
Chapter 20

Helpful tools

Many tools exist to help scientists work computationally. In addition to both general pur-
pose and domain-specific programming languages, a wide assortment of programs exist
to accomplish specific tasks. We call attention to a number of tools in this chapter, with
a particular focus on good practices when using them, good practices computationally
and good practices scientifically.

20.1 Computational notebooks
Computational notebooks play an increasingly important role in scientific computing
and working with data, network or otherwise. All data scientists should be familiar with
their use and understand good practices for ensuring they are used appropriately.

Examples of computational notebooks are Jupyter, R Markdown, and perhaps the
pioneer of the format, Mathematica. Unlike a normal program or script, a computational
notebook divides its contents into a sequence of blocks, often called cells. Cells can be
executed individually and any outputs that would normally be printed to the user’s screen
are instead inserted into the notebook itself. Further, notebooks allow for different types
of cells: code cells or text cells, with the latter allowing the user to record important
information, thoughts, etc. These text cells are really what makes a notebook a, well,
notebook; often, they support rich formatting, hyperlinks, and mathematical typesetting.

The power of notebooks comes from their ability to weave together code, the results
or outputs of code, and non-code writing. Notebooks implement a kind of literate
programming [247].1 The power and flexibility comes at a cost, however.

Some inherent aspects of the design of notebooks can lead users away from good
programming practice. For example, the interactivity of notebooks, that cells can be
edited and rerun, especially out of the order in which they are written, makes notebooks
ripe for bugs. Often, it’s a good idea to rerun the entire notebook top-to-bottom to
make sure all the code still works—and this can suddenly reveal subtle mistakes due to
notebook cells being out of order. Worse, this problem is pervasive enough that often

1 Literate programming as advocated for by Knuth [247] puts prose writing and computer programming
on equal footing.

301

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

302 CHAPTER 20. HELPFUL TOOLS

times scientists won’t rerun the notebook, taking the results as a finished artifact as is,
and this leads to reproducibility issues as the intervening edits that got the out-of-order
notebook to its final state are not present in the notebook itself. This latter point, this
loss of information, harms notebooks-as-archives, despite archiving being one of a
notebook’s central purposes.2 Indeed, while many factors contribute to reproducibility
issues with code (Ch. 19), a large-scale study of Jupyter notebooks on GitHub [374]
recently found that only 24% of publicly available notebooks executed without errors,
and only 4% produced the same results!

In general, we consider notebooks to be an important tool for data scientists, but
one whose strengths and weaknesses should be well understood. Use notebooks appro-
priately.

20.2 Pipelines

It is useful to think of computational work as being composed of pipelines: First, data
are downloaded. Then, loaded into your program. Next, a processing step is applied,
perhaps a filtering criteria is used to select an appropriate subset of data. Afterwards,
apply a statistical method. Finally, compute summary statistics or perhaps make some
plots.

Together, the linear sequence of these steps forms a pipeline that you have built.
Will you find yourself repeating those steps, for instance if the data are updated? Will
you need to create a new, similar but not identical pipeline for a future calculation?

Such situations arise often enough that a variety of tools have been introduced
to create, maintain, and run these computational pipelines. By far the most popular,
particularly in computational biology and bioinformatics, is Snakemake [252]. Snake-
make goes beyond basic pipelines with an entire workflow management system. Using
readable Python code, a workflow can be described or documented in Snakemake, and
that workflow can be carried over from your local machine to remote servers to large
compute clusters.

Workflows and pipelines also work extremely well at gluing together different
computing tools. Need to combine Python code with some cutting-edge Julia or legacy-
but-still-potent Fortran code? No worries, interoperate these languages within your
pipeline. In fact, a key idea of the UNIX operating system (Sec. 20.4) is to build most
functionality out of pipelines of small, single-purpose utilities. UNIX has pipes! Now
you can use specialist languages where they are most suited, and glue them together in
a pipeline.

2 Other, more technical issues arise when storing notebooks in a version control system (Sec. 20.5).
Rerunning an identical notebook and getting identical results may still lead to changes to the contents of the
notebook, changes invisible to us as users but still present in the data. These changes need to be stored in
the version control system and they make it difficult for users tracking the notebooks to easily understand
whether changes to a notebook are important or not.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

20.3. WORKING WITH REMOTE COMPUTERS 303

20.3 Working with remote computers
Modern personal computers are exceptionally, impressively powerful, but scientists
still find themselves using large workstations and supercomputers to analyze data and
perform computations. Typically, these computers are used remotely: you sit at your
personal device (say, your laptop) and connect to the computer over a local network
or the Internet.3 The connection allows you to transfer files back and forth between
your local and remote computers as well as execute commands and run programs on the
remote computer. Somewhat recently, “cloud computing” services have sprung up which
act in a similar way, though commercial providers often provide easy-to-use website
interfaces. Yet fundamentally, while these providers hide the details of the computers,
you are still connecting with and using a remote computer or set of computers.

Graphical vs. text-based interaction
One way to work with a remote computer is through a tool such as VNC (Virtual Network
Computing) or other variants of what is called “Remote Desktopping.” Remote desktops
provide a graphical means of working with the remote computer. In essence, a window
is open on your local computer inside of which is the graphical interface of the remote
computer—its windows, desktop, files, and such. You can click and drag inside this
window, type commands, and act in many ways as if you are actually sitting in front of
the remote computer.

The second way to work with the remote is through a text-only interface, called
a command prompt or command line interface. Here you have the ability to issue
commands to the remote computer by typing them in only. (Historically, this was the
only way to work with a computer, local or remote.)

The graphical user interface (GUI) and command line interface (CLI) approaches
have advantages and disadvantages:

• GUIs over a network connection can be annoying to use as any delay introduced
by sending the graphics over the network makes the computer feel sluggish.

• GUIs require more computing resources on the part of the remote computer.
Often, remote computers are set up without running any graphical interfaces in
order to use as much memory and computation for their tasks.

• CLIs have a steeper learning curve compared to a GUI, particularly if the remote
computer is using a GUI you are already familiar with. However, for scientific
work, CLIs are incredibly powerful and we encourage you to invest the time to
learn them.

Nowadays, any computer you sit down and work at will be running a GUI. But you
can quickly access a CLI inside your GUI using a “terminal” or shell program.4 Mac

3 We forget, but very early computers worked exclusively in such a manner: an operator sat at a device and
communicated with a central “mainframe” computer. The difference was the device was not a computer or
laptop but usually a teletype: an electric typewriter connected to a telephone line. Early computer terminals
with video screens were actually called “glass teletypes.”

4 Sometimes these programs are called terminal emulators because they mimic (emulate) within your
computer an old-fashioned text terminal connected to a remote mainframe computer.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

304 CHAPTER 20. HELPFUL TOOLS

computers come with an application Terminal.app, Linux OS computers have a variety
of such programs,5 and Windows computers come with a program called Command
Prompt (cmd.exe).6

Learn to use a CLI.
If you’re not familiar with using a text interface for a computer, consider

learning it. Complementing graphical interfaces, command line interfaces are
powerful and efficient ways to productively use a computer.

The most common tasks when working with remote computers are (1) transferring
files to and from the remote computer and (2) issuing commands and running programs
on the remote computer. Both tasks require establishing a connection—hopefully a
secure one!—between your local computer and the remote computer and often that
connection is made with the same underlying method for both types of tasks.

Secure connections
To log into a remote computer works exactly like logging into a website. You create or
receive a username and password and then you provide those to access your account.
However, unlike using a website, when working with a remote computer you may find
yourself logging in many times during a work session, and it can become tiresome to
keep reentering your login credentials. The solution is to set up a passwordless login
using a matching pair of keys: a public key which is copied to the remote computer
(and can be safely viewed by anyone) and a private key (which is kept to your local
computer and should never be copied or shared 7

,
8). Together these keys allow you to

log into the remote computer quickly, invaluable when you are logging in many times
during a work session.

How can you log in securely without a password? Using public–private key pairs, the
local and remote computers perform some calculations behind-the-scenes to convince
the remote computer you are who you say you are. When you first ask the remote to
log in, the remote will create a unique “challenge question” and then use your public
key, already on the remote, to encrypt that challenge question. The remote will then
send the encrypted question to the local (since this is sent over the network, assume a
bad actor may be able to see it). The local computer can then use your private key to
decrypt the question, read it, and answer it. The answer is then sent back to the remote
computer. Unless the system is insecure, only someone with the private key can answer
the challenge question, so when the remote receives the correct answer, it knows the

5 If you’re using Linux you almost certainly already know this program.
6 Recent versions of Windows come with Windows Terminal which can run multiple CLIs. Windows users

may also be familiar with PuTTY (https://www.putty.org), a Windows program that enables access to another
computer’s CLI.

7 You can add a password to your private key for extra security if you wish, although doing so removes the
convenience of passwordless login.

8 It’s quite easy to make new public–private key pairs and best practice if you need to log into one remote
from multiple local computers (like a laptop and a desktop) is to generate a separate pair on each local
machine and copy both public keys to the remote. SSH (discussed shortly) will find which public key is
needed automatically.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://www.putty.org
https://doi.org/10.1017/9781009212601.024

20.3. WORKING WITH REMOTE COMPUTERS 305

local computer holds the right private key and that it is safe to assume you can access
the account. Lastly, now that the remote is convinced you have access, some additional
key pairs are created and exchanged in such a way that a shared secret is available on
both computers and that secret can be used by both computers to encrypt and decrypt
any data passing between the two. (This step also occurs when using a password for
authentication.) At this point you have a secure connection or “tunnel” between the two
computers.9

Save time by setting up secure, passwordless login for any remote computers you
regularly use.

File transfer
A CLI usually gives you commands to move or copy files. For example, on a UNIX-style
computer (Sec. 20.4):

cp huri_ppi01.edgelist ~/ archive/

will copy (cp) the file huri_ppi01.edgelist into a folder in your home directory (~/)
called archive. In other words, we can transfer files within our local computer. But
such commands also extend almost automatically to transfer files between computers:

scp huri_ppi01.edgelist remote_supercomputer.org:~/ archive/

This command is nearly identical, with two differences:

scp Instead of using the copy program, we use the secure copy program (scp). The
secure refers to its ability to send data over the network using a secure connection
as discussed above.

remote_supercomputer.org: The destination of the copy now begins with the ad-
dress of the remote computer followed by a colon (:). We can also specify
a username: user@computer:/path/to/folder. The CLI naturally incorporates
network addresses into file and folder names using this syntax, and thus we don’t
need to change much to send data between computers.

Issuing commands
Complementing the ability to send files to a computer you can access is the ability
to log into that computer from a CLI. Most commonly this is done with a program
called ssh (Secure SHell), although some alternatives exist such as mosh.10 To do so, in
a CLI window on your local computer you run the appropriate ssh command, then the
contents of that CLI will show the CLI running on the remote computer. Any commands
you type will actually be seamlessly running on the remote computer. Issuing a logoff

9 We have of course skipped over significant technical details, in particular how the keys are computed
and how the challenge question is created and answered. This use of key pairs is a form of asymmetrical
encryption.

10 https://mosh.org/

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://mosh.org/
https://doi.org/10.1017/9781009212601.024

306 CHAPTER 20. HELPFUL TOOLS

command on the remote will then terminate this connection and your CLI will return
to that of your local computer.

SSH powers the connection by forming a secure tunnel between the two computers,
through which commands and their results are sent back-and-forth. SSH also enables
other commands such as scp discussed above. Indeed, most commands that send data
between computers securely rely on the same library.

SSH comes with many additional commands to make it easier to use. ssh-keygen
allows you to create and store public–private key pairs using different algorithms. ssh-
agent provides additional security by managing control over unencrypted keys on your
local computer, allowing you to keep a password for your local key but not have to
reenter the password for every remote work session. You can also use a config file to
save the usernames, addresses, and other details for all the remote computers (hosts)
you’re working with. The config file is especially helpful for creating aliases, short
abbreviations for longer login details, saving you from typing in a long computer name
or other information every time you want to connect to a given computer. Very handy!

20.4 UNIX—I know this system
Fundamentally, our computational work is performed on computers and those computers
are powered by operating systems (OSes). While there appears to be a plethora of OSes
to choose from—Macs and PCs and Linux devices—in reality they fall into two main
groups: Windows and UNIX-style.11

What do we mean by “UNIX-style”? At the dawn of computing and into the mid-
twentieth century, it was common for each machine to have a custom-made operating
system. Often the first thing you needed to do with your new computer was write your
OS for it! Gradually this changed. In the late 1960s, Dennis Richie and Ken Thompson,
computer scientists at Bell Labs, designed an OS for a slightly out-of-date machine they
were allowed to use. This machine was quite underpowered, even for the time, and so
care was needed to create a minimal, efficient OS for it. Under those constraints, Richie
and Thompson designed what would eventually be UNIX.12,

13

Why do we care? At the time of writing, every major computer operating system
except one14 is a direct descendent of UNIX. This includes Linux, macOS by Apple,
all major smartphone OSes, both iPhone and Android, and, importantly for us, nearly
every major supercomputer. The very limitations that Richie and Thompson wrestled
with led to an efficient, flexible, and modular operating system architecture that would

11 We are skipping over lots of small cases such as real-time OSes designed to power vehicles and other
potentially dangerous and expensive equipment. Such dedicated systems are of little interest to us here.

12 The name “UNIX” is a bit of a jab at a competing OS effort called “multics” coming from MIT. Multics
was intended for multiple users on a large central mainframe computer. The original computer UNIX was
designed for couldn’t support multiple users.

13 In order to create UNIX, Richie and Thompson also needed to create a programming language to write it
in. What they created would eventually be called C, and in many respects C is the foundation of most modern
computing languages, either in design or implementation. Windows, the one major OS today not descended
from UNIX, is written in C, C++, and C#, all languages that owe their existence to Richie and Thompson.

14 That OS is Windows by Microsoft, a big exception as it is extremely popular for PCs. However, it is
unheard of in other contexts, such as supercomputers, and, further, Microsoft has begun providing UNIX-style
compatibility with the WSL (Windows Subsystem for Linux) initiative.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

20.4. UNIX—I KNOW THIS SYSTEM 307

eventually form the basis for nearly all major OSes. But, besides very good design, there
is another reason why UNIX propagated throughout computing. AT&T, then owner of
Bell Labs, had an agreement with the United States government where it would not
enter into any computing businesses in return for being allowed to maintain a monopoly
on telephones and telecommunication. This meant AT&T could never sell UNIX and
had to give it away.15 People like free, especially cash-strapped computer scientists and
small startup companies. Thus, over time, UNIX became the starting point for many
operating systems, including “BSD,” which led to macOS, and Linux, which led to
Android. We use the term “UNIX-style” for these UNIX descendants, which conform
more or less to the major design patterns of UNIX.16

Thanks to good design and a quirk of history, UNIX has become the foundation
for nearly all computer operating systems, especially those used for scientific
computing.

UNIX-style OSes have become the standard for scientific computing. If you ever
plan to use a supercomputer (which nowadays is really nothing more than a large number
of regular computers) or a cloud computing service, you will be using, at some level, a
UNIX-style operating system. Take advantage of this by understanding and embracing
some of its properties in your workflows.

Consider even adopting a UNIX-style OS for your personal work machine.

The modular design of UNIX-style OSes provides us several features to help with
scientific workflows:

• Pipelines become natural. It is easy to make reusable programs that interoperate
(Sec. 20.2).

• Remote access is easy. The OS’s modular nature includes separating interaction
and display, making it easy to have the keyboard and screen come from a different,
over-the-network computer. This gives us SSH (Sec. 20.3).

• Rethinking what it means to be an OS. Containers and virtual environments
extend the next generation of scientific computing systems.

Pipelines
UNIX-style OSes come with an elegant mechanism, the standard streams, for building
pipelines that any program can take advantage of. The most important streams are stdin
(read as: “standard in”) and stdout (read as: “standard out”).17 In many ways, we can

15 Given that not only UNIX but the transistor, the very basis of the information age, came out of Bell
Labs, we are all very fortunate for this agreement.

16 A codified standard operating system design called POSIX (ISO/IEC/IEEE 9945) is based on UNIX. For
our purposes, “UNIX-style” is sufficient.

17 We omit from this discussion stderr, the standard stream for reporting error messages. It is useful to
separate error messages from output so that you can record them separately, in case you need to review what
happened during a failed program run.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

308 CHAPTER 20. HELPFUL TOOLS

think of each as a file: your program can “read from” stdin in a manner exactly like
reading from any other file, and likewise your program can “write to” stdout. What’s
so nice about using these streams instead of normal files is that they can be composed.
You can write one program that sends data to stdout and another program that receives
data from stdin, then you can wire those programs together into a pipeline. Further,
if your program is designed to use the standard streams, you can place it within any
pipeline using other programs. All the programs that come with the OS already support
these streams.

Here’s an example in Python using streams. If you are familiar with Python, the
code for reading/writing streams is almost identical to reading/writing files:18

import sys

data_in_txt = sys.stdin.read()
result_txt = f(data_in_txt)
sys.stdout.write(result_txt)

This simple program mock-up receives data (as a string) from stdin, computes a
result using a function f(...), and then writes that result to stdout. (The streams work
with text data because they are considered files; your program can convert stdin’s data
as needed.) In Python, all you need to begin using standard streams is to import the
system module (import sys).

Here’s a more specific example of a pipeline involving a text file and two programs.
Suppose you’ve written a program, get_nodes.py, that uses stdin and stdout. We wish
to send data to our program, pass our results to another program created by a colleague,
then save the second program’s output to a file for storage. Here’s the command we
would enter into our UNIX-style computer:

$ cat network.txt | python get_nodes.py 19 |
process_data > result.txt 20

(The $ is not typed in; we use it to represent the start of the “prompt” the computer
displays showing us where to enter commands.) Besides the Python program we created,
there are three things to understand in this pipeline: cat, |, and >.

cat cat, which stands for “concatenate,” is a standard UNIX program for printing a text
file (network.txt). Printing it to what? In this case, to stdout, which becomes
stdin for the next step of the pipeline, our Python program.

| The vertical bar or “pipe” character is, you guessed it, the symbol used to wire
together the streams to build a pipeline. Here we used it to connect the text file
to our get_nodes.py program, and then the output of our program to another
command, process_data.

18 As far as Python—and the OS—is concerned, the standard streams are files!
19 Even better, you can set a flag inside your script called a “shebang” that will tell the computer to run

it with Python automatically. Then the pipeline no longer specifically mentions Python. Why is this useful?
If in the future you replace your Python script with something written in a different language, your pipeline
code can remain unchanged!

20 In practice, we recommend against generic names like process_data and result.txt.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

20.5. VERSION CONTROL 309

> A shorthand for redirecting stdout to a file. This lets us save process_data to a file
of our choosing. While a program can always specify what output it will write,
by taking output out of the program and putting into the pipeline, we can see
and control this output ourselves without either modifying the program or, if the
program lets us specify its output, learning how to do so.

This is just a taste of what UNIX-style pipes can do. In general, it’s difficult to
overstate the power of UNIX’s simple, modular nature.

20.5 Version control
A version control system (VCS) allows multiple editors to work on shared files. Gener-
ally the users are programmers working together on a code base, but not always—this
book, for instance, was written using just such a system.

The main problem a VCS addresses is handling conflicts: when two editors make
different changes to the same part of a file, an algorithm cannot automatically merge
those changes to make a single file. VCS systems provide functionality to pick out or
replace the conflicting edits manually.

Allowing multiple editors to work separately on their own versions of a fileset also
allows multiple versions of the fileset to be maintained. This is useful for software
makers: you can maintain a “release” version of a package and a “beta” version of a
future release at the same time, and use the VCS to switch between the versions as you
work.

For researchers, version control is important for provenance: by keeping a detailed
history of changes to the code, you can track who made what changes, when a particular
output was first (or last) computed by the code, and you can revert to an older version
of the code if you need to replicate exactly a past result. Scientists in particular benefit
greatly from this use of a VCS.

Git (https://git-scm.com) is by far the most popular VCS in use today. Git underlies
GitHub (https://github.com) and many other open-source projects.

While not as user-friendly as others, it is the most important VCS to learn, and
all programmers and data scientists should be familiar with the basics of using git.

A VCS provides a set of commands that examine and modify a repository. The
repository, the central object of interest for the VCS, is just a folder on your computer,
but besides your files, within it are special files that the VCS uses to record the full
history of all the files placed under version control, or “tracked” by the VCS. (You
need to tell the VCS specifically which files to track.) From these files, the VCS can
efficiently build or rebuild the state of the repository at any point in its history; if you
frequently tell the repository about your updates using relevant VCS commands (the
repository is not updated automatically), then you will develop a fine-grained history for
your project. Those special files also usually contain additional information, such as the
addresses for copies of that repository on remote computers, if they have been set up.
Saving these details makes it easy for you to update your local repository and then send
your updates to the remote copy or, conversely, for you to quickly bring in any updates

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://git-scm.com
https://github.com
https://doi.org/10.1017/9781009212601.024

310 CHAPTER 20. HELPFUL TOOLS

from the remote repository to your local copy. Together, these commands, while they
have a steep learning curve—it helps to know a bit how the VCS works to know what
to do with it—smooth the road for productive work history and work collaboration.

Version control for data?
Data scientists have a further need than programmers when it comes to version control:
keeping the history of a dataset.

It may be that you are working with dynamic data, where new observations are
constantly being added to a large dataset. Conversely, your data may come from a
laborious process of data entry, where individuals manually code in observations. Data
entry can be error-prone and may require processes whereby observations are verified
and revised, if needed. In both cases, the data are changing, and a researcher should be
able to review those changes as needed.

A VCS appears to be ideal for tracking dynamic data. After all, what’s the difference
between files that represent computer code and files that represent other data? As far as
the computer is concerned, they’re both ones and zeros, right? Unfortunately, there are
differences, not in how the computer treats those files but in how the VCS was designed.
Most VCSes use algorithms designed for small, human-readable, human-writeable files,
such as source code. These algorithms don’t handle very large files, or large changes to
files, very well, and over time many common VCS tasks will become incredibly slow,
even tasks not involving those large files.

Version control is not well suited to large data files.
It is generally intended for files made by humans, such as source code. If

you are generating large files (meaning, 100s of megabytes or more), particularly
binary files, you probably want to avoid tracking their contents with a VCS. Doing
so is likely to slow down the system considerably.

Some options do exist for using version control with data files. One is Git Large
File Storage (LFS).21 Git LFS is an extension you connect to git that allows git to track
references to the large files and not the contents of the files themselves. Another option
is Dolt,22 a database that you can interact with as if it were a git repository. Hopefully,
work in this area will continue and version control for data will become easier and more
popular.

20.6 Backups
Backing up your data, writing, and other work against computer failure is critical. As
discussed in Ch. 17, a good backup system accommodates both off-site backups and,
more importantly, full file history. While most cloud computing services can provide
off-site copies, they generally do not keep track of file history.

21 https://git-lfs.github.com
22 https://github.com/dolthub/dolt

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://git-lfs.github.com
https://github.com/dolthub/dolt
https://doi.org/10.1017/9781009212601.024

20.7. SELECTING TOOLS FOR YOURSELF 311

For your personal computer, at the time of this writing, the two most popular
file history backup services are Apple’s Time Machine (for macOS computers) and
Windows Backup (for Windows 10 and later). Both are free and built into their respective
operating systems. Both also use a locally connected external disk23 to store backups,
although there is some support for backing up over a network. We strongly encourage
users to use such a service if possible.

Version control systems such as git (Sec. 20.5) are an excellent choice for backing
up the file histories of code and other “person-generated” files, so long as you set up
a remote location to “push to” and you frequently add and update your work. While
it would be great to use a similar system for tracking changing data, as we discussed,
currently these systems are generally poor for large data files.

Research data backups are a different story. Your institution may provide facilities
for data archiving and indeed there may be specific requirements for doing so. Be
mindful of both legal requirements and ethical considerations.

20.7 Selecting tools for yourself
Two factors will continually drive your need to evaluate and re-evaluate new and existing
computational tools. The first is obsolescence of software (and perhaps hardware). As
tools fall out of favor, you may need to jump ship to alternatives. The second factor is
the rise of new alternatives and innovations, plus, to an extent, changes in your needs
as a researcher. Software is continually churning, with new ideas for solving problems
and indeed new problems arising for us to solve.

A variety of tools exist to help you work computationally. Which do you wish to
use? Do you have a problem that existing tools do not solve? Do you wish to improve
your productivity by incorporating a new piece of software? We can help. Here we
provide some advice on selecting a tool for a problem.

Suppose you have identified a problem you wish to solve. It may be a research
question or a basic computing task. Ask yourself the following:

• Q0: Will an existing tool work on this problem? If so, how painful or painless is
it as a solution?

• Q0.5: Is your problem even solved by a tool or not?

• Q1: What tools are available for this problem? If you are a beginner to the problem
area, this question is easier said than addressed. Over time you will become more
“plugged in” to the space of tools and options and this experience should be
useful guidance.25

23 A local disk does not provide an off-site backup. One option is to use two external disks24 kept at different
locations, for example, one in the office and one at home.

24 Two is one and one is none.
25 This underscores our assertion that good computing scientists need to always spend some portion of their

time evaluating, re-evaluating, and changing their workflows. It seems highly efficient to identify a system
that works, and never change it. But if you do need to make a change after being stuck for a long time, you
will be out-of-practice at evaluating exactly these decisions and more likely to decide poorly. Take care to
allot a portion of time, but only a small portion, to self-(re)evaluation.

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

312 CHAPTER 20. HELPFUL TOOLS

Suppose now you have found a tool you wish to consider. Perhaps it is an open
source project. Ask yourself:

• Q2: Does the tool solve your problem? Is it intended for exactly this problem or
are you using it “off-label”?

• Q3: Is the tool popular?

• Q4: Is the tool actively maintained. Software goes stale fast!

• Q5: Is it new or well established with a long history?

• Q6: Is the tool open source or commercial? Are there restrictions on how you can
use the tool?

Lastly, consider other criteria:

• Q7: Are you working with or accommodating others? Perhaps you work in a re-
search group with specific requirements or workflows. Are you making decisions
on a tool that others will have to use? Will they want to use the tool?

• Q8: Other criteria to evaluate? Cost? Compatibility?

20.8 Summary
We conclude our scientific computing interlude with a tour of some specific tools that
we recommend at the time of this writing. These tools help scientists work with data in
a reliable, reproducible, and hopefully efficient manner, saving time and perhaps even
preventing mistakes.

Of course, the world of computing is always fast moving, and it is likely that specific
tools mentioned here will fall out of favor and be replaced with new alternatives. A
good, working computational scientist should always spend some (small) portion of
their time evaluating current tools to see if better options exist; if you never take the
time to switch up your workflow, and something comes along which forces a change
such as a discontinued tool, you will be out of practice and may choose your new
replacement poorly. To help, we have included some advice and a brief workflow to
guide you through evaluating new tools to use.

Bibliographic remarks
For readers interested in diving deeper into the world of practical computational tools
and practices, we highly recommend Effective Computation in Physics by Scopatz
and Huff [420]. Don’t let the title fool you, this isn’t just for physicists; it’s a tour of
computing for any technically minded researcher interested in sharpening their scientific
computing skills.

The most common form of cryptosystem for establishing secure connections be-
tween computers is based on the RSA algorithm, which creates challenge questions

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

20.8. SUMMARY 313

by multiplying large prime numbers. For those wanting to learn more of the details,
a brief overview of public key cryptography, also known as asymmetrical cryptogra-
phy, by one of its founders, is given in an article by Hellman (of the Diffie–Hellman
algorithm) [210].

A fantastic article demonstrating the power of UNIX pipes (written by their creator,
Doug McIlroy) is Bentley et al. [52]. The program McIlroy discusses wonderfully
illustrates the UNIX philosophy.

For those interested in learning more about UNIX’s creation, a recent memoir by
Brian Kernighan, a major contributor to UNIX, provides an interesting account of its
history [240]. More broadly, The Idea Factory by Gertner [180] gives an overarching
story of Bell Labs, the research center where UNIX (and other major inventions) was
developed.

Readers interested in learning to use a version control system should consult Scopatz
and Huff [420] or the resources available at the git homepage.26

26 https://git-scm.com

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://git-scm.com
https://doi.org/10.1017/9781009212601.024

https://doi.org/10.1017/9781009212601.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.024

