(T) = ^mM(T), for any positive /x, and we then have that

\\mM(T)\\<e2A2Ma\\me*]>n\\ ,
II II oo

so we may sum the operators mw{T) to obtain the desired result.
To prove the converse, we show that if m is in //°°(S°), then m\R+ lies in A^ v

and

With this result, if (ii) holds, then (i) follows.
Suppose that m is in //°°(5°), and observe that the proof of the Paley-Wiener

theorem implies that, if n ^ 0, then

me*k
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Now it follows that

as required.

REMARK 1. In 1979, Coifman remarked to one of the authors that there were
similarities between analyticity in all sectors and Hormander-type conditions. This
quantifies his comments.

REMARK 2. Theorem 4.10 has been used by X. T. Duong to reduce the number of
derivatives required for a Hormander type multiplier theorem for sub-Laplacians on
nilpotent Lie groups [7].

5. Operators with bounded imaginary powers

There are quite a few interesting examples of operators of type co for which the
imaginary powers are bounded. When this happens, the growth of the norms of T's as
s goes to infinity is sometimes polynomial and sometimes exponential. We consider
only the latter possibility in this paper. We say that T satisfies condition (£M) if
T" e 3?(X) for all real s, and

(£„) || 7""* || <Ce | s | " VseR.

A consequence of the Convergence Lemma is that (T's) is then a C°-group. (We
remark that Tis is defined to be fs(T), where fs(z) = zis for all z in S°, as in
Section 2).

One important consequence of condition (£M) for an operator T in X is that the
domains of the fractional powers Te may be characterised by the complex method of
interpolation: precisely, one has

9{Te) = [X, ®{J)\ WO € (0, 1).

This is because the bounds (E^) allow the three lines theorem, the basic result under-
lying the complex method, to be applied.

It is immediate that (FM) implies (£M), and for operators in a Hilbert space these
two conditions are equivalent. However, as we shall see, this equivalence does not
hold in more general spaces.
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In the last section, we saw that, under appropriate restrictions on x/r and /x,
implies (F^). A fortiori, (W(iJ/)) implies (£M). We give here a brief alternative proof
of this fact.

THEOREM 5.1. Suppose that (X, Y) is a dual pair of Banach spaces, that T is a
one-to-one operator of type co with dense domain and dense range in X, and that
co < ix <v <n. Then for rjr in *v(5°), (W(\/r)) implies (£„).

PROOF. For any real A, we have that

f -

and so, from the Convergence Lemma,

)) i°°r
Jo

It follows that, for any u in X and v in Y,

\(Tiku, v)\ = 1/fak) I" t~ik (t{tT)u, v) —
Jo t

feW f
Jo

\W(tT)u,v)\ —

<CevM\\u\\\\v\\,

by assumption. Hence, T satisfies (£„).

(It may be of interest to note that deriving Theorem 5.1 from Theorem 4.4 yields a
weaker result: one can show only that T satisfies condition (En), where r\ > 2v — /x.)

EXAMPLE 5.2. An interesting example in this theory is based on the celebrated
theorem of Steckin. This example shows that, unlike in the Hilbert space case,
the bounds on the norms of the complex powers do not guarantee the existence of
a bounded H°° functional calculus, that is, (£M) does not imply (F^). Recall that
Steckin's theorem states that if b € L°°(R) and has bounded total variation, and
1 < p < oo, then the Fourier multiplier operator Fb : f \-+ (Jbf)", initially defined
as a bounded operator on L2(R) by means of the Plancherel theorem, extends to a
bounded operator on LP(R). In particular, if b is bounded and differentiable, and b' is
integrate, then ||Ffc||p < CP(||Z>|L + ||fe'||,).
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Fix p in (1, oc). It is an immediate consequence of Steckin's theorem that if t e R+

and 5, is the Fourier multiplier operator on LP(R) given by the rule

then ||S, \\p < 2CP. It is also easy to see that (5,)r>0 is a bounded semigroup of class
Co, with infinitesimal generator T such that

V| €R,

and that the resolvent operator (kl — T)~l extends holomorphically into C \ So. Since

dt

< 5 dist(A, R+r 1 Vk e C \ So,

the semigroup is holomorphic and T is of type 0. Moreover, T is a one-to-one operator
with dense domain and dense range in LP(K).

It is clear that (Tiuf)" (|) = e l ?" / ( | ) , that is, Tiu is the operator of translation by
u. In particular,

17*'" | = 1 VM € R, Vp e (1, oo).

LEMMA 5.3. Suppose that p ^ 2 . Then the operator T just described is a one-to-
one operator of type 0 with dense domain and dense range in LP(R), which satisfies
(EQ), but T does not admit a bounded H°°(Sg) functional calculus for any positive 0.

PROOF. We argue by reductio ad absurdum. We make the hypothesis that, for some
p in (1, oo) \ {2} and some 0 in (0, n), T has a bounded H°° functional calculus for
the sector S°. For m in H°°{S°e) and / in L"(R),

that is, m(T) is the Fourier multiplier operator associated with m o exp. It follows
that, for any bounded holomorphic function b in the strip E°, the Fourier multiplier
operator Fb is bounded on LP(R).

Observe that if a : Z -> C is any bounded function, then the function ba, defined
thus

neZ

is bounded and holomorphic; our hypothesis guarantees that ba is a bounded Fourier
multiplier for LP(R). By K. de Leeuw's theorem [14], ba\z is then a bounded Fourier
multiplier for LP(T) (where T is the circle). It is clear that ba\z = a + h *a, where

h * a(n) = ^ a(n- k)e~kl V« e Z.
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Since

*€Z\(0)

if b : Z M>- C is a given bounded function, then setting

a = (b-h*b + h*h*b-h*h*h*b-\ ),

we have produced a bounded function such that ba\z — b. Thus every bounded
function b : Z —• C is a Fourier multiplier of LP(T). But this is possible only if
p = 2. See for example, R. E. Edwards and G. I. Gaudry [9].

A positive result in this direction is the following proposition, which states that if
T has a bounded H°° functional calculus on a big sector S° and satisfies bounds on its
imaginary powers on a smaller sector S°, then it must have a bounded H°° functional
calculus for all sectors bigger than S°.

THEOREM 5.4. Suppose that 0 < co < /x < v < 9 < n. If T is a one-to-one
operator of type co with dense domain and dense range in X, which admits a bounded
H°° functional calculus for the sector S°, and if

\\Tiu\\ <C^'" ' VHGR,

then T admits a bounded H°° (S°) functional calculus. In other words, ifT satisfies
(Fe) and (£M), then T satisfies (/%).

PROOF. Suppose that b e //°°(5°). Our aim is to decompose b thus:

Vze5v°,
teZ

where each bk e H°°(S$), and

keZ

If we can do this then the sum ^2k€ZT'kbk(T) converges in S£(X) and, by the
Convergence Lemma, is equal to b(T). Furthermore ||b(T)|| < C \\b\\gg.

We effect this decomposition by changing variables (z = ew), thereby transforming
from sectors to strips. We must now show that any n in //°°(S°) may be expressed in
the form

n(w) = Y^,eikwnk(w) Vu; e S°,
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where nk e //°°(E?) and

teZ

We shall do this by using Fourier analysis.
Let 0 be any CC°°(R) function such that

(i) supp(0) c [ -1 , 1],
(ii) 0 < </>(£) < 1 V| e R,

(iii) E t e z ^ - *) = 1 V| e R.

Define nt by the formula
/•OO

nt(iu) = / <j>(w - t)n(t)e-ik'dt Vu; e E^.

By the Paley-Wiener Theorem, 0 is an entire function, whose decay properties ensure
that the integral defining nk(w) converges for all complex w. Fix w in X$ and k in Z.
Contour shifting allows us to write

= I
J — O

-t - isv)n{t + isv)e-i(l+iev)kdt,

for any ein(— 1, +1). Choosing e to have the opposite sign to k shows that

where
Cg,,, = sup /

\y\<e+vj-o
+ iy) dx < oo.

\y\<

A routine calculation shows that if uk(%) = </>(f — fc)«(|) for all | in R, then

yOuk(w) = [ 4>{w- t)n(t)enw-')kdt = eikwnk(w) Ww
J —OO

Clearly, J^keZ uk{%) = «(§), so by taking the inverse transforms we get the required
decomposition.

In Theorem 2.4 we saw that if T is a one-to-one operator of type co in a Hilbert
space which satisfies (/v), where /x > <w, then 7 satisfies (Fv) for all v in (co, v).
It would be interesting to know whether this is the case for one-to-one operators of
type co with dense domain and dense range in a Banach space X.

We next present an example of a Banach space X and a one-to-one operator in
.£?(X) which is of type co, and which has a bounded H°° functional calculus on one
sector without having bounded imaginary powers on any smaller sector. We note
however that the Banach space is not reflexive, and the operator does not have dense
range.
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EXAMPLE 5.5. In this example we shall show that for an operator of type co, where
co < n, one may have a bounded H°° functional calculus for one sector without
having bounded imaginary powers for any smaller sector.

Suppose that A(D°) is a unital Banach subalgebra of H°°(D°) for some open subset
D° of C. Define the operator T in A(D°) by

Tf(z) = zf(z) Vz 6 D°.

Under appropriate conditions on A(D°), T is closed and densely defined. Spectral
theory for T is then the study of multiplication of functions in A(D°). More precisely,
givenm in //°°(£>0), m(T) is the multiplication operator / i-» mf, and if m e A(D°),
then

\\mf\\A < \\m\\A \\f\\A V / e A(D°),

so m(T) e 3?(A(D0)), and ||w(r)|| < \\m\\A . On the other hand, m = m(J)\, so if
m(T) e 3?(A(D0)), then/n e A(D°) and ||m|U < | |m(r)| | .

Here is a particular example. For co in (0, n), we denote the set (z 6 5° : |z | < 1}
and its usual closure by £>° and Dw. If 0 < co < 9 < it, let A(D^) be the set of all
functions / in H°°(D^) which admit representations of the form / = /i |D£ + /2|0o,
where f\ is continuous on Da, holomorphic on D°, and vanishes at 0, and f2 e
H°°(D°). We set

where the infimum is taken over all such decompositions. Then it is easy to check
that A(D^) is a unital Banach algebra. If v > co, and X eC\Sv, then

( |A | + z ) j + [ ^ ( W + z ) l Vz 6 C \ { A , -

which shows that the functions Rk : z \-> (X — z)~l belong to A(D°), and further that

\\RK\\A < C \X\~l VX€C\SV.

Thus T is of type co. It is straightforward to check also that T is one-to-one. However
T does not have dense range (see Example 3.9).

Moreover, H°°(S$) acts on A(D°J by definition. We shall see that T does not admit
a bounded H°° functional calculus for any smaller sector. Indeed, if it did, then for
some (j> in (co, 0), we would have the inequality

IT" || < C sup \z" I = Ce*ul Vs e R.

PROPOSITION 5.6. For the operator T just defined,

\\Tis\\=ew VseR.

https://doi.org/10.1017/S1446788700037393 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037393


[31] H°° functional calculus 81

PROOF. It is trivial that | r " | < em. It suffices to show that if / , G C O ( D J ,

f2 6 //°°(D»), s e R, and

( / i k + /2bo)(z) = z's VzeD° ,

then

II/2H00 >

Let A° denote the half-strip [x + iy e E° : x < 0}, and Ag denote its closure. By
composing with exponentials, it suffices to show that, if g\ € C0(Affi), g2 G //°°(A°),
and

(giU° + #2|AO)(Z) = exp(fsz) Vz € A°,

then

For j = 1, 2, let hj(z) = exp(-isz)gj(z), for all z in 0(&). Then

Since ht e CoiA^), h2(x + /0) tends to 1 as x —> —00 in R. By a simple variant of
Montel's theorem (see for example Titchmarsh [20,5.23], we conclude that h2(x + iy)
tends to 1 as x —> —00 in R, uniformly for y in any closed subinterval of (—0,9). It
follows that

6. Square-function estimates

In this section we shall examine the relationship of the above conditions with
square-function estimates. Here we restrict our attention to function spaces such as
Lp. An operator T acting in a function space X is said to satisfy a square-function
estimate if it satisfies

[f
/2

<C||«|| WueX.

In L2, this statement about T (for a suitable ifr), together with a dual statement, is
equivalent to the statements (FM), (£M) and (Wiifr)) (see Theorem 2.4). Our aim
here is to examine the relationship between these statements for more general Banach
spaces. Our first theorem will describe the sense in which (5(i/r)) is stronger than
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In what follows, £2 denotes a a -finite measure space. As usual, we shall use p' to
denote the conjugate index to p; that is, \/p + l/p' = 1.

Recall from Section 3 that if T and T are dual operators in (Z/(ft), L"'(Q)) of
type a), and 1 < p < oo, then we may pass to a dual subpair (X, Y) in which T
and T' are one-to-one. Further, in this dual subpair, T and T have dense domain and
range.

THEOREM 6.1. Suppose that T and T' are dual one-to-one operators of type a> in
the dual subpair (X, Y) of(Lp(Q), LP\Q)), where 1 < p < oo. Suppose also that
(X > wand iff, f e *(S£). / / T satisfies (S(i/r)) and T satisfies (S(f)), then T
satisfies

VM eX,

PROOF. Suppose that

and

Lf

00 dtll/2

W(tT)u(-)\2 -

\t(tT'M.)\2d-i] <c2 r.

Then, from Corollary 3.7 and standard inequalities,

f \(M(tT)u,v)\-= f°° \(ir{tT)u,f(tT')v)\-
Jo t Jo t

(
n Jo

< / / mtTMx)\2^\ \ \
Ju YJo * J Uo

<CXC2 \\u\\p\\v\\p,

and hence T satisfies W(\lr\jr).

VM <=X,Vve Y,

1/2

By Corollary 4.5, it follows that if T and T satisfy suitable square function
estimates, then T must have a bounded H°° functional calculus for some sector. As
an example of this we give the following result.
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C O R O L L A R Y 6 .2 . Suppose that co < n/2, that 1 < p < o o , and that T and T are

dual one-to-one operators of type co in in the dual subpair (X, Y) of ( L p ( £ 2 ) , L ' )

Suppose also that

1/2

< C, Hull, ex

and

1/2

<C2\\v\\p, VveY.
p'

Then T satisfies ( F , ) whenever r) > n/2.

PROOF. The hypotheses imply that T and T satisfy (S(\j/)) when i/r (z) = ze z for
all z in S°/2- By m e theorem then, T satisfies W(\jf2). Now \fr2 : z i-> z2e~2z was
shown in Example 4.8 to lie in ^x/2(S^/2—)- Thus by Corollary 4.5, T satisfies (F,,)
provided that rj > n/2.

We shall now show that if T has a bounded //°° functional calculus, then it satisfies
square function estimates. The main reason that we have restricted ourselves to the
case of Lp is that we require the following well known randomization lemma [23,
V.8].

LEMMA 6.3. Suppose that 1 < p < oo and that {uk}^=i is a sequence of functions
in Lp(Sl). Then

1/2

< C sup

PROOF. Let [rk] denote the Rademacher functions on [0, 1]. Then, using the prop-
erties of the Rademacher system,

1/2 p / 2

E
P/2

dx

< C

< C sup

dt\dx = C \\J2
J ô || t

dt

E
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Suppose then that T is a one-to-one operator of type co in a closed subspace X of
LP(Q). For fj, in (0, n), define the new norm ||-||P,M by

II«IU = sup{||Z>(7>||p : b € //°°(S°), \\b\\x = 1} VM e X.

It is clear that if 0 < v < fi, then

If r possesses a bounded //°°(5") functional calculus, then \\u\\p/1 < C \\u\\p and so
the norms ||-||p and ||||P?M are equivalent.

LEMMA 6.4. Suppose that T is a one-to-one operator of type co in a closed subspace
X of Lp(Cl), where 1 < p < oo, and that 0 < v < n. Suppose also that [bj] is a
sequence of functions in H°°(S®). Then

1/2

PROOF. By Lemma 6.3,

1/2

< C sup

< C sup sup

Wp.v •

Now choose a nonnegative function h in C£°(R), supported in [—2, 2], such that
Y.Z-0O hl = 1. w h e r e hk = h(--k). Suppose V e *(5°) and define ftyt : 5° ^ C
thus:

J — o

LEMMA 6.5. Suppose that v < /i. Then
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PROOF. We apply the change of variables ez = £. Define f}jk : E°
bjk o exp. Then

/•oo nk+2

/ ht(sWe(.s)e-"u">ds < / fas)
J-oo Jk-2

pk+2
C e^-^ds < C,/"-""" Vz € £°,

A-2

85

C to be

and similarly

1 i>k+2 _,

-z\2Jk-2 Lr\j - Z\ Hk

where the constants C\ and C2 depend only on \jr, fi, and v. Thus

< sup

<

It follows that
< 00.

We may now progress to the main result. This says that we always get a square
function estimate for T if we use the norm || • \\p v.

THEOREM 6.6. Suppose that 0 < C W < V < / X < T T and 1 < p < 00. Let T be a
one-to-one operator of type co in a closed subspace X ofLp(£l). If iff € *(S^), then

1/2

VMGZ.
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PROOF. Again we remark that T automatically has dense domain and dense range.
Note that

t\ L27TL0

2 X'2

ds\

hk(s)fe(s)Tisu

hk(s)ire(s)Tisu

1/2

dsr
Thus

[[ k=-oo

(t=-00

1/2

where

bjk{K) = f hk(s)rfrAs)e-sjrds
J—oo

as in Lemma 6.5. But by Lemmas 6.4 and 6.5,

E
1/2

and so the result follows.

e S°v,

COROLLARY 6.7. Under the conditions of Theorem 6.6, ifT also satisfies (Fv), then
T satisfies (S(ir)); that is

r r°

U
1/2

PROOF. This follows immediately from Theorem 6.6 since, as was mentioned
above, if T satisfies (Fv), then \\u\\pv < ||M||P for all u in X
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By combining Theorem 4.1, Theorem 6.1, and Corollary 6.7, we may regard the
possession of a bounded H°° functional calculus by T as being equivalent to both
T and T satisfying square function estimates. The existence of ifr as in (ii) of the
following corollary is shown in Examples 4.7 and 4.8.

COROLLARY 6.8. Suppose that 0<co<v<ix<7i and 1 < p < oo. Let
T and T be dual one-to-one operators of type co in the dual subpair {X, Y) of

(i) IfT satisfies (Fv) then T and T both satisfy (Sif)), for all V in
(ii) IfTandT both satisfy (S(VO) for some xfr in V{S°V) for which f2 e *u(5v

0-),
then T satisfies (FM).

We conclude this section by noting that attempts to use square functions of the form

h r u(tT)U(.)w2 j]

rather than

tf * J
lead to the interesting theory of Besov spaces (also known as Lipschitz spaces).
However, this development deviates somewhat from our focus in this paper. In
particular, for operators T such as the Laplacian in Lp(Rn), inequalities such as

[f dtVn

\\f(tT)u(-)\\2
p-j\ <C\\u\\p V«eL"(R")

may fail. For instance, if n = 1, iff(z) = z/( l + z)2 for all z in S°, and M(£) =
|£|~1/2 / ( I + l§|2) for all £ in R, then u € Z/(R) whenever p > 2, but

— = 0 0 .
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