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i. INTRODUCTION

In this paper we are going to study some properties of a stochastic
process, which has been proposed by Cram6r (1968) as a model of
the claims arising in an insurance company. This process has been
studied by Cox in a different context. A few elementary results,
concerning moments, are given by Cox and Lewis (1966). The
present paper will be a survey of some results derived by the author
(1970:1) and (1970:2). For detailed proofs we refer to these papers.

2. DEFINITION OF THE PROCESS

Let l(t) be a real-valued stochastic process, such that P{k{t) < 0}
= 0. We further assume that E\{t) = 1 and that E~k2(t) < 00 for
every fixed value of t. We denote the covariance

Cov{X(s), X(*)} by r(s, t).

The process \(t) will play the role of an intensity function. That
means, that for every fixed realization of the process, the pro-
bability of

0 ) I 1 — Afk(t) + o(At)
1 / event in (t, t + At) = ) Afk(t) + o(At)
more than 1 j ( o(A )̂

and that the number of events in disjoint intervals are independent.

We now define a point process N(t), where N(t) is the number of
events which have occurred in (o, {]). With this definition we get

Pn(t) = P(N(t) = n ) = j

where

A(t) = J X(T) dx
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STOCHASTIC INTENSITY FUNCTIONS 117

The integral is assumed to exist almost surely. This process will be
called the N-process.

We will now define the non-elementary process, which corres-
ponds to the total amount of claims. We then associate a quantity
to each event. These quantities are defined by a sequence of in-
dependent equally distributed random variables Xi, Xi, Xz, • • •
with the common distribution function V(x). The quantities are
furthermore independent of the process N(t). We now define
Vj = EX1 and v(u) = E(exp(iuX)). It is now possible to define
a stochastic process by

X{t) = 2 Xk (X{t) = 0 if N(t) = 0).
*-

This process will be called the X-process.

For this process we have

F{x, t) = P(X(t) < x) = V V**{x) E j ^^- ^ ( » I .
n = 0

In the last section we will exemplify with the Poisson-process, the
process studied by Ammeter (1948) and the Polya-process studied
by Lundberg (1940).

3. SOME MOMENT FORMULAE

The following moment formulae are derived by using conditional
expectations.

EX{t) = vxt

and

VarA"(*) =v2t + v\VarA(t).

By putting vi = vi = 1 we get the corresponding formulae for
the Af-process.

4. LIMIT THEOREMS

4.1. Some definitions

D e f i n i t i o n 1

The process ~k(t) will be called ergodic if lim Var t~x A(t) = o.
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Definition 2

The normal distribution function will be denoted by <&(x).

4.2. Limit distributions of the N-process

We will now study the limit distribution of the variable

N{t) — t

N(t) '

The limit distribution will depend on the variance of A(t). A little
vaguely we can express this by saying that the limit distribution
depends on the relationship between the randomness of A(t) and
the randomness of N(t) given the value of A(/).

The following theorems hold.

Theorem 1

If t'1 Var A(t) T-> 0 as t -> 00, then

/ N(t) — t \

\ KVar Nit) ~ }•N(t)

Theorem 2

If r 1 Var A^) -^* , o < k < 00, and if

\l/Var

i V ( 0 -

< %j ->G(x) as i-^- oo, then

KVar N (t)

Theorem 3

If r 1 Var A(/) ^ 00 and if

/ A(t)—t

U V a r

iV(O

< ^1 -^-G(^) as t—> 00, then

/V ar

Indication of proof

The theorems are proved by showing that the difference between
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/ N(t)—t \
the characteristic function of P —r~ =r < x and the charac-

\ V Var N{t) I
tfcristic function of the limit distribution tends to zero as t -> . oo

4.3. Limit distributions of the X-process

In treating the questions of limit distributions of X(t) Lundberg
(1940) points out in his special case, that there is a fundamental
difference if vi is equal to zero or not. From the variance formula it
seems probable that this will be the case as soon as Var A[t) is of the
same or a higher order than t. We will anyhow separate the two cases
completely.

We now assume that Vi ^ o and v2 < 00. In this case we get the
same three different cases as we got for the iV-process.

Theorem 4

If r 1 Var A(t) -> o as t -+ 00, then

/ X(t) — vit

\ V Var X(t)

Theorem 5

if r1 Var A(Z) -> k, 0 < k < 00, and if

/ A{t)—t \
P —j=- - < x) -^-G(x) ?ist—>oo, then

\ /Var A(t) ~ I

I X(t) — vit
P - . = = < % tends to

\ V Var X{t) ~

Theorem 6

If r 1 Var A{t)-^- 00 and if

- < x) —>G(x) as t—*- oo, then
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/ X(t) — Vit \
P l-~ < x) tends to

\VX{ ~ I

G(x) iivi > o

/ i—G(—x — o) iivi<o.

We now assume that vi = o and v* < oo. In this case we get the
following theorems.

Theorem 7

If \(t) is ergodic then,

VVaxX{t) ~~

Theorem 8

If r * ^Var A(t) -> r, o < r < 00, and if

/ A{t) — t \
P —, < x) -+G(x) as t-^- 00, then

\]/VarA(<) ~ /

^ ^ < x

ar ~ / ^ J ° \Vy
y —

where d(y) = G I

Indication of proof

From the limit distributions of N{t) the corresponding limit
distributions of X(t) follow from the results due to Robbins (1948).

5. LINEAR ESTIMATES OF THE INTENSITY

Our purpose is to investigate how one observation of the iV-
process in the interval (o, T) can be used in order to give estimates,
~h*(t), of the realization of X(t) which generated the observed 7V-
process. We suppose that h, . . . . ^ ( T ) are the successive times of
occurrence for the events in this interval.
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An estimate ~k*(t) will be said to be the best estimate of \(t) if
E{k*(t) — \($)Y is minimized.

Theorem 9

The best estimate \*(t) of X(t) is given by

X*(t) _ — .
EX[{U Htk)} e-A(T)]

It is easily understood that for most cases, this estimate will
require calculations, which are impossible to perfoim. We will
therefore restrict ourselves to linear estimates. This means that we
are going to study estimates of the type

Theorem 10

The best linear estimate X*(t) of X(£) is given by

X*W = i + f Ms) d(N(s) — s)

where (3«(s) is the solution of the integral equation

P«(s) + J P«W r(T, s) dz — r(t, s) = 0.
0

For this estimate we have

Indication of proof

The general linear estimate is given by

\*{t) = *(t)+ J Ms)d(N(s)-s).

We define the eigenfunctions and eigenvalues of r(s, t) by the
solutions of the integral equation

= {i ?<f>(s)r(s,t)ds.

https://doi.org/10.1017/S0515036100010849 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010849


122 STOCHASTIC INTENSITY FUNCTIONS

From the theorem of Mercer it follows that

r[s t) = f

if r(s, t) is continuous in o < s, t < T.

By expanding (^(s) in terms of the eigenfunctions of r(s, t), it
follows that E{k*(t) — X(t)Y is minimized if

*(t) = i

and

=

This series is the unique solution of the integral equation in the
theorem.

6. LINEAR ESTIMATES IN A MODIFIED PROCESS

In certain applications it is impossible to observe the exact time of
each event.

Assume that our observations are restricted to N(A), iV(2A), . . . ,
N(nA), where A is a positive quantity and n = [T/A]. In order to
avoid trivial complications, we will assume that T is a multiple of A.

We now define

h = i/A {A(AA) — A(A(* — i))} (k = i, . . ., n)

and

Nk = N(bk) — N(A(k — i)) (k = i,...,n).

Defining
rkJ = Cov lk, I]

we have
ENk = A

and
Cov Nk, Nj =

, ( i if k = ;
where 6k t = I . , , . . .

'̂  ^ o if A 7^;
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It is now possible to show that the best linear estimate I* of Zv is
given by

i; = i + £ pVjfc (Nk - A)
1 - 1

where the sequence {(3V fc} is defined by the solution of
n

A 2 hi r}.* = \* — Kk (* = I, ••- ,«)•

This equation corresponds to the integral equation in Theorem io.

For the best linear estimate we have

If we are interested in estimating the whole sequence h, . . .; ln,
it is reasonable to use

as a measure of the efficiency of the estimates.

Assume that IK is defined for all integers k and that rkj = rk_y

From the general theory of stationary stochastic processes it
follows that rk_j has the representation

- n

where F is a non-decreasing bounded function.

We further assume that

1. F'(x) is bounded almost everywhere for — it < x < TZ.
2. F(x) has at most finitely many discontinuities.

Under these assumptions the following theorem holds.

Theorem n

If the process In is stationary and if the given regularity assump-
tions are fulfilled, then

} F'(x) dx
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Indication of proof

In order to prove the theorem, spectral representation of matrices
as well as some facts about Toeplitz matrices, given by Grenander
and Szego (1958), are used.

7. SOME EXAMPLES

We are going to illustrate the results on three well-known models.

1. The Poisson-model.

2. The model due to Ammeter (1948).

3. The Polya-model.

With our formulation, these models can be described in the
following way

1. P(\(t) = 1) = 1 for all values of t.
2. P(h{t) = X[</T]) = 1 for all values of t. T is a positive con-

stant and Xo, Xi, . . . a sequence of
independent random variables, with
common distribution function U(k).

3. P(k(t) = X) = 1 for all values of t. X is a random
variable with distribution function
U(X).

In both ex. 2 and ex. 3 the distribution function f/(X) will be
assumed to be a F-distribution with the frequency function given by

„,,> if X > o
w(X) =

fo if X < o

7.1. Limit distributions

In these examples, the following variance formulae hold

1. Var A(t) = 0

3.
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The quantity k, defined by k = lim t'1 Var A(t), takes the fol-
lowing values '^°°

1. k = o
2. k = T/A

3. * = 00.

To be able to apply the limit theorems we must calculate

< % in exs. 2 and 3.

In ex. 2 it follows from the central limit theorem that

t
lim P

ar

\

~ J
In ex. 3 we have

P - 7
ar A(<)

= P
t-\ —

J

where G(x) = U

= P(]/h(k — i)<x)= G(x)

+ 1 ) .

Assume that the claim distribution is such that V2 < oo.

In the case »i ^ o we have the following limit distributions.

<b(x) in exs. i and 2

< x) = G(x) in ex. 3 if vi > o

1—G(—x — 0) in ex. 3 if vi < 0.

Now assume that wi = 0. In ex. 3 we have

lim P /(*(<) ~

lim

Since the processes in exs. 1 and 2 are ergodic, the limit distri-
butions are given by Theorem 7. In ex. 3 we have

lim P
X(t) \ } I x

< x = 0 - 7 = dd
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where

) = G(fh[y - i)) = U(y).

This result is given by Lundberg (1940).

7.2. Estimation of the intensities

Only in exs. 2 and 3 there is any estimation problem. From the
calculations by Lundberg (1940) it follows, that the best estimate

of \(t) is given by

+ )N([trt T) ^ -, , .
(for t < [7/T] T) in ex. 27 :

1 n -\- T

\*{t)= {
) A + N(T)

l r r r - in ex. 3.

Since these best estimates are linear, they are at the same time
the best linear estimates. Ex. 2 is however not included in the
general treatment of linear estimates, since the theorem of Mercer
requires a continuous covariance function.

It follows, however, from Lundberg (1940), that the best estimate
is linear, only when the distribution U(x) is a F-distribution. The
best linear estimate, however, is dependent only on the two first
moments of U(x).

We now turn over to the modified process. Since we will only
illustrate linear estimates, the examples may be given in terms of the
covariances. It is natural to study the following examples.

i /A ifk=j
2'. rkJ = {

) 0 if k ^ j

3'- ?»:,} = ^h for all k andy.

In ex. 2' we have the equations

A(i/A) pv>fc = (i/A) \ k — h>lc (v, k =

or

if k
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and thus the estimates

N, — A

= I > • • • ' n )

are the best linear estimates.

For these estimates we have

In e#. 3' we have

S pv>, = (i/A) - pv,fc (*, v = i , . . ., n)
1 -1

or

and thus

h + i Nk
1* = L̂

A + «A
For these estimates we have

In ex. 2' the spectral distribution is absolutely continuous, with
spectral density given by f(x) = xJ2Tzh.

As an illustration of Theorem 11 we have

1

I r i C 2nh
l im - > R = dx =,.,= J

L-J
 v> J 2uA h -\- A

••>-•• -B I +

REFERENCES

[1] AMMETER, H. (1948): A generalization of the collective theory of risk in
regard to fluctuating basic probabilities. Skandinavisk Aktuarietidskrift.

[2] Cox, D. H. and LEWIS P. A. W. (1966): The Statistical Analysis of
Events. Methuen,

https://doi.org/10.1017/S0515036100010849 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010849


128 STOCHASTIC INTENSITY FUNCTIONS

[3] CRAMER, H. (1969): On streams of random events. Skandinavisck An-
tuarietidskrift. Suppl.

[4] GRANDELL, J. (1970:1): On stochastic processes generated by a stochastic
intensity function. Research Report No. 49, Institute of Mathematical
Statistics and Actuarial Mathematics, University of Stockholm.

[5] GRANDELL, J. (1970:2): On the estimation of intensities in a stochastic
process generated by a stochastic intensity sequence. Research Report
No. 54, Institute of Mathematical Statistics and Actuarial Mathematics,
University of Stockholm.

[6] GRENANDER, U. and SZEGO, G. (1958): Toeplitz forms and their applica-
tions. University of California Press.

[7] LUNDBERG, O. (1940): On random processes and their application to
sickness and accident statistics. Almqvist & Wicksell.

[8] ROBBINS, H. E. (1948): The asymptotic distribution of the sum of a
random number of random variables. Bull. Amer. Math. Soc. Vol. 54.

https://doi.org/10.1017/S0515036100010849 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010849



