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Abstract.
A pedagogical overview of strange quark matter and strange stars is

presented. After a historical notation of the research and an introduction
to quark matter, a major part is devoted to the physics and astrophysics
of strange stars, with attention being paid to the possible ways by which
neutron stars and strange stars can be distinguished in astrophysics. Re-
cent possible evidence for bare strange stars is also discussed.

1. Historical notes

Soon after the Fermi-Dirac form (in 1926) of statistical mechanics was proposed
for particles which obey Pauli's exclusion principle (in 1925), Fowler (1926)
realized that the electron degeneracy pressure can balance for those stars, called
as white dwarfs, discovered by astronomers in 1914. By a numerical calculation
(1931) for a polytropic gas of extremely relativistic electrons, Chandrasekhar
found a unique mass, which was interpreted as a mass limit of white dwarfs.
Landau (1932) presented an elementary explanation of the Chandrasekhar limit
by considering the lowest total energy of stars, and recognized that increasing
density favors energetically the formation of neutrons, discovered only several
months before by Chadwick, through the action p + e" +-+ n + Vee A very
massive object with much high density may have almost neutrons in the chemical
equilibrium, which was then called as neutron stars (NSs).

Detailed calculations of NS structures showed (e.g., Oppenheimer & Volkoff
1939) that an NS can have a mass of ,......, IM0 , but is only r- 10 km in radius,
which makes it hard to be observed by astronomers. However, on one hand, a few
authors do investigate possible astrophysical implications of NSs. For example,
Baade & Zwicky (1934) combined the researches of supernovae, cosmic rays,
and NSs, and suggested that NSs may form after supernovae; Pacini (1967)
even proposed that the stored energy in rotational form of an NS could be
pumped into the supernova remnant by emitting electromagnetic waves. On the
other hand, NS models were developed with improved treatments of equation of
states, involving not only {n,p, e-}, but also mesons and hyperons. The cooling
behavior of NSs was also initiated in 1960s due to the discovery of X-ray sources
which were at first though mistakenly to be the thermal emission from NSs.

The discovery of radio pulsars by Hewish & Bell (and their coauthors 1968)
is a breakthrough in the study, and this kind of stars were soon identified as
spinning NSs by Gold (1968). Since then more and more discoveries in other
wave bands broaden greatly our knowledge about these pulsar-like compact stars
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(PLeSs), including X-ray pulsars, X-ray bursts, anomalous X-ray pulsars, soft
,-ray repeaters, and ROSAT-discovered "isolated neutron stars". It is still a
current concept among astrophysicists that such stars are really NSs. NS studies
are therefore in two major directions: 1, the emission mechanisms for the stars,
both rotation-powered and accretion-powered; 2, the NS interior physics.

However, neutrons and protons are in fact not structureless points although
they were thought to be elementary particles in 1930s; they (and other hadrons)
are composed of quarks proposed by Gell-Mann and Zweig, respectively, in 1964.
The quark model for hadrons developed effectively in 1960s, and Ivanenko &
Kurdgelaidze (1969) began to suggest a quark core in massive compact stars.
Itoh (1970) speculated about the exist of 3-flavor full quark stars (since only
U, d and s quarks were recognized at that time), and even calculated the hy-
drostatic equilibrium of such quark stars which are now called as strange stars
(SSs). Is it possible that strange stars really exist in nature? The possibility
increases greatly if the Bodmer-Witten's conjecture is correct: Bodmer (1971)
initiated the discussion of quark matter with lower energy per baryon than nor-
mal nucleus, whereas Witten (1984) considered an assumption of stable 3-flavor
quark matter in details and discussion extensively three aspects related (1, dark
baryon and primordial gravitational wave due to the cosmic separation in the
QCD epoch; 2, strange quark stars; 3, cosmic rays). Farhi & Jaffe's (1984) cal-
culation in the MIT bag model showed that the energy per baryon of strange
matter is lower than that of nucleus for QeD parameters within rather wide
range although we can hardly prove weather the Bodmer-Witten's conjecture
is correct or not from first principles. Haensel, Zdunik & Schaeffer (1986) and
Alcock, Farhi & Olinto (1986) then modelled SSs, and found that SSs can also
have typical mass (of", 1- 2Mev ) and radius (of", 10 km), which mean that the
pulsar-like compact stars believed previously to be NBs might actually be BBs.

Yet the most important and essential thing in the study is: how to distin-
guish SSs from NSs observationally? More and more SS candidates appeared
recently in literatures (e.g., Bombaci 2002, Xu 2002). It is generally suggested
that SSs as radio pulsars, the most popular ones of PLCSs, should have crusts
(with mass r- 10-5 Mev) being similar to the outer crusts of NSs (Witten 1984,
Alcock et al. 1986). But this view was criticized by Xu & Qiao (1998), who
addressed that bare strange stars (BSSs, i.e., SSs without crusts) being chosen
as the interior of radio pulsars have three advantages: 1, the spectral features;
2, the bounding energy; and 3, the core collapse process during supernova. It is
thus a new window to distinguish BSSs from NSs via their magnetosphere and
surface radiation according to the striking differences between the exotic quark
surfaces of BSSs and the normal matter surfaces of NSs. With regard to the
possible methods of finding strange stars in literatures, hard evidence to iden-
tify a strange star may be found by studying only the surface conditions since
the other avenues are subject to many complex nuclear and/or particle physics
processes that are poorly known. Thanks to those advanced X-ray missions, it
may be a very time for us to identify real strange stars in the universe.

It is worth mentioning that, though some authors may name a general term
"neutron star', regardless of that the stars are "neutron" or "strange", it is
actually not suitable to call a real SS to be an NS since no neutron in an SSe
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2. The standard model of particle physics and the quark matter
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One of the most great achievements in the last century is the construction of
the standard model in particle physics (e.g., Cottingham & Greenwood 1998),
which asserts that the material in the universe is made up of elementary fermions
(divided into quarks and leptons) interacting though gauge bosons: photon (elec-
tromagnetic), W± and ZO (weak), 8 types of gluons (strong), and graviton (grav-
itational). There are totally 62 types of "building blocks" in the model. Besides
the 13 types of gauge bosons, there are three generations of fermions (1st: {ve ,

e; u, d}, 2nd: {v/L' P; c, s}, and 3rd: {vT , T; t, b}. Note that each types of
quarks has three colors) and their antiparticles. The final one, which is still not
discovered, is the Higgs particle that is responsible to the origin of mass.

It is a first principle in the Yang-Mills theory that an interaction satisfies
a corresponding local gauge symmetry, sometimes being broken spontaneously
due to vacuum phase transition. The gauge theory for electromagnetic and weak
interactions is very successful, with a high precision in calculation; whereas one
can treat gravity using Einstein's general relativity theory if the length scale
is not as small as the Plank scale ("" 10-33 em) although a gauge theory of
gravity is still not successful. As for the gauge theory for strong interaction, the
quantum chromodynamics (QCD), however, is still developing, into which many
particle physicists are trying to make efforts.

Nonetheless, QCD has two general properties. For strong interaction in
small scale ("" 0.1 fm), i.e., in the high energy limit, the interacting particles can
be treated as being asymptotically free; a perturbation theory of QCD (pQCD)
is possible in this case. Whereas in larger scale ("" 1 fm), i.e., in the low energy
limit, the interaction is very strong, which results in color confinement. The
pQCD is not applicable in this scale (many non-perturbative effects appear
then), and a strong interaction system can be treated as a system of hadrons
in which quarks and gluons are confined. In this limit, we still have effective
means to study color interaction: 1, the lattice formulation (LQCD), with the
discretization of space-time and on the base of QCD, provide a non-perturbative
framework to compute numerically relations between parameters in the standard
model and experiments by first principles; 2, phenomenological models, which
rely on experimental date available at low energy density, are advanced for
superdense hadronic and/or quark matter.

These two properties result in two distinct phases (Rho 2001) of hadronic
matter, depicted in the QCD phase diagram in terms of temperature T vs.
baryon chemical potential PB (or baryon number density). Hadron gas phase
locates at the low energy-density limit where both T and /-LB are relatively low,
while a new phase called quark gluon plasma (QGP) or quark matter appears
in the other limit when T or /-LB is high although this new state of matter is
still not found with certain yet. It is therefore expected that there is a kind of
phase transition from hadron gas to QG P (or reverse) at critical values of T and
/-LB. Actually a deconfinement transition is observed in numerical simulations of
LQCD for zero chemical potential PB == 0, when T -+ T; ~ (150 "" 180) MeV.

Can we find real quark matter? Certainly we may improve very much
the knowledge about the strong interaction by studying the matter's various
properties if a QGP state is identified in hand. One way is to create high
energy-density fireball in laboratory through the collisions of relativistic heavy
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ions in accelerators. Quark matter is expected if the center of the fireball reaches
a temperature ofTc , but the QGP is hadronized soon and there are final states of
hadrons detected. It is thus a challenge to find clear signatures of QGP without
ambiguousness in these experiments. Another way is to search celestial bodies
which contain quark matter via cosmological or stellar processes. Strange stars
(§3) are very probably such kind of objects, which are a kind of bulk QGP with
mass >- IM0 , composed of nearly equal number of up, down, and strange quarks
(called as strange quark matter, or strange matter). Some possible observational
signatures of SSs are also addressed in literatures. The first way to detect this
new form of matter is in terrestrial laboratory physics (lab-physics), whereas the
second is in astrophysics. They compensate each other. Up to date, the research
both in lab-physics and in astrophysics faces a general difficulty in finding quark
matter: to search a clear signature for its existence.

In fact, the investigations in lab-physics and astrophysics are in two different
regions in the QCD phase diagram. Available Monte Carlo simulations of LQCD
are only applicable for cases with J-LB == 0, and thus give valuable guidance for lab-
physics. However, it is a very different story with SSs, where the density effects
dominate (J-LB =1= 0). It turns out, for technical reasons, to be extremely difficult
to study strange matter by LQCD, and we have to rely on phenomenological
models to speculate on the properties of SSs by extrapolating our knowledge
at nuclear matter density. For an SS, with high J-LB but low T, one can not
naively think that it is a simple QGP; in fact many interesting phenomena, e.g.,
color superconductivity (Alford et al. 2001) of strange matter, are discussed. In
this meaning, SSs provide only examples to study such hadronic system at high
density, and one thus has to learn "experimental date" from astrophysics.

3. Strange stars

That strange stars (rather than neutron stars) are residual after core-collapse
type supernova explosion depends upon 1, quark deconfinement occurs, 2, strange
matter in bulk is absolutely stable (Bodmer-Witten's conjecture). Unfortunately
no certain answer to these issues is obtained theoretically (§2). Nevertheless, we
still can obtain general concepts about those two requirement for forming SSs
by following simple arguments. In the view of bag model", the vacuum in and
out hadrons is different; in-hadron is of "pQCD vacuum" where the strong in-
teraction is weak and pQCD is applicable, but out-hadron is of "QCD vacuum"
where the nonlinear strong coupling between quarks or gluons is in control. As
baryon number density {} gets higher and higher, the pQCD vacuum in nucleons
becomes more and more dominated; if nucleon keeps a radius Tn ,......, 1 fm, the
QeD vacuum disappears when {} > {}c r-..J (41rr~/3)-l r-..J 1.5{}o ({}o is the density
of ordinary nuclear matter). Depending on rotation frequency and stellar mass,
such density are easily surpassed in the cores of neutron stars (Weber 1999).
Therefore the first requirement - quark deconfinement - may be satisfied. In
case of {} > {}c, u and d quarks deconfined from nucleons could have a Fermi

1 Quarks are though as degenerate Fermi gases in the model, which exist only in a region of
space endowed with a vacuum energy density B (called as the "bag constant").
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energy/ >'" 400 MeV, which is much larger than the mass of 8 quark m; '" 150
MeV; the system should be energetically favorable by opening of a third flavor
degree of freedom (8 quark) since high-energy u and d quarks are expected to
decay into 8 quarks via weak interactions. The second requirement may thus
also be reasonable. It is worth addressing that, if only the first requirement
is satisfied while strange matter is not absolutely stable but only metastable,
a mixed phase where bulk quark and nuclear matter could coexist over macro-
scopical distances may appear in NS cores (such NSs are called as "mixed stars" ,
see, e.g., Heiselberg & Hjorth-Jensen 2000, for a review).

These two requirements may lead to the existence of strange matter in
nature. In a simplified version of the bag model, assuming quarks are massless
and noninteracting, we then have quark pressure Pq == pq/3 (Pq is the quark
energy density); the total energy density is P == pq + B but the total pressure is
P == Pq - B. One therefore have the equation of state for strange matter,

P == (p - 4B)/3. (1)

(Actually strange matter may have baryons from several hundreds'', called as
strangelets, to about that of our sun, called as strange stars.) One can obtain
the mass M and radius R of an SS by integrating numerically the TOV equation,
with a strange matter equation of state [e.g., eq.(I)], assuming a certain central
density (or pressure). The mass-radius relations of SSs calculated with various
strange matter equations of states are very different from that of NSs, which
may provide a possible way to differentiate SSs from NSs (§3.2). But an SS
usually can have a mass of 1 '" 2M0 , and correspondent radius >- 10 km.

It is worth noting that the apparent temperature Too and radius Roo (also
called as radiation radius, defined by Loo == 41fR~aT~, where Loo is the ap-
parent luminosity at infinity and a is the Stefan-Boltzmann constant), i.e., the
values observed at infinity, is not that observed at the stellar surface (R is also the
Schwartzschild radius coordinate at the surface, defined by y'surface area/41f).
For a compact star with mass M and radius R, the relations are (Haensel 2001)
Too == Ty'I- (Rs/R), Roo == R/y'I- (Rs/R), where u; == 2GM/c2 is the
Schwartzschild radius.

3.1. Structures: crusted or bare?

As the strange quarks are more massive (m s '" 150 MeV) than the up (m u '" 5
MeV) and down (md '" 10 MeV) quarks, some electrons are required to keep
the chemical equilibrium of an SSe This brings some interesting properties near
the bare quark surface. Since quarks can be bound through strong interaction,
whereas electrons by much weaker interaction (only the electromagnetism), the
electrons can thus spread out the quark surface and be distributed in such a
way that a strong outward static electric field is formed. Adopting a simple

2In the view of extremely relativistic ideal Fermi gases, one nucleon (mainly neutron) contributes
about 1 u quark and 2 d quarks, and the Fermi energy cF = (31r2)1/31iC' n 1/3 (n the number
density of quarks). If {! = 1.5go, cF = 379 MeV for u quark and cF = 477 MeV for d quark.

3Strange matter may have a minimum mass limit due to the surface effects not being negligible,
even if Bodmer-Witten's conjecture is correct.
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Thomas-Fermi model, one can deduce analytical expressions for the electron
number density n e and the electric field E above the surface (Xu & Qiao 1999),

9.5 X 1035

(1.2z11 + 4)3
cm-3 , E

7.2 X 1018 V -1"-' cm ,
(1.2z11 + 4)2

(2)

where z is a measured height above the quark surface, Z11 == zj(10- 11 cm). Very
strong electric field, "-' 1017 V jcm from eq.(2), should be near the quark surface,
which makes it possible to support a normal-matter crust with mass "-' 10-5Mev
(Alcock et al. 1986). SSs covered by such crusts are called as crusted strange
stars (CSSs), while SSs without crusts as bare strange stars (BSSs).

Can radio pulsars, the largest population of PLCSs, be BSSs? The answer
was no in Alcock et aI's (1986) paper: "Pulsar emission mechanisms which de-
pend on the stellar surface as a source of plasma will not work if there is a bare
quark surface" and "The universe is a dirty environment and a bare strange
star may readily accrete some ambient material". Their first point is certainly
incomplete, because e± pairs produced rapidly in strong electro-magnetic fields
[as expressed in eq.(2), or induced by the unipolar effect] should create a coro-
tating magnetosphere although no charged particles can be pulled out into the
magnetosphere (Xu & Qiao 1998). A nascent protostrange star should be bare
because of strong mass ejection and high temperature (Usov 1998) after the su-
pernova detonation flame; an SS can hardly accrete due to rapid rotating and
strong magnetic field (Xu et al. 2001); even accretion is possible, a crust still
can not form as long as the accretion rate is not much larger than the Eddinton
one (Xu 2002). Their second point is thus also not reasonable. Therefore radio
pulsars could be BSSs. Furthermore, it is found that BSSs may be better for
explaining the observations of radio pulsars as well as other PLCSs (§3.3).

3.2. Potential ways to identify a strange star

Although the SS idea is not new, SS identification becomes a hot topic only in
recent years because of advanced techniques in space. Since SSs may have similar
masses and radii, which are conventional quantities observable in astronomy, to
that of NSs, it is very difficult to find observational signals of quark matter
in the PLCSs. It was argued that the SS and NS cooling behaviors could be
distinguishable, since SSs may cool much faster than NSs (e.g. Pizzochero 1991).
However, recent more complete analyses on this issue indicate that this may be
impossible except for the first ,,-,30 years after their births (Schaab et al. 1997).
Nevertheless, the author thinks there may still be three effective ways to do.

1. The minimum rotation periods of SSs are smaller than that of NSs.
Rotating stars cornposted of ideal fluid are subject to rotation-mode instability,
which leads to the loss of rotation energy by gravitational radiation and results
in substantial spindown. However the matter of a real star is not ideal but have
viscosity; the calculated bulk viscosity, based on the work of Wang & Lu (1984),
of strange matter is much higher than that of neutron matter although their
shear viscosities are similar; therefore SSs could have smaller periods at which
their higher viscosity can prevent them from developing the instability (Madsen
1998, 2000). The 2.14 ms optical source in SN 1987A (Middleditch et al 2000)
should be an SS if being confirmed in further observations.
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2. The approximate mass-radius (M - R) relations of SSs (M ex R3) are
in surprising contrast to that of NSs (M ex R-3 ) , and SSs can have much small
radii. Comparisons of observation-determined relations in X-ray binaries with
modelled ones may thus tell if an object is an NS or an SS (Li et al. 1999). Also,
a PLCS with radius ~ 8 km could be an SS (Drake et al. 2002).

3. There are striking differences between the surfaces of BSSs and that of
NSs. The very properties of the quark surface, e.g., strong bounding of particles,
abrupt density change from 4B rv 4 x 1014g/cm3 to rv 0 [eq.(1)] in rv 1 fm, and
strong electric fields, may eventually help us to identify of a BSS (§3.3).

3.3. Observational evidence for bare strange stars?

Three parts of possible evidence for BSSs are discussed below.
Although pulsar emission mechanism is not well understood, the RS-type

(Ruderman & Sutherland 1975) sparking model is still the popular one to con-
nect magnetospheric dynamics with general observations, with an "user friendly"
nature. Maybe the strongest support to the RS-type vacuum gap model is the
drifting subpulses observed from some pulsars. However RS model faces at least
two difficulties for NSs: the binding energy problem and the antipulsar issue,
which can be solved completely if radio pulsars are BSSs (Xu et al. 1999).

The soft ,-ray burst of SGR 0526-66, with peak luminosity rv 107LEdd,

needs ultra-strong field (rv 1017G) to constrain the fireball. An alternative
bounding is through the quark surface; and it may be natural to explain the
bursting energy and the light curves in a framework that a comet-like object
falls to a BSS (Zhang et al. 2000, Usov 2001).

BSSs are expected to have featureless spectra (of both surface thermal and
magnetospheric non-thermal components) since no ion is above the quark surface
or in the magnetosphere, except for electron cyclotron lines due to the Landau
levels appeared in strong fields (Xu & Qiao 1998, Xu 2002). Recent observations
known hitherto of several PLeSs actually show featureless spectra except for two
sources 1E1207 and SGR1806, the lines of which may originate from Landau level
transitions in suitable field strength for the space facilities (astro-ph/0207079).

4. Conclusions

The theoretical bases of SSs are, to some extent, solid in physics and the for-
mation of strange matter stars is possible in astrophysics; SSs could thus exist.
Although each of the observed phenomena from PLCSs may be interpreted un-
der the NS regime with unusual or artificial physical properties, it could be a
natural way to understand the observations by updating NSs with SSs.
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