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Abstract. In this paper, groups are investigated in which all subgroups, all
normal subgroups, or all characteristic subgroups have a proper supplement. This
supplement can be either an arbitrary subgroup, a normal or a characteristic sub-
group, resulting in nine classes of groups. Properties of these classes are studied such
as containment and closure properties, and characterizations for several of these
classes are given.

1991 Mathematics Subject Classi®cation. Primary: 20E34. Secondary, 20E15.

1. Introduction. A subgroup H of a group G is supplemented in G if there is a
subgroup K of G such that G � HK. If H \ K � f1g, then H is complemented in G
by K. While groups which satisfy certain complementation properties have been
extensively studied, little has been done to investigate groups which satisfy certain
supplementation properties.

The topic of this paper is a comprehensive investigation of supplementation in
general, as well as in the case of ®nite groups. To make our notions more precise, we
make the following de®nition, using notation due to Christensen [5].

Definition 1.1. A group G is an xP-group if every nontrivial x-subgroup satis-
®es condition P, where x and P can have the following values:

x � a �arbitrary subgroup�;
� n �normal subgroup�;
� c �characteristic subgroup�;

P � D �is a direct factor�;
� C �has a complement�;
� S �has a proper supplement�;
� PNS �has a proper normal supplement�;
� CS �has a proper characteristic supplement�:

The class of groups which have a certain property will be denoted by xP. There
are extensive studies of xD- and xC-groups. In [12], Kert�esz classi®ed aD-groups,
groups in which every subgroup is a direct factor. Wiegold [17] studied nD-groups,
groups in which every normal subgroup is a direct factor. In his paper, Wiegold does
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classify ®nite nD-groups. Christensen [5] showed that the class of ®nite nD-groups
equals the class of ®nite cD-groups. The work done by Wiegold [17] was extended by
Head [9], where he characterized in®nite nPNS-groups. Finite aC-groups, groups in
which every subgroup is complemented, have been classi®ed by P. Hall [8]. Baeva
[1], Chernikova [4], and Sheriev [16] extended these results to in®nite aC-groups. The
class of ®nite nC-groups, groups in which every normal subgroup is complemented,
have been investigated in numerous papers (Bechtell [2], Christensen [5] and [6], and
Wright [18] to name a few).

The goal of this paper is to investigate supplementation in groups by studying
the properties of xS-, xPNS-, and xCS-groups. The notation used is standard (e.g. see
Robinson [14]). When property P is mentioned, P will always refer to S, PNS, or CS
unless otherwise indicated. If a nontrivial subgroup H of a group G satis®es prop-
erty P, we will say that H has a P-supplement. If H is characteristic in G, this will be
denoted by H char G. For any subset S of G, the subgroup generated by S will be
denoted by hSi. The normal closure of S in G will be denoted by SG, and the char-
acteristic closure of S in G by SA�G�. The unrestricted direct product will be denoted
by � and the restricted direct product or direct sum by �. Finally, � will denote the
set of all primes.

First, the containment relation between the nine di�erent classes of xP-groups is
given. These results are straightforward and given without proof.

Proposition 1.2. aP � nP � cP for P � S; PNS; and CS.

Proposition 1.3. xCS � xPNS � xS for x � a; n; and c.

Propositions 1.2 and 1.3 result in the diagram below that presents the contain-
ment relations between the nine classes of groups to be studied.

aS � nS � cS

� � �

aPNS � nPNS � cPNS

� � �

aCS � nCS � cCS

Diagram 1.

The question arises whether each of these containments is proper or not. As it
turns out, the containments are all proper in the general case, but not when we restrict
the classes to only consist of ®nite groups. This restriction to ®nite groups has
important rami®cations. The proofs of the following theorems are given in Section 6.

Theorem 1.4. In the general case, all the class containments in Diagram 1 are
proper.

aS � nS � cS
[ [ [

aPNS � nPNS � cPNS
[ [ [

aCS � nCS � cCS

Diagram 2.
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Theorem 1.5. When only ®nite groups are considered, the following class con-
tainments result.

aS � nS � cS
[ [ [

aPNS � nPNS � cPNS
[ [ =

aCS � nCS � cCS

Diagram 3.

When studying groups which satisfy speci®c supplementation properties, max-
imal subgroups become an integral part of any investigation. Given the three di�erent
collections of subgroups and supplements (arbitrary, normal, and characteristic), the
maximal, maximal normal, and maximal characteristic subgroups of a group G are
important. De®nitions and results concerning these classes of subgroups, along with
some other preliminaries, are established in Section 2. These results are then used to
characterize xS-, xPNS-, and xCS-groups in Sections 3, 4 and 5 respectively, where
x � a; n; and c. In certain instances, ®niteness conditions are imposed to obtain spe-
cial results. The classi®cations and characterizations established in these sections are
then used to prove Theorems 1.4 and 1.5 in Section 6 and to obtain closure (subgroup
and homomorphic image) properties for the various classes in Section 7.

2. Preliminary results. In this section we give three lemmas which reduce
showing that a group G is in aP, nP, or cP to establishing that every cyclic subgroup,
every normal closure or every characteristic closure of an element, respectively, has a
P-supplement. In addition, we give de®nitions and some results concerning the
Frattini subgroup and some of its analogues which play an important role in the
characterization of xP-groups. These results can be found in [11].

Lemma 2.1. A nontrivial group G is an aP-group (P=S, PNS, CS) if and only if,
for every nontrivial x 2 G, hxi has a P-supplement in G.

Proof. The necessity of the condition follows from De®nition 1.1. Conversely,
let H be a nontrivial subgroup of G and h nontrivial in H. Since hhi is a nontrivial
subgroup of G, there is a P-supplement K in G such that G � hhiK. But hhi � H
implies G � HK. &

Lemma 2.2. A nontrivial group G is an nP-group (P=S, PNS, CS) if and only if,
for every nontrivial x 2 G, the normal closure xG has a P-supplement in G.

Proof. The proof here is the same as the proof of Lemma 2.1, except that hxi is
replaced by xG. &

Lemma 2.3. A nontrivial group G is a cP-group (P=S, PNS, CS) if and only if,
for every nontrivial x 2 G, the characteristic closure xA�G� has a P-supplement in G.

Proof. The proof here is the same as the proof of Lemma 2.1, except that hxi is
replaced by xA�G�. &
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Now we turn to the Frattini subgroup and some of its analogues needed in the
context of supplementation.

Definition 2.4. (1.1 in [11].) Let G be a group; then

(i)M� fM � G;M 6� G;M � L � G)M � L or L � Gg;
(ii) N � fN / G;N 6� G;N / L / G) N � L or L � Gg;
(iii) K � fK char G;K 6� G, K char L char G) K � L or L � Gg.

Definition 2.5. (1.3 in [11].) For a group G we de®ne the following subgroups:

(i) Frat�G� �TM2MM ifM 6� ;, and Frat�G� � G ifM� ;;
(ii) nFrat�G� � TN2N N if N 6� ;, and nFrat�G� � G if N � ;;
(iii) cFrat�G� � TK2K K if K 6� ;, and cFrat�G� � G if K � ;.

Note that Frat�G�, nFrat�G�, and cFrat�G� are all characteristic in G.

Definition 2.6. (3.3 in [11].) A normal subgroup H of G is ®nitely n-generated
over G if there are elements x1; . . . ; xn in G such that H � hx1; . . . ; xniG.

Lemma 2.7. (3.4 in [11].) If nFrat�G� is ®nitely n-generated over a nontrivial group
G, then nFrat�G� is a proper subgroup of G.

More information on the properties of nFrat�G� and cFrat�G�, and the rela-
tionship between Frat�G�, nFrat�G), and cFrat�G� can be found in [11].

3. Characterizations of xS-groups. In this section, the structure of xS-groups is
investigated. As we shall see, the Frattini subgroup plays an important role here. In
the case of ®nite groups, the class of aS-groups is identical to the class of aC-groups,
and the class of nS-groups is identical to the class of cS-groups.

Proposition 3.1. If Frat�G�=f1g, then G is an nS-group, and there exists a group
T in nS such that Frat�T� 6� f1g.

Proof. Since Frat�G� � f1g, G admits maximal subgroups. Suppose that there is
a nontrivial normal subgroup N of G that has no proper supplement. Then, for
every maximal subgroup M 2 M, NM 6� G. Since NM 6� G and M is maximal in G,
NM �M. Thus N �M, for all M 2 M. Consequently, N � Frat�G�, a contra-
diction. Thus G is an nS-group.

According to [13], there exists an in®nite simple group T with Frat�T� � T.
Since T is simple, it is trivially an nS-group. However, Frat�T� � T 6� f1g. &

Proposition 3.2. Let G be a group with Frat�G� ®nitely generated. Then G is a
cS-group if and only if Frat�G� � f1g. Furthermore, there exists a cS-group F with
Frat�F� not ®nitely generated.

Proof. Suppose that G is a cS-group with Frat�G� 6� f1g. Since Frat�G� char G,
there exists a proper subgroup K of G such that G � Frat�G�K. Given that Frat�G� is
®nitely generated, G � K (7.3.8 of [15]). This contradiction implies that Frat�G� � f1g.
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Conversely, let Frat�G� � f1g. By Proposition 3.1, we have G 2 nS. It follows by
Proposition 1.2 that G 2 cS.

To show that the Frattini subgroup being ®nitely generated is a necessary
assumption, consider F � Q� A5, the direct product of the rationals under addition
and the alternating group on 5 letters. We have F 2 cS, but F =2 nS, and
Frat�F� � Q, which is not ®nitely generated. &

The following corollary is now an immediate consequence of the above propo-
sitions.

Corollary 3.3. In the class of groups in which Frat�G� is ®nitely generated, the
collection of nS-groups is identical to the collection of cS-groups.

Proposition 3.4. If G is an aS-group, then Frat�G� � f1g, and there exists a ®nite
group G with Frat�G� � f1g, but G =2 aS.

Proof. Suppose that Frat�G� 6� f1g. Let x 2 Frat�G�, x 6� 1. Then there is a
proper subgroup H of G such that G � hxiH. Consequently, G � hx;Hi � hHi, a
contradiction. Thus Frat�G� � f1g.

Consider A4 � ha; b; c j a2 � b2 � c3 � 1; ab � ba; ac � cbi and hai � A4. Now
Frat(A4)=f1g, but hai has no proper supplement as the only proper subgroups of A4

that do not contain hai are of order 2 or 3. &

The closure properties of xP-groups will be studied in detail in Section 7, but the
following result is presented here to help prove Theorem 3.6.

Proposition 3.5. Every subgroup of an aS-group is an aS-group.

Proof. Let G be an aS-group and H � G. If H � f1g or G, then the result fol-
lows. Suppose that H is nontrivial and proper in G.

Let K be a nontrivial subgroup of H. Since K is a nontrivial subgroup of G,
there exists a proper subgroup L of G such that G � KL. By the modular identity,
H � G \H � KL \H � K�L \H�. If L \H � H, then H � L. This would then
imply that K � L and G � L, a contradiction. Thus L \H is a proper subgroup of
H, and H is an aS-group. &

Theorem 3.6. If G is an aS-group which satis®es the descending chain condition
on subgroups, then G is an aC-group.

Proof. Let H � G. Let K be minimal among subgroups which supplement H in
G. Let H1 � H \ K, and suppose that H1 6� f1g. By Proposition 3.5, H1 has a proper
supplement K1 in K. Thus G � HK � H�H1K1� � �HH1�K1 � HK1. This contradicts
the minimality of K. Consequently, H1 � f1g and H is complemented in G. &

The following corollary is now obvious.

Corollary 3.7. The class of ®nite aS-groups is identical to the class of ®nite aC-
groups.
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Given Corollary 3.7 and the work done by P. Hall [8] on ®nite aC-groups, a
®nite aS-group has all of its Sylow subgroups elementary abelian, all of its chief
factors cyclic, and is isomorphic to a subgroup of the direct product of a certain
number of groups of square free order. A result analogous to Corollary 3.7 cannot
be obtained in the general case. The in®nite dihedral group is an aS-group, but is not
an aC-group as all aC-groups are torsion groups. In®nite aC-groups have been stu-
died by Baeva [1] and Chernikova [4].

4. Characterizations of xPNS-groups. In this section, the structure of xPNS-
groups is investigated. Here, the role played by the Frattini subgroup in the context
with xS-groups is taken over by the n-Frattini subgroup. We shall see that ®nite
nPNS-groups coincide with ®nite nD-groups as well as ®nite cPNS-groups. Finally,
we characterize aPNS-groups. Our ®rst theorem characterizes nPNS-groups,
extending a result by Head [9].

Theorem 4.1. The following are equivalent for a group G.

(a) G is an nPNS-group.
(b) G is the subdirect product of simple groups.
(c) nFrat�G�=f1g.

Proof. The equivalence of (a) and (b) follows from Theorem 2 in [9].
To show that (b) implies (c), let G be the subdirect product of simple groups.

Then G admits maximal normal subgroups. Thus nFrat�G� 6� G. Suppose that
nFrat�G� 6� f1g. Since G is an nPNS-group, G � nFrat�G�N, for some proper normal
subgroup N of G. Then N �M, where M is a maximal normal subgroup in G and
G � nFrat�G�M. This contradiction implies that nFrat�G� � f1g.

To show that (c) implies (a), let nFrat�G� � f1g. Then G admits maximal normal
subgroups. Suppose there is a nontrivial normal subgroup N of G that has no proper
normal supplement. Then G 6� NM for all M 2 N . Since NM �

=
G, NM �M. This

implies that N �M for all M 2 N . Thus N � nFrat�G�, a contradiction. Thus G is
an nPNS-group. &

Corollary 3.3 indicates that for the class of groups whose Frattini subgroups are
®nitely generated, the collection of nS-groups is identical to the collection of cS-
groups. Given that nPNS � nS and cPNS � cS, it is natural to try to extend this
result to the classes of nPNS- and cPNS-groups. This can be done when Frat�G� is
replaced by nFrat�G� and ®nitely generated is replaced by ®nitely n-generated. (See
De®nition 2.6.)

Theorem 4.2. In the class of groups in which nFrat�G� is ®nitely n-generated, the
collection of nPNS-groups is identical to the collection of cPNS-groups. Furthermore,
there exists a group F in cPNS with a not ®nitely generated n-Frattini subgroup and F
is not in nPNS.

Proof. Since every nPNS-group is a cPNS-group, all we need to show is that
cPNS � nPNS. Let G be a cPNS-group. Since nFrat�G� is ®nitely generated,
nFrat�G� 6� G, by Lemma 2.7. Let nFrat�G� � hx1; . . . ; xniG.
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If G is simple or trivial, the result follows. Suppose G is nontrivial, not simple,
and not an nPNS-group. Then some nontrivial normal subgroup N of G has no
proper normal supplement.

Since nFrat�G� 6� G, by Lemma 2.7, G admits maximal normal subgroups. Thus,
for each M 2 N , G 6� NM. Since NM / G, NM �M and N �M, for all M 2 N .
ThusN � nFrat�G� and nFrat�G� is nontrivial inG. Since nFrat�G� char G, there exists
a proper normal subgroup L of G such that G � nFrat�G�L, so G � hx1; . . . ; xniGL
� hx1; . . . ; xn;LiG. By Theorem 2.6 of [11], G � hx2; . . . ; xn;LiG. Continuing in this
manner, G � hLiG � L, a contradiction. Thus G is an nPNS-group.

Finally, consider the group F � Q� A5, which clearly is a cPNS-group and has
nFrat�F� � Q. Thus F is not in nPNS and nFrat�F� is not ®nitely generated. &

The classi®cation of ®nite nPNS-groups ®rst appeared in [3]. The following
corollary is now an immediate consequence of Theorems 4.1 and 4.2.

Corollary 4.3. The classes of ®nite nPNS-groups, nD-groups, cD-groups, and
cPNS-groups are identical and any group in this class is the direct product of simple
groups.

Proof. Clearly, a ®nite nD-group is a ®nite nPNS-group. Let G be a ®nite nPNS-
group. By Theorem 4.1, G is the direct product of simple groups. Thus, by Theorem
4.4 of [17], G is an nD-group. The class of ®nite nD-groups is identical to the class of
®nite cD-groups by Theorem 3.1 of [5]. The fact that the class of cPNS-groups is
identical to the class of nPNS-groups follows from Theorem 4.2. The second part of
our claim is an immediate consequence of Theorem 4.1. &

The last result in this section presents a classi®cation of aPNS-groups.

Theorem 4.4. The following are equivalent for a nontrivial group G:

(a) G is an aPNS-group;
(b) G is the subdirect product of a family of cyclic groups of prime order;
(c) G is abelian with

T
p2�G

p � f1g, where � is the set of all primes.

Proof. To show that (a) implies (b), let G be an aPNS-group, and let x 2 G,
x 6� 1. If hxi � G, then G is isomorphic to an in®nite cyclic group, which is the sub-
direct product of

Q
p2�Cp, or G is isomorphic to a ®nite cyclic group of square free

order, by Corollary 4.3.
Suppose hxi 6� G. Then there exists a proper normal subgroup N of G such that

G � hxiN. Let M be a normal subgroup of G maximal with respect to x =2M and
N �M. Such an M exists by Zorn's Lemma. We claim that G=M is cyclic of prime
order.

Since G � hxiM;G=M � hxiM=M � hxi=hxi \M. Thus G=M is cyclic. If G=M
is not simple, then there is a nontrivial proper subgroup K=M / G=M. Conse-
quently, K is a proper normal subgroup of G with M � K. If x 2 K, then
hxiM � G � K, a contradiction. Thus x =2K, which contradicts the maximality of M.
This implies that G=M is simple. Since G=M is cyclic, G=M has prime order.

Hence, for each nontrivial x 2 G, there is a maximal normal subgroup Mx of G
such that x =2Mx and G=Mx is cyclic of prime order. Thus G is the subdirect product
of a family of groups which are simple of prime order.
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To show (b) implies (c), let G be a group satisfying the condition stated in (b).
Then G is abelian. Furthermore, by Theorem 4.1, G is an nPNS-group with
nFrat�G� � f1g. But since G is abelian, nFrat�G� � Frat�G� � Tp2�G

p.
To show that (c) implies (a), let G be an abelian group with

T
p2�G

p � f1g. Let
g 2 G, g 6� 1. Choose a prime p such that g =2Gp. Since G=Gp is an elementary abelian
p-group, there is a subgroup M, containing Gp, which complements hgi modulo Gp.
Thus G � hgiM and all nontrivial cyclic subgroups have a proper normal supple-
ment. By Lemma 2.1, G is an aPNS-group. &

5. Characterizations of xCS-groups. In this section, the structure of xCS-groups
is investigated. The role played by the Frattini and the n-Frattini subgroup in the
preceding two sections is taken over by the c-Frattini subgroup. Because of the
weaker closure properties of characteristic subgroups, results as strong as in the
preceding section cannot be expected. However under certain ®niteness conditions, a
picture for xCS-groups emerges which is similar to the one for xPNS-groups. Since
aCS-groups are abelian, by Theorem 4.4 and Proposition 1.3, additive notation will
be used in Theorem 5.1.

Theorem 5.1. A nontrivial torsion group G is an aCS-group if and only if it is the
direct sum of cyclic groups of prime order for distinct primes p.

Proof. Suppose that G is an aCS-group. Then G is an aPNS-group, by Propo-
sition 1.3. Thus, by Theorem 4.4, each Sylow p-subgroup of G is elementary abelian.

Let Gp be a Sylow p-subgroup of G and suppose that Gp

�� �� > p. Let a1 2 Gp with
a1j j � p. Since G is an aCS-group, there is a proper subgroup H char G such that
G � ha1i �H. Since a1j j � p, G � ha1i �H. Given that Gp

�� �� > p, there is an a2 2 H
such that a2j j � p. Again, since G is an aCS-group, G � ha2i � K, for a proper
subgroup K char G. Thus, by the modular identity, H � G \ H � �ha2i � K� \H
� ha2i � �K \H�. Since a2 =2K \H, we have H � ha2i � �H \ K�. Thus
G � ha1i � ha2i � �H \ K�, where H \ K char G.

De®ne a map � : G! G by ��a1� � a2; ��a2� � a1, and ��l� � l, for all
l 2 H \ K. This is an automorphism of G, yet ��H� 6� H, a contradiction. Thus, for
each Sylow p-subgroup Gp, Gp

�� �� � p. Consequently, G is the direct sum of cyclic
groups for distinct primes p.

Conversely, suppose that G � �p2�0 Cp is the direct sum of cyclic subgroups Cp

for distinct primes p, where �
0
is a collection of primes. Let H be a nontrivial sub-

group of G. Then, for some prime q 2 �0 , the Sylow q-subgroup Gq of G is contained
in H. Since G � �p2�0 Cp, there is a subgroup K in G which has index q in G. Fur-
thermore, K char G. Given that Gq � H and G � Gq � K, we have G � H� K, and
H has a proper characteristic supplement. &

Theorem 5.2. A ®nite group G is an nCS-group if and only if it is the direct pro-
duct of distinct simple groups.

Proof. Let G be an nCS-group. Since G is a ®nite nPNS-group, Corollary 4.3
implies that G � S1 � � � � � Sn, where each Si, 1 � i � n, is simple.

Suppose, without loss of generality, that S1 � S2. Since S1 is a nontrivial normal
subgroup of G, there exists a proper characteristic subgroup K of G, such that

44 LUISE-CHARLOTTE KAPPE AND JOSEPH KIRTLAND

https://doi.org/10.1017/S0017089500010065 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500010065


G � S1K. Now S1 \ K /S1 implies that S1 \ K � f1g. Thus K � G=S1 �
S2 � � � � � Sn. Consequently, K � T2 � � � � � Tn, where Tj � Sj for 2 � j � n.

Since G � S1 � K, we have G � S1 � T2 � � � � � Tn, where S1 � S2 � T2. Thus
there is a nontrivial automorphism � of G such that ��S1� � T2; ��T2� � S1, and
��Tk� � Tk for 3 � k � n. This implies K is not characteristic in G, a contradiction.
Thus Si 6� Sj, for 1 � i 6� j � n.

Conversely, let G � S1 � � � � � Sn, where each Si; 1 � i � n, is simple and Si 6� Sj

for 1 � i 6� j � n. Let H be a nontrivial normal subgroup of G. If H � G, then H
clearly has a proper characteristic supplement. If H is proper in G, then without loss
of generality, H � S1 � � � � � St, where 1 � t � nÿ 1. Let K � St�1 � � � � � Sn. Then
K is characteristic in G and G � HK. Thus G is an nCS-group. &

The results from Theorem 4.1 motivate the following theorems concerning cCS-
groups. Unfortunately, results for cCS-groups are not as strong as those for nPNS-
groups, as characteristic subgroups do not satisfy the same closure properties as
normal subgroups do.

Theorem 5.3. A group G is a cCS-group if and only if cFrat�G� � f1g.

Proof. Let G be a cCS-group and suppose that cFrat�G� 6� f1g. We ®rst show
that cFrat�G� 6� G. Suppose that cFrat�G� � G. Then G has a nontrivial proper
characteristic subgroup H. Let x 2 H, x 6� 1. Then xA�G� � H. It follows that there
exists a proper subgroup K char G such that G � xA�G�K. Let M be maximal with
respect to x =2M and K �M (Zorn's Lemma). We claim that M is maximal char-
acteristic in G. Suppose that M is not. Then there exists a subgroup L char G such
that M �

=
L �

=
G. If x 2 L, then xA�G�K � L, a contradiction. Thus x =2L. But this

contradicts the maximality of M. Thus M is a maximal characteristic subgroup of G.
This contradiction implies that cFrat�G� 6� G.

Given that cFrat�G� is nontrivial and characteristic in G, there exists a maximal
characteristic subgroup M� of G such that G � cFrat�G�M�. Since cFrat�G� �M�,
G �M�, a contradiction. Thus cFrat�G� � f1g.

Conversely, let cFrat�G� � f1g. If G is characteristically simple or trivial, then G
is clearly a cCS-group. Suppose otherwise. If G is not a cCS-group, then for some
nontrivial characteristic subgroup H of G, G 6� HK, for all subgroups K char G.
Then G 6� HM for all M 2 K. Thus HM �M and H �M, for all M 2 K.

Therefore H � cFrat�G�, a contradiction. Thus G is a cCS-group. &

Theorem 5.4. If G is a cCS-group, then G is the subdirect product of character-
istically simple groups. Furthermore, there exists a group W which is the subdirect
product of characteristically simple groups, but is not a cCS-group.

Proof. If G is trivial, the result follows. Let x 2 G, x 6� 1, and consider xA�G�.
First consider the case in which xA�G� � G. If there are no proper characteristic

subgroups in G, then G is characteristically simple. Suppose this is not the case. By
Theorem 5.3, cFrat�G� � f1g and G admits maximal characteristic subgroups. Thus
there is a maximal characteristic subgroup M of G such that G � xA�G�M and x =2M.

Now suppose xA�G� 6� G. By an argument identical to the one given in the proof
of Theorem 5.3, there is a maximal characteristic subgroup M of G such that
G � xA�G�M and x =2M. Consequently, for each nontrivial element x 2 G, regardless
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of whether xA�G� � G or xA�G� 6� G, there exists a maximal characteristic subgroup
Mx of G such that x =2Mx and G � xA�G�Mx.

Each G=Mx is characteristically simple. Create the map � : G! �x2G G=Mx

de®ned by ��g� � �x2G gMx. Since cFrat�G� � f1g, ker(�)=f1g. Thus � is an iso-
morphism into �x2G G=Mx.

Finally, consider the group W � Z� Z2 � ha; b j b2 � 1; ab � bai, which is the
subdirect product of characteristically simple groups. Consider the torsion subgroup
hbi, which is characteristic in W. For any proper subgroup M of G which supple-
ments hbi, M \ hbi � f1g. Thus G �M� hbi and M � hai or habi. Since neither hai
or habi is characteristic in W, W is not a cCS-group. &

6. Class containments. In this section, we shall prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. To do this, we need to establish all the proper contain-
ments listed in Diagram 2.

We start with those proper containments which will be established by using
®nite counterexamples. Consider S3, the symmetric group on three letters. Obviously
S3 is in aS, hence in nS and cS, by Proposition 1.2. On the other hand, S3 is not a
cPNS-group, since its commutator subgroup does not have a proper normal sup-
plement. By Proposition 1.2, it follows that S3 is not in nPNS and aPNS either. We
conclude that xPNS � xS for x � a; n, and c.

Next consider A5, the alternating group on ®ve letters. By Theorem 5.2, A5 is an
nCS-group. Proposition 1.3 implies that A5 is an nPNS- and nS-group. On the other
hand, A5 is not in aS since its Sylow 2-subgroups have no proper supplement. Thus,
by Proposition 1.3, A5 is not in aPNS and aCS. We conclude that aP � nP for
P � S, PNS, and CS.

To show that xCS � xPNS for x � a, n, and c, consider the group W � Z� Z2.
Since Z is the subdirect product of

Q
p2�Cp, W is an aPNS-group, by Theorem 4.4.

Consequently, by Proposition 1.2, it is an nPNS- and cPNS-group. On the other
hand, W is not a cCS-group, by Theorem 5.4. Proposition 1.2 implies that W is not
an aCS- and nCS-group. We conclude that xC � xPNS, for x � a, n, and c.

To complete the proof, consider F � Q� A5, where Q is the group of rational
numbers under addition. Since cFrat�F� � f1g, it follows from Theorem 5.3 that F is
a cCS-group. Proposition 1.3 implies that F is a cPNS- and cS-group. On the other
hand, it was shown in the proof of Proposition 3.2 that F is not an nS-group.
Therefore, Proposition 1.3 implies that F is not an nPNS- and nCS-group. We con-
clude that nP � cP for P � S, PNS, and CS. &

Proof of Theorem 1.5. Recall that in Theorem 1.5, all groups considered are
®nite. To prove the theorem, we need to establish all the proper containments and
equalities of Diagram 3.

All of the proper containments, except that nCS � cCS; aCS � aPNS, and
nCS � nPNS, follow from Theorem 1.4, since they were established using ®nite
counterexamples. The fact that nS � cS follows from Corollary 3.3, and
nPNS � cPNS follows from Corollary 4.3.

To show that cCS � nPNS, let G be a ®nite cCS-group. By Theorem 5.4, G is
the direct product of characteristically simple groups. However, a ®nite character-
istically simple group is either simple or the direct product of isomorphic simple
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groups (3.3.15 of [14]). Consequently, G is the direct product of simple groups. By
Theorem 4.1, G is an nPNS-group.

Conversely, let G be a ®nite nPNS-group. By Corollary 4.3, G is the direct pro-
duct of simple groups. By 3.3.15 in [14], G can be written as G � K1 � � � � � Kn,
where each Ki, (1 � i � n), is characteristically simple and characteristic in G. If
n � 1, then the maximal characteristic subgroup of G is f1g and cFrat�G� � f1g. If
n � 2, then Mj � K1 � � � � � Kjÿ1 � Kj�1 � � � � � Kn is maximal characteristic in G
for j � 1; . . . ; n. Therefore cFrat�G� �Tn

j�1Mj � f1g. Thus, by Theorem 5.3, G is a
cCS-group.

To show that xCS � xPNS for x � a and n, consider the Klein four group K4.
By Theorem 4.4 and Proposition 1.2, K4 is an aPNS- and nPNS-group. By Theorem
5.2 and Proposition 1.2, K4 is not an aCS- and nCS-group. Thus xCS � xPNS for
x � a and n.

Finally, given that cCS � nPNS and nPNS � cPNS, we have cCS � cPNS.
Furthermore, since nCS � nPNS and nPNS � cCS, we conclude that nCS � cCS. &

Theorem 1.5 indicates that the class of ®nite nS-groups is identical to the class of
®nite cS-groups. Thus for a ®nite group G, every nontrivial characteristic subgroup
having a proper supplement implies that every nontrivial normal subgroup does.
While this is surprising, it is not unexpected given the following parallel result,
established independently by N. T. Dinerstein [7] and M. Hofmann [10].

Theorem 6.1. If each characteristic subgroup of a ®nite group G is complemented
in G, then each normal subgroup of G is complemented in G.

In addition, one might be led to believe that a ®nite cS-group (which is also an
nS-group) would have to have all of its normal subgroups characteristic. This is not
the case as indicated by the Klein four group.

7. Closure properties. In this section, we will examine the subgroup and
homomorphic image closure properties of xP-groups for P � S, PNS, and CS. The
closure properties of xD- and xC-groups have been studied by Christensen in [5].
For convenience, the closure results stated in [5] are listed here in one result. In his
paper, x could also equal f (fully invariant).

Proposition 7.1. (Christensen [5]). The following statements hold.

(i) Every x-subgroup of an xD-group is an xD-group.
(ii) Every x-subgroup of an xC-group is an xC-group for x=a,c, f.
(iii) For any x and P=D or C, let G be an xP-group and � a homomorphism of G

whose kernel is an x-subgroup. Then G� is an xP-group.
(iv) Every complement of an x-subgroup of an xP-group, where P=D or C, is also

an xP-group.
(v) The direct product of two xP-groups, where P=D or C, is an xP-group.

In this section, subgroup and homomorphic image closure properties of xS,
xPNS, and xCS will be studied to the extent possible. We ®rst show that every
subgroup of an aP-group is an aP-group for P � S or PNS. This also holds for an
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aCS-group when the restriction is made to torsion groups. We then show that a
normal subgroupN of an nP-group is an nP-group, when P � S and Frat�N� is ®nitely
generated, when P � PNS, and when P � CS and the nCS-group is ®nite. In addition,
it is proven that every characteristic subgroup of a cP-group is a cP-group when
P � S or PNS. This also holds for ®nite cCS-groups. Finally, we show that the
homomorphic image of a ®nite xP-group is an xP-group, except for xP � nS and cS.

Theorem 7.2. The following statements hold.

(i) Every subgroup of an aP-group is an aP-group for P=S or PNS.
(ii) Every subgroup of a torsion aCS-group is an aCS-group.

Proof. In the case that P � S, this follows from Proposition 3.5. The proof that
every subgroup of an aPNS-group is an aPNS-group is almost identical to the proof
presented in Proposition 3.5. Statement (ii) follows from Theorem 5.1. &

Next, the subgroup closure properties of nP-groups are studied.

Theorem 7.3. The following statements hold.

(i) Every normal subgroup N of an nS-group with Frat(N) ®nitely generated is an
nS-group, and there exists a group H in nS with N / H and Frat(N) not ®nitely gen-
erated such that N is not an nS-group.

(ii) Every normal subgroup of an nPNS-group is an nPNS-group.
(iii) Every normal subgroup of a ®nite nCS-group is an nCS-group.

Proof. To prove (i), let N be a normal subgroup of an nS-group G with Frat�N�
®nitely generated. We observe that N is clearly an nS-group if N � f1g or G. Assume
N is nontrivial and proper in G and consider Frat�N�. We shall show that
Frat�N� � f1g.

Suppose Frat�N� 6� f1g. Then Frat�N� is a nontrivial normal subgroup of G.
Thus there exists a proper subgroup L of G such that G � Frat�N�L. Since Frat�N�
is ®nitely generated, Frat�N� � Frat�G�. This implies that G � L, a contradiction.
Thus Frat�N� � f1g. By Proposition 3.1, N is an nS-group.

The following example shows that the condition imposed on Frat�N� is neces-
sary. Consider the group H � Hol�Q� � NS the semidirect product of N, the
rationals under addition, and S � Aut�Q), the multiplicative group of rationals,
isomorphic to Z2 � F, where F is a free abelian group of countable rank. We note
that for n � �a; 1� 2 N, a 6� 0, nH � N, and that N � H

0
. Let M be a nontrivial

normal subgroup in H with m � �u; v� 2M, v 6� 1. Then there is a g 2 H such that
the commutator [g;m] 6� 1. Hence [m; g]H � N and N �M. It follows that any nor-
mal subgroup is of the form M � NA, where A is a subgroup of S. But S is an
aPNS-group, and hence there exists a supplement B of A such that AB � S. Thus
H �MB and H is an nS-group. However, N is a normal subgroup of H, not ®nitely
generated and not in nS.

To prove (ii), let N be a nontrivial normal subgroup of an nPNS-group G. By
Theorem 4.1, G is the subdirect product of simple groups. Thus there exist mappings
� : G! �i2�Si, where � is an index set and Si is simple for all i 2 �, and
�j : �i2�Si ! Sj (projection map), such that � is an isomorphism into �i2�Si and
��j is onto.
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Now consider N��j . Since N��j /G��j � Sj, N
��j � f1g or Sj. Let �

0
be the col-

lection of those l 2 � such that N��l � Sl. Then N is the subdirect product of �l2�
0Sl

and is an nPNS-group, by Theorem 4.1.
Statement (iii) follows from Theorem 5.2. &

Now subgroup closure properties for cP-groups will be investigated.

Theorem 7.4. The following statements hold.

(i) Every characteristic subgroup of a cP-group is a cP-group for P=S or PNS.
(ii) Every characteristic subgroup of a ®nite cCS-group is a cCS-group.

Proof. To prove statement (i), let C be a characteristic subgroup of a cP-group
G. If C � f1g or G, then C is clearly a cP-group. Assume that C is nontrivial and
proper in G. Let K be a nontrivial characteristic subgroup of C.

If K � C, then K has a proper P-supplement (P � S or PNS) in C. Assume that
K 6� C. Since K char G, there is a proper P-supplement L in G such that G � KL. By
the modular identity, C � G \ C � KL \ C � K�L \ C�. If L \ C � f1g, then C � K,
a contradiction. If L \ C � C, then C � L. This would then imply that G � L,
another contradiction. Thus L \ C is a nontrivial, proper subgroup of C.

If P � S, then C � K�L \ C� and thus C is a cS-group. If P � PNS, we need to
show that (L \ C) /C. However, since L / G, we have (L \ C) /C, and C is a cPNS-
group.

For statement (ii), let H be a characteristic subgroup of a ®nite cCS-group G.
Since H is normal in G and G is an nPNS-group (Theorem 1.5), Theorem 7.3 implies
that H is an nPNS-group. By Theorem 1.5, H is a cCS-group. &

Next, homomorphic image properties are investigated.

Theorem 7.5. Every homomorphic image of a ®nite aP-group is an aP-group for
P=S, PNS, or CS.

Proof. Let G be a ®nite aP-group. If P � PNS or CS, the result follows from
Theorems 4.4 and 5.1 respectively.

Suppose P � S. By Corollary 3.7, G is an aC-group. By Theorem 2 of [8], a
group is an aC-group if and only if all of its chief factors are cyclic and all of its
Sylow subgroups are elementary abelian. Since G is an aC-group having the above
properties, every homomorphic image of G also has the properties above. Thus
every homomorphic image of G is an aC-group and hence, by Corollary 3.7, an aS-
group. &

Theorem 7.6. Every homomorphic image of a ®nite nP-group is an nP-group with
P=PNS or CS.

Proof. If G is an nPNS-group, the result follows from Lemma 3 of [3]. If G is an
nCS-group, the result follows from Theorem 5.2. &

Theorem 7.7. Every homomorphic image of a ®nite cP-group is a cP-group with
P=PNS or CS.

SUPPLEMENTATION IN GROUPS 49

https://doi.org/10.1017/S0017089500010065 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500010065


Proof. This follows from Theorem 7.6 and the fact that every ®nite cPNS and
cCS-group is an nPNS-group (Theorem 1.5). &

Theorems like 7.6 and 7.7 do not hold for ®nite nS or cS-groups. Consider the
group G � ha; b j a5 � b4 � 1; bÿ1ab � a2i. The normal and characteristic sub-
groups of G are hai and ha; b2i, each of which has hbi as a supplement. However,
G=hai � hbi and Frat�hbi)=hb2i 6� f1g. Thus G=hai is not an nS or cS-group.

In addition, making statements similar to Theorems 7.5, 7.6, and 7.7 does not
seem to be possible in the general case. Let G � �p2�Cp. By Theorem 4.4, G is an
aPNS-group, and thus by Propositions 1.2 and 1.3, an aS and nPNS-group. Con-
sider T�G� � �p2�Cp, the torsion subgroup of G.

It can be easily seen that G=T is a torsion free divisible group, and hence the
direct sum of rationals under addition. We observe that nFrat�G=T� � Frat�G=T� �
G=T. By Theorem 4.4 and 4.1 it follows that G=T is not an aPNS-group nor an
nPNS-group. Proposition 3.4 implies that G=T is not an aS-group.
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