ON POSITIVE SOLUTIONS OF THE
HEAT EQUATION

MASASUMI KATOY

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

1. Consider the positive and twice continuously differentiable solutions

u of the heat equation
—9 \y= =5 9

O (=3 )e=0> 4= E 5
in an open ¢-strip 2=R,x(0,7) for some 7 >0, where R, is the n-dimen-
sional Euclidean space.

In this note, we prove a theorem of Fatou type on # and, as its application,
the uniqueness theorem for the Cauchy problem of (1).

2. The following theorem corresponds to Fatou’s theorem on harmonic
functions.

THEOREM 1. Let u be any positive solution of (1) in 2. Then lim wu(x,t)

-0
exists for almost every x=(2y, %y, ...... , %) € R *
Proof. We begin with the Poisson-Stieltjes integral representation of u(zx, ¢)
which is valid at least near the hyperplane ¢=0. The representation is
classical when n=1 (cf. [5]).

Let ¢, be any fixed value such that 0< ¢,<7T and ¢ be any number such
that 0 < e<7T—t,. Then we can represent u(x, #+¢) as follows:

(2) u(z, t+s)=SRnk(y—x, Hu(y, e)dy in 2.,

where k(y, ¢)=(dnt)-" exp (— |y |*/4t), |y|2=§"1 o

and Q,=R,x(0,T—¢) (e.g. [2] p. 42-48).
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By choosing 2=0, t=¢, in (2), we see that the Borel measures
due=ky, tu(y, e)dy

are uniformly bounded for sufficiently small ¢>0. Hence, by Frostman’s
selection theorem, there exists a sequence{y, }3-, of Borel measures converging
to some Borel measure sz as e > ¢ >......>¢; > —0. This means that
lim g, (X)=u(X) for each Borel set X with the boundary of x-measure
zero. Hence, for any point (x, ¢) in 2,=R,%(0, ¢,), we have

u(x, t+s,~)=SR Ky—=, t)u(y, ¢;)dy

Ky—z=x,t) kly—x, t) .
“SR,. (Y, t,) d”Ef“)SR,. Wy, t) W BT,

where the passage to the limit is justified by noting the choice of ., and by
the obvious estimate

k(y—=, t)[k(y, to)=0(e const-11*) as |y|—>oo .
By setting do=du/k(y, t,), we obtain the desired representation
(3) u(z, )=\, My—2,t)ds  in @,
where ¢ is obviously finite for the bounded Borel sets in R, .
Now, we consider the Lebesgue decomposition of do:
do=¢(y)dy+ds ,

where the density ¢ = 0 is locally summable on R, and s=0 is singular. By
the strong version of Lebesgue’s theorem and by the fact that the symmetric
dertvative Dsyms(x) of s vanishes at almost every ¢ € R,, we have

(4) L@ —e(@)dy+ds@}—~0  as a0

for almost every x € R,.

We may assume that (4) holds for =0. Then, for any ¢>0, there exists
a, >0 such that the left hand side of (4) is less than ¢ whenever 0<a< 2a,.
Moreover, for any ¢ such that 0< ¢ < Min (a3, t,) we choose a positive integer
N such that

W-1p < ay<2¥ , b=t'"?.

By (3), we see
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N
(S,,,|<b+?—? (i <o + [lya @, DXl ) —0(O)| dy+dsw)} .

=

Estimating each integral, we see easily that

|u(0, )—¢(0)| < Const. e+ Const. ¢ f}lQ*”f

j=

+ ¢<o>§m> k(y, £)dy+u(R,) 2 eed/sto =112 g=a}/st
2o

< Const. ¢ as t >0+ ,

which proves our assertion.

Remark. P.C. Rosenbloom ([3], p. 191-200) remarked without proof the
validity of Fatou’s theorem under a somewhat strong growth condition about
u(x, t).

3. Here, with the aid of Theorem 1, we prove the uniqueness theorem for
positive solutions under some weak conditions (cf. [5] and [3]). For the
purpose, we prepare the following lemma.

Lemma.  If =0 is a Borel measure on R, and if the upper symmetric derivative
Dsyma(x) is finite at each point © € R,, then o is absolutely continuous with respect to
the n—dimensional Lebesgue measure.

Although we could deduce its proof from Ward’s decomposition theorem
([4], p. 151-152), we state here a direct proof along the way suggested by Prof.
S. Tto.

Proof. Assume that there exists a compact set K such that ¢(K)>0 and
such that the Lebesgue measure [K| of K equals zero. Then, for a sufficiently
large M >0, there exists a compact subset K, of K such that ¢(K,) >0 and
a(S)[r" < M whenever S is a closed sphere with center in K, and of radius r
less than M-'. On the other hand, on account of [K,[=0, there exists a
sequence of open cubes {I;}7., such that

(a) the diameter a; of I, is less than M- ,

(b) UI,>K,and
J=1
() BILI<mreM)y oK) |

By (b) and (c), we have, for at least one Ij, ,

[Zs| < (n™*M)~'a(KoN 1jy) .

https://doi.org/10.1017/S0027763000012472 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012472

206 MASASUMI KATO

Considering a closed sphere S, with center in K,NI;#¢ and of radius aj, we
have a contradiction.
Now we can prove the following.

TueoreMm 2. If lIim sup u(x, t)<<+4oo at each point x R, and iftliﬁ u(ax, t)
04 —

=0 jfor almost every x € R,,, then u=0 in Q.
Proof. Assume that, for some point, e.g., =0, we have Dsymos(0)=+oo.

Then, there exists a sequence of radii {7,}3., converging to zero such that
lim o(S;)/r=~4o0 ,

where S, denotes the closed sphere with center =0 and of radius ;. Thus,

for a sufficiently large j, we have by (3)

u(0,73) = S Ky, r3)de = Const. o(S;)/r" ,

]1/[§"j

which, by letting j -+, leads us to a contradiction.

Hence, by the above lemma, ¢ is absolutely continuous, that is, s=0. On the
other hand, by our assumption and Theorem 1, we see that ¢(x)=0 for almost
every z € R,. Thus, we have ¢=0, thatis, u(x,#)=0 in £, Since ¢, is arbi-
trary in (0,T), we conclude that u(z, #)=0 in 2.

4. By replacing k(y, ¢) by the fundamental solution given in [1], we can

replace Laplacian 4 in our theorems by an elliptic differential operator A of
the following form:

=SV () O ()9
A—?jaz](x) 37,97, —I—;bl(x) . +c(z),

where the matrix (a;;(¢)) is symmetric and strictly positive definite for any
r € R, and

D%a;(x), Day,(x), Dbi(x), c(x) and det (a;;(z))™

are bounded and Holder continuous on R,.2
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