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ABSTRACT 

Persistent malnutrition is associated with poor clinical outcomes in cancer. However, assessing 

its reversibility can be challenging. The present study aimed to utilize machine learning (ML) 

to predict reversible malnutrition (RM) in patients with cancer. A multicenter cohort study 

including hospitalized oncology patients. Malnutrition was diagnosed using an international 

consensus. RM was defined as a positive diagnosis of malnutrition upon patient admission 

which turned negative one month later. Time-series data on body weight and skeletal muscle 

were modeled using a long short-term memory (LSTM) architecture to predict RM. The model 

was named as WAL-net, and its performance, explainability, clinical relevance and 

generalizability were evaluated. We investigated 4254 patients with cancer-associated 

malnutrition (discovery set=2977, test set=1277). There were 2783 men and 1471 women 

(median age=61 years). RM was identified in 754 (17.7%) patients. RM/non-RM groups 

showed distinct patterns of weight and muscle dynamics, and RM was negatively correlated 

with the progressive stages of cancer cachexia (r=−0.340, P<0.001). WAL-net was the 

state-of-the-art model among all ML algorithms evaluated, demonstrating favorable 

performance to predict RM in the test set (AUC=0.924, 95%CI=0.904-0.944) and an external 

validation set (n=798, AUC=0.909, 95%CI=0.876-0.943). Model-predicted RM using baseline 

information was associated with lower future risks of underweight, sarcopenia, performance 

status decline and progression of malnutrition (all P<0.05). This study presents an explainable 

deep learning model, the WAL-net, for early identification of RM in patients with cancer. 

These findings might help the management of cancer-associated malnutrition to optimize 

patient outcomes in multidisciplinary cancer care. 
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Introduction 

Malnutrition is a major global public health problem affecting more than one billion of the 

world’s population 
(1, 2)

. It is also a highly prevalent disorder in oncology practice 
(3-5)

 with a 

prevalence of 21% to 72% 
(6-8)

. Malnutrition can impede the efficacy and safety of anticancer 

therapies 
(3)

, increase healthcare resource utilization 
(4)

 and lead to multiple adverse outcomes 
(9, 

10)
. In fact, an estimated 10%-20% of cancer deaths are solely ascribable to malnutrition 

(11)
. 

However, due to a lack of proper diagnostic techniques and sufficient attention, 

cancer-associated malnutrition remains largely underreported 
(12)

, misclassified 
(13)

 or left 

untreated 
(14)

. Therefore, active diagnosis, surveillance and intervention of malnutrition are 

imperative in all cancer patients to minimize or reverse its negative impact on patient outcomes 

(3, 4, 11, 15)
. 

The practical criteria used to diagnose malnutrition vary across different institutions 
(6, 12-14)

, 

making it difficult to implement a universally standardized framework for patient management. 

To address this challenge, an international consensus-based conceptual framework was 

proposed in 2019 
(16)

, the Global Leadership Initiative on Malnutrition (GLIM), for diagnosing 

malnutrition in adults in clinical settings. Briefly, for patients who are screened positive for 

nutritional risk, at least one phenotypic criterion and one etiological criterion are required to 

diagnose malnutrition 
(16)

. This new framework effectively incorporates the evolving 

understanding and current evidence on malnutrition, making it a promising tool with global 

acceptance potential 
(5, 10, 17-21)

. 

Since its release, the GLIM framework has proven to be valuable in diagnosing malnutrition 

and predicting clinical outcomes across a wide range of diseases 
(9, 10, 22)

. In the context of 

cancer, evidence from our research 
(20, 21, 23, 24)

 and other institutions 
(10, 17-19, 25, 26)

 consistently 

demonstrates that GLIM-defined malnutrition is associated with worse clinical outcomes, 

including postoperative complications 
(10, 17, 18, 25, 26)

, length of hospital stay 
(23, 26)

, in-hospital 

mortality 
(26)

, thirty-day mortality 
(19)

, disease-free survival 
(18, 25)

 and/or overall survival 
(19-21, 23, 

24)
. Moreover, the GLIM framework has been found to outperform the International 

Classification of Diseases 10th Revision criteria (ICD-10) in identifying more malnourished 

patients and establishing a stronger correlation with surgical risk 
(17)

. These findings 

underscore the superiority and clinical relevance of the GLIM framework in patients with 

cancer 
(24)

. However, it is important to note that existing studies have focused on the presence 

of malnutrition at a single time point, mainly at baseline 
(9, 10, 17, 18, 20, 22, 24, 26, 27)

. To our 

knowledge, no study has investigated the transition of GLIM-defined malnutrition within a 

clinically operational timeframe in cancer. Considering the variability in responses to 
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malnutrition and its treatment among individuals 
(3, 11)

, an approach that can identify patients 

who may benefit from multidisciplinary treatment and/or are likely to recover from 

malnutrition would be valuable for making individualized management decisions. 

Weight loss, body mass index (BMI) and muscle mass are key elements used to identify, 

phenotype and grade malnutrition 
(16)

. Additionally, these factors are useful in predicting future 

risks of weight loss 
(28)

 and muscle loss 
(29)

. However, no studies have yet used weight and 

muscle information to predict the future outcomes of malnutrition. Based on this understanding, 

we hypothesize that body weight and muscle dynamic data routinely accessible upon patient 

admission can independently predict the fate of malnutrition. In this study, we proposed a deep 

learning model for early identification of reversible malnutrition (RM) in patients with cancer. 

The primary objective of this study was to enhance the decision-making of cancer-associated 

malnutrition to optimize patient outcomes. 

Materials and Methods 

Study design and population 

This was a retrospective cohort study conducted at multiple centers in China with prospectively 

collected data. Patients were derived from the Investigation on Nutrition Status and its Clinical 

Outcome of Common Cancers (INSCOC) which was registered online 

(http://www.chictr.org.cn/showproj.aspx?proj=31813, identifier: ChiCTR1800020329). The 

INSCOC is a clinical research project initiated by the Chinese Society for Nutritional 

Oncology since 2013. The aim of INSCOC is to determine the prevalence of malnutrition in 

inpatients with cancer in China and to examine its relationship with the clinical outcomes. The 

project protocol has been published previously 
(30)

 and the inclusion and exclusion criteria for 

participants are detailed in Table S1. In accordance with these criteria, we initially included 

30766 patients aged over 18 years who were firstly diagnosed with cancer and/or were 

hospitalized for anti-cancer treatment from December 2013 to May 2021. Further exclusions 

were made for patients who lacked required body weight dynamic data (n=16054), had outlier 

values (n=71), had unclear pathological results (n=567) and did not meet the baseline 

malnutrition criteria according to the GLIM framework (n=9832) 
(16)

. This left 4254 patients 

with diagnosed malnutrition for formal analysis. A flowchart illustrating the patient inclusion 

process is presented in Figure S1. A cohort including 798 malnourished oncology patients (the 

Yunnan cohort), which was independent of the study population, was used for further model 

validation. The study was approved by the Ethics Committee of Army Medical Center of PLA 

(approval number: 2018-22) and written consent was provided by all patients. All data were 

de-identified before analysis and the principles of the Declaration of Helsinki were followed. 
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The Strengthening and Reporting of Observational Studies in Epidemiology Statement was 

followed. 

Data acquisition and handling 

Data were collected through in-person interview and physical examination by project-trained 

researchers within the first 48 hours after patient admission: patient age, sex, smoking status 

(active tobacco smoker in the past one year), alcohol drinking (once a week or more frequent 

alcohol consumption in the past one year, regardless of amount and type), tea drinking (once a 

week or more frequent tea consumption in the past one year, regardless of amount and type), 

residency (urban vs. rural), occupation (blue vs white collar), body height, body weight (six 

months before, one month before, at the time of, and one month after baseline, these time 

points were abbreviated as –6, –1, baseline and +1), BMI, weight loss, mid-arm circumference 

(MAC), triceps skinfold thickness (TSF), handgrip strength (HGS), mid-arm muscle 

circumference (MAMC), calf circumference (CC), appendicular skeletal muscle mass index 

(ASMI), food intake, gastrointestinal (GI) symptoms, the Eastern Cooperative Oncology 

Group (ECOG) physical performance score , the Nutritional Risk Screening 2002 (NRS2002) 

score 
(31)

, the Patient-Generated Subjective Global Assessment (PG-SGA) score 
(32)

 and the 

quality of life (QoL) score (using the global QoL score of the European Organization for 

Research and Treatment of Cancer QLQ-C30 scale). 

The detailed approaches used, including the formulas, procedures and devices used to obtain 

the anthropometric indices (height, weight, BMI, weight loss, MAC, TSF, HGS, MAMC, CC 

and ASMI) are shown in Table S2. The BMI (kg/m
2
) was as also categorized as underweight 

(<18.5), normal (18.5 to <24), overweight (24 to <28) or obese (≥28) according to the Chinese 

recommendations 
(33)

. The GI symptoms of patients were assessed in accordance with the 

PG-SGA 
(32)

. Cancer cachexia was retrospectively diagnosed and staged using the Fearon’s 

framework 
(34)

. The clinical characteristics recorded during hospitalization, including the 

comorbidities, cancer site, clinical tumor stage, anticancer therapies received, nutritional 

support received, laboratory indices, ECOG score one month after admission was 

retrospectively retrieved from electronic medical records. Body weight one month after 

admission was either measured (if hospital stay ≥30 days), or patient-reported via a follow-up 

after discharge (if hospital stay <30 days). 

Definitions of malnutrition and reversible malnutrition 

Malnutrition was retrospectively diagnosed based on the GLIM criteria 
(16)

. Briefly, for patients 

who were at nutritional risk (NRS2002 ≥ 3), at least one phenotypic criterion and one etiologic 

criterion needed to be met to diagnose malnutrition. The phenotypic criteria were: involuntary 
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weight loss 5–10% within the past 6 months, or 10–20% beyond 6 months; BMI<18.5 kg/m
2 

if 

<70 years, <20 kg/m
2 

if ≥70 years 
(4)

; or reduced muscle mass (ASMI, male <7.0 kg/m
2
 or 

female <5.4 kg/m
2
, based on the Asian Working Group for Sarcopenia 2019 Consensus 

(35)
). 

For the etiologic criteria, the entire study population was considered positive for the disease 

burden-related etiologic criterion since all patients were pathologically diagnosed with cancer 

and/or hospitalized for cancer treatment 
(4)

. The diagnosis of malnutrition was independently 

performed at baseline and one month after baseline. RM was the primary outcome of the study, 

defined as a diagnosis of malnutrition at baseline (upon patient admission) turning negative one 

month later (all three phenotypic criteria being negative). 

Machine learning models building 

The study population (n=4254) was shuffled and randomly split into a discovery set (n=2977, 

70%) for model training and a holdout test set (n=1277, 30%) to evaluate the model 

performance. The Yunnan cohort (n=798) was used as an external validation set (Figure S2). 

Based on the study hypothesis, feature selection was performed by manually selecting 

variables related to body weight and muscle dynamics that can be obtained upon patient 

admission. This approach was found to be feasible in our previous research 
(36, 37)

. Six variables, 

including BMI and ASMI at -6, -1, and baseline, were defined as input variables, and RM (yes 

vs. no) was defined as the binary outcome variable. The input data were standardized using a 

Z-score approach before modeling (Equation 1, where x represents raw score, μ represents 

mean, σ represents standard deviation). 

   
   

 
     

Since the input variables are time-series data, we used a long short-term memory (LSTM) 

recurrent neural network architecture for modeling to capture the sequential information. The 

model was named as WAL-net (representing weight, appendicular skeletal muscle and 

LSTM-based deep neural network). The WAL-net was trained using a 32-sample mini-batch 

technique with a binary cross-entropy loss function (Equation 2, where N represents the total 

number of mini-batch samples, i represents an index that iterates over each sample from 1 to N, 

yi represents the true label of the i-th sample, p represents probability) and an Adam optimizer 

at a learning rate of 0.001. 

      
 

 
             

 

   

                           

A detailed architecture of the WAL-net is shown in Figure S3. Accuracy, area under the curve 

(AUC), recall, precision, F1 score, Kappa and Matthews correlation coefficient (MCC) were 
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used as model comparison metrics, with higher values indicating better prediction performance 

(38)
. We also utilized sensitivity, specificity, positive predictive value, and negative predictive 

value to evaluate and demonstrate the performance of the model, as these metrics are more 

commonly used in clinical scenarios 
(4, 5, 39)

. To verify the superiority of the WAL-net, another 

19 conventional machine learning (ML) algorithms were independently developed for the 

same binary classification task. A ten-fold cross-validation with ten iterations technique 

(Figure S4) was used to aggregate model performance metrics for comparison and to select 

model with optimal hyper-parameters. The optimal model among the 19 ML algorithms was 

then compared with the WAL-net in the holdout test set. The WAL-net was also assessed in 

different subgroups of the test set, including age, sex, cancer site, clinical stage, curative 

surgery, curative chemotherapy, nutritional support, C-reactive protein, ECOG score and 

PG-SGA score to evaluate potential effect modifications. The explainability of the model was 

evaluated using a shapley additive explanations (SHAP) method at both the group and 

individual levels. A decision curve analysis (DCA) was used to evaluate the model’s clinical 

usefulness. Finally, the WAL-net was deployed as a prototypic web-based application for 

online prediction. The project code and files have been stored online in our GitHub repository 

(https://github.com/kevinlyy/rmalnutrition) for public access. 

Statistical analysis 

Continuous data were expressed as the medians (interquartile range) and compared using a 

Wilcoxon’s rank-sum test. Continuous data with multiple groups was compared using a 

pairwise Wilcoxon’s rank-sum test and P values of multiple comparisons were adjusted using a 

Bonferroni’s method. Categorical data were expressed as numbers (percentage) and were 

compared using a Chi-squared test. Cutoff values of the input variables to predict RM were 

calculated by maximizing the Youden’s index (sensitivity + specificity − 1) in the discovery set. 

The generated cutoffs were then assessed in the holdout test set. Model-predicted probability 

greater than 0.5 was defined as the cutoff point for belonging to the RM group. All reported P 

values were two-sided and considered significant at P < 0.05. All analyses were performed 

using R (version 4.3.1, Foundation for Statistical Computing, Vienna, Austria). Deep learning 

and other ML algorithms were conducted in Python (version 3.9.11, The Python Software 

Foundation, USA). 
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Results 

Population overview 

The baseline characteristics of the study population are shown in the overall column of Table 1. 

There were 4254 patients with a median age of 61 years, including 2783 males and 1471 

females. The tumors were most frequently located in the lung (n=984, 23.1%), colorectum 

(n=870, 20.5%), stomach (n=749, 17.6%), esophagus (n=416, 9.8%) and nasopharynx (n=267, 

6.3%). The number of cases for all cancer sites is shown in Figure 1A. The predominant 

clinical tumor stages were II (32.4%) and III (31.2%). 

Reversible malnutrition 

RM was found in 754 (17.7%) patients, while the remaining patients exhibited at least one 

positive phenotypic criterion one month following baseline. The prevalence of RM was further 

analyzed based on the specific cancer sites as shown in Figure 1B. The RM was most 

frequently observed in prostate cancer (34.8%), brain cancer (25.0%) and multiple myeloma 

(25.0%), while being least prevalent in cancers located in the biliary tract (5.3%), ovary (5.4%) 

and esophagus (8.4%). 

Dynamics of body weight and skeletal muscle 

The BMI and ASMI dynamics over the four time points (−6, −1, baseline, and +1) were 

assessed (Figure 1C-1F and Table 1). Across the four time points, there was a significant 

downward trend in BMI within the study population (Figure 1C). In stratified analysis, RM 

and non-RM groups showed significant difference in the patterns of BMI changes (Figure 1D). 

Briefly, the RM group has higher BMI than the non-RM group at the −6, −1 and +1 time points, 

but lower BMI at baseline. In-group multiple comparison showed that the BMI change was 

significant in all time intervals except for the −6 vs −1 (P=0.060), −6 vs +1 (P=0.740) and −1 

vs +1 (P=0.430) intervals for the RM group. In contrast, the BMI change was significant in all 

time intervals except for the −1 to 0 interval for the non-RM group. Regarding ASMI, there 

was a significant downward trend within the study population across the whole pre-admission 

interval (−6 to 0) but not the 0 to +1 interval (P=0.930, Figure 1E). In stratified analysis 

(Figure 1F), the RM group has higher ASMI than the non-RM group at all four time points. 

In-group multiple comparison showed that the ASMI was significantly increased in the 0 to +1 

interval (P=0.049) for the RM group. In contrast, the ASMI change was only insignificant in 

the 0 to +1 interval (P=0.220) for the non-RM group. Heatmaps for the distribution of BMI and 

ASMI at different time points stratified by cancer site in the overall, RM and non-RM groups 

are shown in Figure S5. The results were similar to the findings observed in the overall 

population, indicating distinct patterns of BMI and ASMI dynamics between the RM and 
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non-RM groups. 

Reversible malnutrition and patient characteristics 

The baseline characteristics of the study population, as stratified by the RM status are shown in 

Table 1. RM was significantly associated with higher values/rates of male sex, smoking, tea 

drinking, diabetes, curative chemotherapy, total protein, creatinine, albumin, urea nitrogen, 

prealbumin, glucose, triglycerides, alkaline phosphatase, hemoglobin, lymphocytes, red blood 

cells, body height, MAC, TSF, HGS, MAMC, CC, normal physical performance and global 

quality of life score. In contrast, RM was associated with lower values/rates of age, blue collar 

occupation, curative radiotherapy, nutritional support, platelets, C-reactive protein, neutrophil 

to lymphocyte ratio, anorexia, nausea, vomiting, constipation, dry mouth, taste changes, smell 

changes, dysphagia, early satiety and the PG-SGA score. In addition, the cancer sites, 

nutritional support type, food intake and the ECOG score category were also different between 

the RM and non-RM groups (all P<0.05). 

Reversible malnutrition and stages of cancer cachexia 

The association between RM and stages of cancer cachexia was analyzed in the overall 

population and in subgroups of cancer site (Figure 2 and Table S3). Compared to the non-RM 

group, the RM group was associated higher non-cachexia (41.5% vs. 9.8%) and pre-cachexia 

rates (4.6% vs. 2.4%) rates, but with lower cachexia (cachexia = 53.8% vs. 87.1%) and 

refractory cachexia (0% vs. 0.7%, P < 0.001) rates. Notably, all patients with refractory 

cachexia were classified into the non-RM group. Moreover, a spearman’s rank correlation 

analysis revealed a negative relationship between the progressive stages of cancer cachexia and 

RM (r = −0.340, P < 0.001). Subgroup analysis in gastrointestinal, respiratory, hematologic 

and others cancers revealed similar results (all P<0.001). 

Model training, comparison and assessment 

A graphical workflow of the WAL-net is shown in Figure 3A. The WAL-net starts with a 

LSTM layer to extract latent information from the sequential data of BMI and ASMI at three 

time points. After data processing with two fully-connected layers separated by a rectified 

linear unit (ReLU) layer, the model outputs a probability vector of the two outcome labels, 

which is subsequently normalized using the softmax function. 

Distributions of the study variables in the discovery and test sets are shown in Table 1. We 

first trained the 19 ML models by setting the six variables of BMI and ASMI as the input 

variables and the RM (yes vs. no) as the outcome variable in the discovery set. The ten-fold 

cross-validated results of the 19 ML models are shown in Figure 3B. The multi-layer 

perceptron (MLP) model showed the highest performance, with an accuracy = 0.899, AUC = 
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0.839, recall = 0.536, precision = 0.831, F1 score = 0.647, Kappa = 0.591 and MCC = 0.613. 

Therefore, the MLP model was selected among the 19 conventional ML models for future use, 

with its hyper-parameters shown in Table S4. 

Subsequently, the WAL-net was trained in the discovery set and was compared to the MLP 

model in the holdout test set (Figure 3C-D and Table 2). The WAL-net showed higher 

performance (AUC=0.924, 95%CI=0.904 to 0.944) than the MLP model (AUC=0.899, 

95%CI=0.874 to 0.924). A Delong’s test indicated that the AUC difference was statistically 

significant (P = 0.005). For other metrics, the WAL-net showed higher accuracy (0.924 vs. 

0.908), Kappa index (0.728 vs. 0.660), sensitivity (0.878 vs. 0.850), specificity (0.932 vs. 

0.917), positive predictive value (0.690 vs. 0.615) and negative predictive value (0.978 vs. 

0.975) than the MLP model. Thus the WAL-net was finally selected for future analysis as the 

state-of-the-art (SOTA) model in our specific task. The precision-recall (PR) curve, 

Kolmogorov Smirnov (KS) statistic plot, cumulative gains curve, lift curve, calibration curve 

and confusion matrix and of the WAL-net in the test data are shown in Figure 4A-F. The area 

and micro-average area under the PR curve were 0.805 (class 1, the RM group) and 0.958, 

respectively (Figure 4A). The KS statistic plot, cumulative gains curve, lift curve, calibration 

curve showed that the WAL-net has strong discrimination power and can effectively separate 

the positive and negative classes (Figure 4B-E). A Hosmer and Lemeshow goodness-of-fit test 

also supported the good consistency between model prediction and actual observation (P = 

0.212, Figure 4E). The confusion matrix showed that there were 1015 (class 0, non-RM) and 

165 (class 1, RM) patients who were correctly classified in the test data (Figure 4F). 

Model performance in subgroups 

The subgroup performance of the WAL-net was assessed in the test data (Table 2). Overall, the 

WAL-net sustained its good performance in different subgroups investigated. Specifically, by 

setting the AUC as the reference metric of model performance, the WAL-net showed relatively 

higher performance (defined as AUC > 0.950) in the subgroup of patients who only received 

enteral nutritional support (AUC=0.980, 95%CI=0.954 to 1.000) and patients with a PG-SGA 

score of 2 to 3 (AUC=0.957, 95%CI=0.921 to 0.993). 

Model explainability 

We evaluated the predictors of the WAL-net that contributed to the prediction on a global level. 

The SHAP summary plot showed that ASMI at baseline was the leading contributor to the high 

likelihood of RM, with a mean SHAP value of 1.590. In addition, the mean SHAP values for 

BMI, ASMI−1, ASMI−6, BMI−1 and BMI−6 were 0.806, 0.731, 0.417, 0.145 and 0.143, 

respectively (Figure 5A). We also examined the individual-level risk predictions and their 
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sources of risk specified by the SHAP values. For the patient with the highest predicted SHAP 

value (e.g. 1), ASMI (0.69), BMI (0.11), BMI−1 (0.05), ASMI−1 (0.02), BMI−6 (0.02) and 

ASMI−6 (0.01) were the sources of risk that led to the high SHAP value (Figure 5B). On the 

other hand, for the patient with the lowest SHAP value (e.g. 0), BMI−6 (0.10), ASMI (−0.08), 

BMI−1 (−0.04), ASMI−6 (−0.04), ASMI−1 (−0.03) and BMI (−0.01) were the sources of risk 

that led to the low SHAP value (Figure 5C). 

Clinical relevance 

To examine the clinical relevance of the WAL-net, we analyzed the associations of 

model-predicted RM with the clinical outcomes one month after admission (Table 3). 

Model-predicted RM was associated with higher values/rates of follow up BMI and ASMI. 

Patients predicted as RM by the WAL-net at baseline were less likely to be classified in the 

underweight group and low muscle mass group one month after admission. In addition, 

patients with predicted RM were more likely to be classified in the normal physical 

performance one month after admission. Notably, the number of positive phenotypic criteria of 

GLIM were less likely to increase one month after admission in the RM group (all P<0.05). 

Additionally, DCA analysis in the test set showed that if the threshold probability of a patient 

was >0.01, using the WAL-net to predict the probability of RM adds more benefits than either 

the treat-all-patients scheme or the treat-none scheme (Figure S6). 

Cutoff value for each input variable 

To facilitate clinical use, the cutoffs (kg/m
2
) for the six input variables to predict RM were 

independently calculated in the discovery set (sex-specific cutoffs were calculated for ASMI) 

and then assessed in the test set (Table S5). For the three time points (−6, −1 and baseline), the 

BMI cutoffs were <21.2, <20.6 and <18.5, respectively. Likewise, the ASMI cutoffs were 

men <7.3 or women <5.3, men <7.0 or women <5.3, and men <7.1 or women <5.3 for the 

three time points, respectively. After dichotomized using these cutoffs, the baseline BMI 

showed the highest prognostic value to predict RM in the test set (AUC=0.771, 95%CI=0.739 

to 0.802). 

Independent model validation 

The WAL-net was further assessed for its classification power in the Yunnan cohort. Baseline 

characteristic of this cohort is shown in Table S6. RM was found in 106 (13.3%) patients. The 

model’s good performance sustained, with an AUC (95%CI)=0.909 (0.876, 0.943), accuracy 

(95%CI)=0.940 (0.921, 0.955), Kappa=0.686, sensitivity=0.953, specificity=0.939, 

PPV=0.575, and NPV=0.996 (Table S7). 
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Model deployment 

Prototypic applications were developed to utilize the WAL-net. These applications were 

designed to receive user input BMI and ASMI parameters and provide instant RM predictions. 

These applications deliver both the predicted class and the corresponding probability or 

confidence as outputs. The graphical user interface of the applications are presented in Figure 

S7. The serialized model objects that support future reuse and the application-related files have 

been stored online in our GitHub repository for public access 

(https://github.com/kevinlyy/rmalnutrition). 

Discussion 

In this study, we focused on addressing a significant real-world challenge regarding the 

reversibility of malnutrition in patients with cancer. To our knowledge, this is the first 

large-scale study that predicts RM using an explainable, LSTM-based deep learning model 

with high performance (AUC = 0.924). We have also confirmed an important hypothesis: the 

dynamic information of body weight and predicted appendicular skeletal muscle, which is 

routinely available upon patient admission, can independently predict the future trajectory of 

cancer-associated malnutrition. As our model does not require consideration of the treatment 

the patient will subsequently receive, this constitutes its ability for early identification. The 

findings underscore the importance of body weight and muscle mass surveillance within 

clinically operational timeframes for oncology patients. The model we developed, along with 

other findings presented in the study, might assist clinicians with decision-making to help 

guide more individualized management strategies of malnutrition in cancer care. 

Compared to previous studies that only reported the baseline prevalence of GLIM-defined 

malnutrition in patients with cancer 
(4, 5)

, the present study provides more clinically relevant 

information for decision-making by reporting the cancer-specific prevalence of RM (Figure 

1B). Clinicians in oncology practice may typically prioritize cancer sites with higher incidence 

rates of malnutrition, such as pancreatic cancer 
(40)

 and gastrointestinal cancers 
(41)

. However, 

our observations revealed a distinct pattern in the reversibility of malnutrition across different 

cancer sites compared to their prevalence. For instance, prostate and brain cancer are generally 

associated with a low incidence of malnutrition 
(4)

, but they exhibited higher rates of RM 

(Figure 1B). These findings underscore the importance of early identification and targeted 

management strategies, particularly for patients with RM in these specific cancer sites. 

Implementing such strategies increases the likelihood of achieving reversal and restoring 

weight/muscle mass 
(15)

. In contrast, malnutrition in some cancers, such as those located in the 
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biliary tract, ovary and esophagus, is more difficult to ameliorate (RM% < 10%). This suggests 

that malnutrition occurring in these cancer sites is more refractory. These results (non-RM% of 

GI cancers=85.1%) partially align with previous studies reporting the statistics of refractory 

cachexia in patients with cancer 
(42, 43)

, which showed that GI cancers were the most refractory. 

A recent systematic review found that in patients with incurable solid cancer, nutritional 

intervention, either alone or as part of a multimodal approach, has improved quality of life, 

body weight, and nutritional intake 
(44)

. Another review also indicated that multimodal 

interventions, including nutritional support, are effective in preventing unintentional weight 

loss in cancer patients 
(45)

. These lines of evidence, along with our research findings, 

collectively suggest that for patients classified as non-RM, additional efforts and specialized 

interventions may be required to address the unique challenges associated with these cancers 

and potentially improve outcomes 
(43)

. Similarly, this decision strategy may also be applicable 

to the RM/non-RM status in the overall population. In this study, although the RM group 

received less nutritional support than the non-RM group, it was associated with improved 

nutrition-related outcomes. This implies that the RM/non-RM status predicted by the model 

might provide additional information to distinguish whether a malnourished patient is likely or 

unlikely to benefit from nutritional or multidisciplinary intervention. However, 

epidemiological statistics on cancer-specific prevalence of RM remain scare, especially those 

derived from Asian populations. As we only include malnourished patients, future studies 

should aggregate data on both cancer-specific malnutrition prevalence and RM prevalence 

within the same ethnic groups. Additionally, elucidating the underlying mechanisms behind the 

differing prevalence of RM in various cancer sites is crucial. 

A potential drawback of the GLIM framework is that it does not provide overall 

nutritional/multidisciplinary treatment recommendations with respect to different malnutrition 

phenotypes and severities 
(16)

. To inform treatment strategies for patients with GLIM-defined 

malnutrition, one possible solution is to refer to the cancer cachexia guideline 
(34)

, as 

malnutrition with inflammation and cachexia have been described as interchangeable concepts 

in some literature 
(1, 46)

. Fearon's framework for diagnosing cancer cachexia defines progressive 

stages of cachexia (from pre-cachexia to cachexia to refractory cachexia) 
(34)

. Early monitoring 

and preventive intervention are recommended for patients with pre-cachexia, as once cachexia 

is well-established, treatment becomes more difficult 
(47)

. For patients at the cachexia stage, 

multimodal management according to phenotype is needed to prioritize those reversible 

contributory factors. 
(34)

. For refractory cachexia, medical interventions may be futile or 

inappropriately invasive 
(3, 48)

. However, it is important to note that although the diagnostic 
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parameters used in Fearon's framework 
(34)

 are the same as the phenotype criteria in the GLIM 

(16)
, the cutoff values for specific variables such as weight loss and muscle loss differ. 

Additionally, other frameworks may employ different criteria for diagnosing cachexia 
(49, 50)

. 

Therefore, treatment strategies applicable to the stages of cancer cachexia may not necessarily 

fully applicable to the different phenotypes and grades defined by GLIM. In contrast, our 

model was directly developed based on GLIM, making it more suitable for decision-making in 

the context of malnutrition. As the global recognition of GLIM continues to increase 
(27)

, our 

model is promising to serve as a useful tool to evaluate the burdens and costs of 

anti-malnutrition therapies against the expected benefits for patients. 

Another noteworthy point to consider is that our findings reflect the real-world challenges 

that exist in current treatment strategies for cancer-associated malnutrition in China 
(30)

. Even 

among patients diagnosed with malnutrition, the coverage rate of nutritional support remains 

low (36.9%), and only a small proportion of malnourished patients can be reversed (17.7%). 

We observed in our own practice that clinicians may instinctively prioritize patients with more 

severe malnutrition-related phenotypes, while these patients may face greater challenges in 

deriving benefits from nutritional support. Indeed, patients in the non-RM group exhibited a 

higher prevalence of various gastrointestinal symptoms, reduced food intake, nutritional risk, 

low BMI, impaired physical status, advanced cachexia stage, etc. However, despite a higher 

rate of nutritional support during hospitalization in the non-RM group, there was no significant 

improvement in clinical benefits compared to the RM group. Because the severity of the 

primary disease, as indicated by the clinical tumor stage, are not significantly different between 

the non-RM and RM groups. It might be true that a diagnosis of malnutrition alone is 

insufficient to guide nutritional intervention strategies. A refined patient classification is 

necessary to provide guidance for more individualized treatment approaches. For example, 

creating a staging system that reflects the pathophysiological progression of malnutrition and 

treatment response, rather than solely relying on the severity of phenotypic parameters. 

Another possible reason for the low rate of RM is: the nutritional interventions in the present 

cohort were not strictly individualized and were not combined with other multimodal 

approaches such as physical exercise program, pharmacological interventions and 

psychological support 
(30)

. Therefore, further studies in patients with individualized nutrition 

support data 
(51)

, especially multimodal anti-malnutrition data 
(3)

, are imperative to provide 

greater insights regarding the clinical usefulness of the model. 

The study has several potential limitations that must be noted. First, malnutrition and RM 

were both diagnosed using the GLIM framework that includes the weight loss as a major 
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criterion. Because weight loss was calculated based on patient-reported historic weight data, 

the impact of recall bias on the classification of malnutrition and RM cannot be eliminated 
(39)

. 

Future studies with a prospective design and measured body weight values are needed to 

replicate our findings. Second, the ASMI was derived from an equation validated for use in 

Asians rather than measured using technologies such as dual energy x-ray imaging or 

bioimpedance analysis. However, the equation showed good consistency with dual energy 

x-ray imaging 
(52)

, and body weight and height are simple to obtain in almost any institutions, 

which should increase the usability of the study parameters in different scenarios. Nevertheless, 

future studies using more advanced technologies to measure appendicular muscle mass are 

needed. Third, the model utilizes weight and skeletal muscle dynamic information from three 

time points for predicting RM. Future studies need to investigate whether incorporating 

additional time points would result in further improvements in prediction performance. 

However, the weight loss information over past one and/or six months has been included in the 

most popular nutritional assessment tools which are easily accessible in oncology practice 
(16, 31, 

32)
, further increasing the generalizability of our model. Fourth, the present study only observed 

RM one month after baseline, future studies employ other time points are needed. Future 

studies with a larger sample size for a wider spectrum of diseases are needed to address the 

above issues. 

Conclusion 

In conclusion, we have provided the first report on the overall and cancer-specific prevalence 

of RM in a nationwide, multicenter cancer cohort. We have confirmed the hypothesis that the 

dynamic information of body weight and skeletal muscle, which is routinely available upon 

patient admission, can independently predict the future trajectory of malnutrition with high 

accuracy. We developed and validated an explainable deep learning model for the early 

identification of RM. This model utilizes six easily accessible variables related to body weight 

and appendicular skeletal muscle dynamics, which showed good performance to predict RM. 

These findings might assist clinicians or nutritionists in decision-making to help guide 

management strategies of cancer-associated malnutrition and optimize the allocation of 

healthcare resources in cancer care. 

Data availability 

Data described in the manuscript will not be made available because of multiple confidentiality 

agreements signed with participating hospitals. 
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Figure 1. Prevalence of reversible malnutrition and analysis on the dynamics of body weight 

and muscle. BMI, body mass index; IQR, interquartile range; RM, reversible malnutrition; 

−Six (t1), six months before baseline; −One (t2), one month before baseline; baseline (t3), 

upon patient admission; +One (t4), one month after baseline; ASMI, appendicular skeletal 

muscle mass index; 
***

, P < 0.001. (A) Number of cases for each cancer site. (B) 

Cancer-specific prevalence of reversible malnutrition. (C) Body mass index dynamics across 

the four time points. (D) Body mass index dynamics across the four time points stratified by the 

RM status. (E) Appendicular skeletal muscle index dynamics across the four time points. (F) 

Appendicular skeletal muscle index dynamics across the four time points stratified by the RM 

status.
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Figure 2. Association between reversible malnutrition and stages of cancer cachexia in the 

overall population and in subgroups of cancer sites. RM, reversible cachexia; 
***

, P < 0.001. 
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Figure 3. WAL-net and analyses on its superiority. BMI, body mass index; ASMI, 

appendicular skeletal muscle index; LSTM, long short-term memory; WAL, weight, 

appendicular skeletal muscle and LSTM; MLP, multilayer perceptron; SVM, supportive vector 

machine; AUC, area under the curve; MCC, Matthews correlation coefficient; ROC, receiver 

operating characteristic. (A) A graphical workflow of the WAL-net. (B) Cross-validated results 

of machine learning models to predict reversible malnutrition in the discovery data. (C) ROC 

curves for the MLP model in the test data. (D) ROC curves for the WAL-net in the test data. 
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Figure 4. Further evaluation of the WAL-net in holdout test data. (A) Precision-recall curve. (B) 

Kolmogorov Smirnov statistic plot. (C) Cumulative gains curve. (D) Lift curve. (E) Calibration 

curve. (F) Confusion matrix. 
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Figure 5. Interpretability analysis of the WAL-net using the shapley additive explanations 

(SHAP) method. ASMI, appendicular skeletal muscle mass index; BMI, body mass index; 

−One, one month before baseline; −Six, six months before baseline. (A) Model interpretability 

at the group level. (B) Model interpretability at the individual level (high probability). (C) 

Model interpretability at the individual level (low probability). 
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Table 1. General characteristics of the study population 

  
Reversible malnutrition 

  
Data split 

 

Characteristics Overall (n=4254) No (n=3500) Yes (n=754) P 
 

Discovery 

(n=2977) 
Test (n=1277) P 

Age, years 61.0 [51.0, 68.0]
1 

61.0 [52.0, 69.0] 59.0 [49.0, 68.0] 0.002 
 

60.0 [51.0, 68.0] 61.0 [52.0, 69.0] 
0.30

4 

Sex, male 2783 (65.4)
2 

2163 (61.8) 620 (82.2) 
<0.00

1  
1960 (65.8) 823 (64.4) 

0.40

2 

Smoking, yes 2102 (49.4) 1677 (47.9) 425 (56.4) 
<0.00

1  
1472 (49.4) 630 (49.3) 

0.97

4 

Alcohol drinking, yes 941 (22.1) 763 (21.8) 178 (23.6) 0.300 
 

644 (21.6) 297 (23.3) 
0.25

8 

Tea drinking, yes 1193 (28.0) 951 (27.2) 242 (32.1) 0.007 
 

821 (27.6) 372 (29.1) 
0.31

9 

Residency, urban area 2716 (63.8) 2212 (63.2) 504 (66.8) 0.065 
 

1912 (64.2) 804 (63.0) 
0.45

2 

Occupation, blue collar 1470 (34.6) 1259 (36.0) 211 (28.0) 
<0.00

1  
1034 (34.7) 436 (34.1) 

0.73

7 

Comorbidities 
        

 Hypertension 753 (17.7) 607 (17.3) 146 (19.4) 0.206 
 

534 (17.9) 219 (17.1) 
0.56

6 

 Diabetes 363 (8.5) 284 (8.1) 79 (10.5) 0.042 
 

260 (8.7) 103 (8.1) 
0.51

3 

 Coronary heart disease 184 (4.3) 150 (4.3) 34 (4.5) 0.861 
 

120 (4.0) 64 (5.0) 0.17
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4 

 Chronic hepatitis 176 (4.1) 139 (4.0) 37 (4.9) 0.285 
 

128 (4.3) 48 (3.8) 
0.46

7 

 Anemia 126 (3.0) 102 (2.9) 24 (3.2) 0.782 
 

90 (3.0) 36 (2.8) 
0.79

4 

Cancer site 
   

<0.00

1    

0.40

6 

 Lung 984 (23.1) 773 (22.1) 211 (28.0) 
  

669 (22.5) 315 (24.7) 
 

 Colorectum 870 (20.5) 695 (19.9) 175 (23.2) 
  

607 (20.4) 263 (20.6) 
 

 Stomach 749 (17.6) 652 (18.6) 97 (12.9) 
  

537 (18.0) 212 (16.6) 
 

 Esophagus 416 (9.8) 381 (10.9) 35 (4.6) 
  

292 (9.8) 124 (9.7) 
 

 Nasopharynx 267 (6.3) 203 (5.8) 64 (8.5) 
  

192 (6.4) 75 (5.9) 
 

 Breast 159 (3.7) 139 (4.0) 20 (2.7) 
  

111 (3.7) 48 (3.8) 
 

 Leukemia 146 (3.4) 111 (3.2) 35 (4.6) 
  

116 (3.9) 30 (2.3) 
 

 Liver 126 (3.0) 97 (2.8) 29 (3.8) 
  

92 (3.1) 34 (2.7) 
 

 Lymphoma 119 (2.8) 92 (2.6) 27 (3.6) 
  

82 (2.8) 37 (2.9) 
 

 Cervix 81 (1.9) 72 (2.1) 9 (1.2) 
  

58 (1.9) 23 (1.8) 
 

 Pancreas 78 (1.8) 69 (2.0) 9 (1.2) 
  

53 (1.8) 25 (2.0) 
 

 Ovary 74 (1.7) 70 (2.0) 4 (0.5) 
  

49 (1.6) 25 (2.0) 
 

 Prostate 46 (1.1) 30 (0.9) 16 (2.1) 
  

29 (1.0) 17 (1.3) 
 

 Biliary tract 38 (0.9) 36 (1.0) 2 (0.3) 
  

26 (0.9) 12 (0.9) 
 

 Bladder 33 (0.8) 26 (0.7) 7 (0.9) 
  

18 (0.6) 15 (1.2) 
 

 Brain 28 (0.7) 21 (0.6) 7 (0.9) 
  

22 (0.7) 6 (0.5) 
 

 Endometrium 27 (0.6) 23 (0.7) 4 (0.5) 
  

16 (0.5) 11 (0.9) 
 

 Multiple myeloma 8 (0.2) 6 (0.2) 2 (0.3) 
  

5 (0.2) 3 (0.2) 
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 Gastric stroma 5 (0.1) 4 (0.1) 1 (0.1) 
  

3 (0.1) 2 (0.2) 
 

Clinical stage
3 

 
  

0.464 
   

0.17

6 

 I 318 (8.0) 261 (7.9) 57 (8.3) 
  

227 (8.2) 91 (7.5) 
 

 II 1291 (32.4) 1068 (32.5) 223 (32.3) 
  

874 (31.5) 417 (34.5) 
 

 III 1241 (31.2) 1012 (30.8) 229 (33.2) 
  

888 (32.0) 353 (29.2) 
 

 IV 1131 (28.4) 950 (28.9) 181 (26.2) 
  

785 (28.3) 346 (28.7) 
 

Anti-cancer therapy 
        

 Curative surgery 1709 (40.2) 1408 (40.2) 301 (39.9) 0.908 
 

1160 (39.0) 549 (43.0) 
0.01

5 

 Curative radiotherapy 243 (5.7) 216 (6.2) 27 (3.6) 0.007 
 

167 (5.6) 76 (6.0) 
0.71

3 

 Curative chemotherapy 827 (19.4) 659 (18.8) 168 (22.3) 0.034  570 (19.1) 257 (20.1) 
0.48

6 

 Adjuvant chemotherapy 846 (19.9) 688 (19.7) 158 (21.0) 0.448 
 

575 (19.3) 271 (21.2) 
0.16

6 

 Chemotherapy for 

metastasis 
304 (7.1) 246 (7.0) 58 (7.7) 0.573 

 
214 (7.2) 90 (7.0) 

0.92

2 

 Targeted therapy 164 (3.9) 134 (3.8) 30 (4.0) 0.928 
 

106 (3.6) 58 (4.5) 
0.15

1 

 Immunotherapy 113 (2.7) 90 (2.6) 23 (3.1) 0.537 
 

78 (2.6) 35 (2.7) 
0.90

4 

 Symptomatic therapy 2048 (48.1) 1670 (47.7) 378 (50.1) 0.244 
 

1443 (48.5) 605 (47.4) 
0.53

4 

Nutritional support, yes 1571 (36.9) 1334 (38.1) 237 (31.4) 0.001 
 

1099 (36.9) 472 (37.0) 1.00
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0 

Nutritional support, type 
   

0.002 
   

0.47

3 

 EN only 392 (9.2) 331 (9.5) 61 (8.1) 
  

281 (9.4) 111 (8.7) 
 

 PN only 741 (17.4) 620 (17.7) 121 (16.0) 
  

504 (16.9) 237 (18.6) 
 

 PN+EN 438 (10.3) 383 (10.9) 55 (7.3) 
  

314 (10.5) 124 (9.7) 
 

 No nutrition support 2683 (63.1) 2166 (61.9) 517 (68.6) 
  

1878 (63.1) 805 (63.0) 
 

Laboratory indices         

Total protein, g/L 67.8 [62.7, 72.8] 67.6 [62.7, 72.6] 68.6 [63.0, 73.5] 0.010 
 

67.7 [62.8, 72.8] 67.9 [62.7, 72.8] 
0.96

1 

Creatinine, mmol/L 68.0 [56.5, 81.0] 66.9 [55.6, 80.0] 72.2 [60.9, 85.0] 
<0.00

1  
68.0 [56.7, 81.0] 68.0 [56.1, 80.9] 

0.89

6 

Albumin, g/L 38.2 [34.5, 41.9] 38.0 [34.2, 41.5] 39.6 [35.6, 43.1] 
<0.00

1  
38.2 [34.4, 41.9] 38.4 [34.5, 42.0] 

0.52

9 

Urea nitrogen, mmol/L 5.0 [3.9, 6.2] 4.9 [3.8, 6.2] 5.2 [4.1, 6.3] 0.003 
 

5.0 [3.9, 6.2] 5.0 [3.9, 6.2] 
0.93

1 

Prealbumin, mg/L 
206.2 [160.0, 

250.0] 

200.0 [154.0, 

241.0] 

223.0 [180.0, 

270.0] 

<0.00

1  

207.4 [160.0, 

250.0] 

203.0 [160.0, 

250.0] 

0.72

3 

Total bilirubin, μmol/L 10.7 [7.8, 14.6] 10.7 [7.8, 14.6] 10.9 [8.1, 14.7] 0.150 
 

10.6 [7.8, 14.5] 11.1 [7.8, 15.0] 
0.15

8 

Direct bilirubin, μmol/L 3.2 [2.2, 4.5] 3.2 [2.2, 4.5] 3.1 [2.3, 4.4] 0.608 
 

3.1 [2.2, 4.4] 3.2 [2.3, 4.5] 
0.08

7 

Transferrin, g/L 2.2 [1.8, 2.6] 2.2 [1.8, 2.6] 2.2 [1.9, 2.7] 0.078 
 

2.2 [1.8, 2.6] 2.2 [1.8, 2.6] 
0.64

4 

Cholesterol, mmol/L 4.4 [3.8, 5.1] 4.4 [3.8, 5.1] 4.4 [3.8, 5.1] 0.143 
 

4.4 [3.8, 5.1] 4.4 [3.8, 5.0] 0.89
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1 

Glucose, mmol/L 5.2 [4.7, 5.8] 5.1 [4.6, 5.8] 5.3 [4.8, 6.0] 
<0.00

1  
5.2 [4.7, 5.8] 5.2 [4.7, 5.9] 

0.67

5 

Triglycerides, mmol/L 1.2 [0.9, 1.6] 1.2 [0.9, 1.6] 1.2 [1.0, 1.7] 
<0.00

1  
1.2 [0.9, 1.6] 1.2 [0.9, 1.6] 

0.06

8 

ALT, U/L 18.0 [12.0, 28.9] 17.5 [12.0, 28.0] 20.0 [13.0, 31.6] 
<0.00

1 
 17.8 [12.0, 28.6] 18.0 [12.1, 29.0] 

0.25

6 

AST, U/L 21.0 [16.8, 28.5] 21.0 [16.8, 28.5] 21.0 [17.0, 28.1] 0.874 
 

21.0 [16.6, 28.3] 21.5 [17.0, 28.5] 
0.10

7 

HDL, mmol/L 1.2 [1.0, 1.4] 1.2 [1.0, 1.4] 1.1 [1.0, 1.3] 0.133 
 

1.2 [1.0, 1.4] 1.2 [1.0, 1.4] 
0.24

1 

LDL, mmol/L 2.7 [2.2, 3.2] 2.7 [2.2, 3.2] 2.8 [2.3, 3.3] 0.083 
 

2.7 [2.2, 3.2] 2.7 [2.2, 3.2] 
0.88

9 

Hemoglobin, g/L 
123.0 [107.0, 

137.0] 

122.0 [107.0, 

136.0] 

130.0 [113.0, 

144.0] 

<0.00

1  

123.0 [107.0, 

137.0] 

124.0 [108.0, 

138.0] 

0.25

8 

White blood cells, 

×10
9
/L 

6.0 [4.6, 7.8] 6.0 [4.6, 7.9] 6.0 [4.7, 7.7] 0.940 
 

6.0 [4.6, 7.9] 6.0 [4.6, 7.7] 
0.60

6 

Neutrophils, ×10
9
/L 3.7 [2.5, 5.5] 3.7 [2.5, 5.6] 3.7 [2.7, 5.3] 0.544 

 
3.7 [2.5, 5.5] 3.8 [2.6, 5.5] 

0.37

9 

Lymphocytes, ×10
9
/L 1.4 [1.0, 1.9] 1.4 [1.0, 1.9] 1.5 [1.1, 2.0] 0.001 

 
1.4 [1.0, 1.9] 1.4 [1.0, 1.8] 

0.00

1 

Red blood cells, ×10
12

/L 4.2 [3.7, 4.6] 4.1 [3.6, 4.6] 4.4 [3.8, 4.8] 
<0.00

1  
4.2 [3.7, 4.6] 4.2 [3.7, 4.6] 

0.37

8 

Platelets, ×10
9
/L 

222.0 [169.0, 

289.0] 

226.0 [171.0, 

292.0] 

206.5 [161.0, 

267.0] 

<0.00

1  

223.0 [169.0, 

290.0] 

222.0 [168.0, 

284.0] 

0.56

9 

https://doi.org/10.1017/S000711452510384X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S000711452510384X


Accepted manuscript 

C-reactive protein, mg/L 4.0 [2.7, 20.7] 4.2 [2.9, 21.8] 3.2 [2.1, 13.4] 0.001  4.0 [2.6, 21.1] 4.0 [3.0, 19.4] 
0.86

6 

NLR 2.6 [1.6, 4.4] 2.7 [1.7, 4.5] 2.4 [1.6, 3.9] 0.005 
 

2.6 [1.6, 4.3] 2.8 [1.7, 4.6] 
0.00

4 

Anthropometric indices         

Body height, cm 
165.0 [159.0, 

172.0] 

165.0 [158.0, 

170.0] 

176.0 [168.0, 

178.0] 

<0.00

1  

166.0 [159.0, 

172.0] 

165.0 [159.0, 

173.0] 

0.73

4 

Weight loss, one 

month, % 
5.3 [0.0, 8.0] 5.9 [0.0, 8.5] 0.0 [0.0, 4.5] 

<0.00

1  
5.3 [0.0, 8.1] 5.1 [0.0, 7.9] 

0.30

4 

Weight loss, six 

months, % 
7.7 [2.5, 12.9] 8.7 [4.3, 13.6] 2.2 [0.0, 6.5] 

<0.00

1  
7.7 [2.6, 13.1] 7.7 [2.2, 12.3] 

0.16

1 

MAC, cm 25.0 [23.0, 27.0] 24.5 [22.5, 27.0] 27.0 [25.0, 29.0] 
<0.00

1  
25.0 [23.0, 27.0] 25.0 [23.0, 27.1] 

0.41

2 

TSF, mm 12.0 [8.0, 17.0] 11.0 [8.0, 16.9] 13.2 [10.0, 18.0] 
<0.00

1  
12.0 [8.0, 17.0] 12.0 [8.0, 18.0] 

0.16

6 

Handgrip strength, kg 23.2 [17.0, 30.3] 22.1 [16.3, 28.9] 28.9 [21.5, 36.9] 
<0.00

1  
23.3 [17.1, 30.3] 22.9 [16.8, 30.4] 

0.39

6 

MAMC, cm 21.0 [18.9, 23.1] 20.6 [18.7, 22.6] 22.6 [20.5, 24.6] 
<0.00

1  
21.0 [18.9, 23.1] 21.0 [18.9, 23.0] 

0.97

8 

Calf circumference, cm 32.0 [29.5, 34.0] 31.0 [29.0, 33.6] 34.0 [32.0, 36.7] 
<0.00

1  
32.0 [29.5, 34.0] 32.0 [29.2, 34.2] 

0.66

7 

BMI−six, kg/m
2
 22.6 [20.1, 25.0] 22.2 [19.8, 24.8] 23.5 [21.7, 25.2] 

<0.00

1  
22.5 [20.1, 25.0] 22.6 [20.2, 24.9] 

0.53

6 

BMI−one, kg/m
2
 21.6 [19.1, 24.5] 21.2 [18.7, 24.2] 23.3 [21.5, 25.2] 

<0.00

1  
21.6 [19.0, 24.5] 21.9 [19.2, 24.5] 

0.14

6 
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BMI, kg/m
2
 20.9 [19.3, 22.5] 20.9 [19.7, 22.8] 18.4 [18.0, 20.2] 

<0.00

1  
20.7 [19.3, 22.5] 20.9 [19.0, 22.5] 

0.73

4 

BMI+one, kg/m
2
 20.4 [18.4, 23.0] 19.7 [18.0, 22.0] 23.5 [21.8, 25.2] 

<0.00

1  
20.3 [18.3, 22.9] 20.7 [18.4, 23.0] 

0.14

8 

ASMI−six, kg/m
2
 7.1 [6.2, 7.7] 7.0 [6.1, 7.7] 7.6 [7.1, 8.0] 

<0.00

1  
7.1 [6.3, 7.7] 7.1 [6.2, 7.7] 

0.76

1 

ASMI−one, kg/m
2
 6.9 [6.1, 7.7] 6.8 [5.9, 7.5] 7.5 [7.2, 8.0] 

<0.00

1  
6.9 [6.1, 7.7] 6.9 [6.1, 7.7] 

0.89

6 

ASMI, kg/m
2
 6.7 [5.8, 7.4] 6.6 [5.6, 7.2] 7.5 [7.0, 8.0] 

<0.00

1  
6.7 [5.8, 7.4] 6.8 [5.7, 7.4] 

0.74

9 

ASMI+one, kg/m
2
 6.7 [5.8, 7.4] 6.6 [5.6, 7.1] 7.6 [7.2, 8.0] 

<0.00

1  
6.7 [5.8, 7.4] 6.7 [5.8, 7.4] 

0.94

9 

Food intake 
   

<0.00

1    

0.54

1 

 Normal 1449 (34.1) 1072 (30.6) 377 (50.0) 
  

1018 (34.2) 431 (33.8) 
 

 Slightly reduced 

(25%-50%) 
1667 (39.2) 1418 (40.5) 249 (33.0) 

  
1177 (39.5) 490 (38.4) 

 

 Severely reduced (>50%) 1138 (26.8) 1010 (28.9) 128 (17.0) 
  

782 (26.3) 356 (27.9) 
 

GI symptoms 
        

 Anorexia 1109 (26.1) 990 (28.3) 119 (15.8) 
<0.00

1  
772 (25.9) 337 (26.4) 

0.78

4 

 Nausea 534 (12.6) 482 (13.8) 52 (6.9) 
<0.00

1  
354 (11.9) 180 (14.1) 

0.05

3 

 Vomiting 350 (8.2) 321 (9.2) 29 (3.8) 
<0.00

1  
230 (7.7) 120 (9.4) 

0.07

9 
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 Mouth sores 69 (1.6) 56 (1.6) 13 (1.7) 0.932 
 

50 (1.7) 19 (1.5) 
0.74

8 

 Constipation 507 (11.9) 441 (12.6) 66 (8.8) 0.004 
 

359 (12.1) 148 (11.6) 
0.70

3 

 Diarrhea 241 (5.7) 202 (5.8) 39 (5.2) 0.576 
 

162 (5.4) 79 (6.2) 
0.37

3 

 Dry mouth 476 (11.2) 430 (12.3) 46 (6.1) 
<0.00

1  
324 (10.9) 152 (11.9) 

0.36

1 

 Taste changes 329 (7.7) 293 (8.4) 36 (4.8) 0.001 
 

218 (7.3) 111 (8.7) 
0.14

2 

 Smell changes 162 (3.8) 149 (4.3) 13 (1.7) 0.001 
 

105 (3.5) 57 (4.5) 
0.16

9 

 Dysphagia 356 (8.4) 326 (9.3) 30 (4.0) 
<0.00

1  
239 (8.0) 117 (9.2) 

0.24

5 

 Early satiety 390 (9.2) 354 (10.1) 36 (4.8) 
<0.00

1  
280 (9.4) 110 (8.6) 

0.44

6 

 Pain 394 (9.3) 337 (9.6) 57 (7.6) 0.088 
 

275 (9.2) 119 (9.3) 
0.97

9 

 Other 90 (2.1) 79 (2.3) 11 (1.5) 0.214 
 

60 (2.0) 30 (2.3) 
0.56

4 

ECOG performance status 

score    

<0.00

1    

0.02

8 

 0, fully active 2396 (56.3) 1906 (54.5) 490 (65.0) 
  

1694 (56.9) 702 (55.0) 
 

 1, slightly restricted 1396 (32.8) 1183 (33.8) 213 (28.2) 
  

980 (32.9) 416 (32.6) 
 

 2, moderately restricted 239 (5.6) 208 (5.9) 31 (4.1) 
  

168 (5.6) 71 (5.6) 
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 3, severely restricted 176 (4.1) 161 (4.6) 15 (2.0) 
  

109 (3.7) 67 (5.2) 
 

 4, completely disabled 47 (1.1) 42 (1.2) 5 (0.7) 
  

26 (0.9) 21 (1.6) 
 

ECOG performance status, 

=0 
2396 (56.3) 1906 (54.5) 490 (65.0) 

<0.00

1  
1694 (56.9) 702 (55.0) 

0.25

9 

PG-SGA score, continuous 8.0 [5.0, 11.0] 9.0 [6.0, 12.0] 5.0 [2.0, 8.0] 
<0.00

1  
8.0 [5.0, 11.0] 8.0 [5.0, 12.0] 

0.36

9 

Global QoL score
4 

66.7 [50.0, 75.0] 66.7 [50.0, 75.0] 66.7 [50.0, 83.3] 
<0.00

1  
66.7 [50.0, 75.0] 66.7 [50.0, 75.0] 

0.93

2 

Abbreviations: EN, enteral nutrition support; PN, parenteral nutrition support; ALT, Alanine transaminase; AST, Alkaline phosphatase; HDL, 

high density lipoprotein; LDL low density lipoprotein; NLR, neutrophil to lymphocyte ratio; MAC, mid-arm circumference; TSF, triceps 

skinfold thickness; MAMC, mid-arm muscle circumference; BMI, body mass index; −six, six months before admission; −one, one month before 

admission; +one, one month after admission; ASMI, appendicular skeletal muscle mass index; GI, gastrointestinal; ECOG, the Eastern 

Cooperative Oncology Group; PG-SGA, the patient generated subjective global assessment; QoL, quality of life. 

1
Median [interquartile range], all such values, compared using Wilcoxon’s rank-sum test. 

2
Number (percentage), all such values, compared using a Chi-squared test. 

3
Hematological malignancies are not included for clinical staging. 

4
Assessed using the European Organization for Research and Treatment of Cancer QLQ-C30 scale (QLQ-C30). The global QoL scale in 

QLQ-C30 was used with a higher score indicating a better global QoL.
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Table 2. Overall and subgroup model performance in the holdout test set 

Group n AUC (95%CI) Accuracy (95%CI) Kappa Sensitivity Specificity PPV NPV 

Overall, WAL-net
1 

1277 0.924 (0.904, 0.944) 0.924 (0.908, 0.938) 0.728 0.878 0.932 0.690 0.978 

Overall, MLP
1 

1277 0.899 (0.874, 0.924) 0.908 (0.890, 0.923) 0.660 0.850 0.917 0.615 0.975 

Age, years         

 < 60 586 0.918 (0.889, 0.947) 0.915 (0.889, 0.936) 0.710 0.919 0.914 0.648 0.985 

 ≥ 60 691 0.929 (0.900, 0.957) 0.932 (0.911, 0.950) 0.745 0.843 0.947 0.735 0.972 

Sex         

 Female 454 0.764 (0.684, 0.843) 0.925 (0.897, 0.948) 0.140 1.000 0.925 0.081 1.000 

 Male 823 0.949 (0.932, 0.966) 0.924 (0.903, 0.941) 0.787 0.876 0.937 0.802 0.963 

Cancer site
2 

        

 Gastrointestinal 672 0.915 (0.884, 0.947) 0.923 (0.900, 0.942) 0.699 0.893 0.927 0.636 0.984 

 Respiratory 390 0.941 (0.915, 0.966) 0.918 (0.886, 0.943) 0.760 0.852 0.935 0.775 0.960 

 Hematological 70 0.939 (0.880, 0.999) 0.914 (0.823, 0.968) 0.699 0.818 0.932 0.692 0.965 

 Other sites 145 0.887 (0.794, 0.980) 0.952 (0.903, 0.980) 0.749 1.000 0.947 0.632 1.000 

Clinical stage         

 I-II 557 0.890 (0.852, 0.928) 0.910 (0.883, 0.933) 0.658 0.847 0.920 0.610 0.976 

 III-IV 720 0.947 (0.925, 0.968) 0.935 (0.914, 0.952) 0.776 0.897 0.942 0.748 0.979 

Curative surgery         

Yes 549 0.923 (0.892, 0.954) 0.920 (0.894, 0.941) 0.730 0.895 0.924 0.688 0.979 

No 728 0.925 (0.899, 0.951) 0.927 (0.906, 0.945) 0.726 0.863 0.938 0.693 0.977 

Curative chemotherapy         

Yes 257 0.936 (0.902, 0.969) 0.922 (0.882, 0.952) 0.752 0.870 0.934 0.741 0.970 

No 1020 0.921 (0.897, 0.945) 0.925 (0.907, 0.940) 0.720 0.880 0.932 0.676 0.980 
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Nutritional support         

EN only 111 0.980 (0.954, 1.000) 0.946 (0.886, 0.980) 0.836 0.952 0.944 0.800 0.988 

PN only 237 0.906 (0.847, 0.964) 0.916 (0.873, 0.948) 0.694 0.853 0.926 0.659 0.974 

PN+EN 124 0.906 (0.813, 1.000) 0.944 (0.887, 0.977) 0.665 0.800 0.956 0.615 0.982 

No nutritional support 805 0.922 (0.898, 0.946) 0.921 (0.900, 0.938) 0.724 0.878 0.928 0.688 0.977 

C-reactive protein, mg/L         

≤ 10 839 0.936 (0.914, 0.958) 0.927 (0.908, 0.944) 0.760 0.880 0.937 0.740 0.975 

> 10 438 0.893 (0.850, 0.936) 0.918 (0.888, 0.942) 0.645 0.870 0.923 0.571 0.984 

ECOG performance status score         

= 0, fully active 702 0.938 (0.917, 0.959) 0.919 (0.896, 0.938) 0.755 0.868 0.931 0.752 0.967 

> 0, restricted or dead 575 0.896 (0.854, 0.937) 0.930 (0.907, 0.950) 0.664 0.904 0.933 0.573 0.990 

PG-SGA score         

 0-1 70 0.859 (0.773, 0.944) 0.771 (0.656, 0.863) 0.524 0.791 0.741 0.829 0.690 

 2-3 143 0.957 (0.921, 0.993) 0.944 (0.893, 0.976) 0.887 0.924 0.961 0.953 0.937 

 4-8 442 0.893 (0.850, 0.935) 0.905 (0.874, 0.931) 0.655 0.895 0.907 0.586 0.983 

 ≥9 622 0.878 (0.827, 0.929) 0.950 (0.930, 0.966) 0.528 0.864 0.953 0.404 0.995 

Abbreviations: AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; WAL, weight + 

appendicular skeletal muscle mass + long short-term memory; MLP, multilayer perceptron; PG-SGA, the patient generated subjective global 

assessment. 

1
 WAL-net vs. MLP, Delong’s test for AUCs, P = 0.005. 

2 
Gastrointestinal system (colorectum, stomach, esophagus, liver, pancreas, biliary tract and gastric stroma), respiratory system (lung and 

nasopharynx), hematological system (leukemia, lymphoma, multiple myeloma), other sites (cervix, ovary, endometrium, prostate, bladder, breast 

and brain).
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Table 3. Association of model prediction with short-term clinical outcomes in the holdout test set 

  
Predicted reversible malnutrition  True reversible malnutrition 

Outcomes 
Overall 

(n=1277) 
No (n=1089) Yes (n=188) P  No (n=1038) Yes (n=239) P 

BMI+1, kg/m
2
 

20.7 [18.4, 

23.0]
1 

20.0 [18.3, 

22.3] 

23.7 [22.0, 

25.5] 

<0.00

1 
 

19.8 [18.1, 

22.1] 

23.5 [21.9, 

25.3] 

<0.00

1 

BMI+1, underweight 
388 (30.4)

2 
383 (35.2) 5 (2.7) <0.00

1 
 

388 (37.4) 0 (0.0) <0.00

1 

ASMI+1, kg/m
2
 

6.7 [5.8, 7.4] 6.6 [5.6, 7.1] 7.7 [7.4, 8.1] <0.00

1 
 

6.6 [5.6, 7.1] 7.6 [7.2, 8.0] <0.00

1 

ASMI+1, low 
575 (45.0) 568 (52.2) 7 (3.7) <0.00

1 
 

575 (55.4) 0 (0.0) <0.00

1 

ECOG performance status 

score+1 
   

0.019    0.001 

 0, fully active 274 (21.5) 218 (20.0) 56 (29.8)   202 (19.5) 72 (30.1)  

 1, slightly restricted 446 (34.9) 378 (34.7) 68 (36.2)   358 (34.5) 88 (36.8)  

 2, moderately restricted 44 (3.4) 38 (3.5) 6 (3.2)   36 (3.5) 8 (3.3)  

 3, severely restricted 22 (1.7) 18 (1.7) 4 (2.1)   19 (1.8) 3 (1.3)  

 4, completely disabled 4 (0.3) 3 (0.3) 1 (0.5)   2 (0.2) 2 (0.8)  
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 5, dead 487 (38.1) 434 (39.9) 53 (28.2)   202 (19.5) 72 (30.1)  

ECOG performance status+1, =0 
274 (21.5) 218 (20.0) 56 (29.8) 0.004  202 (19.5) 72 (30.1) <0.00

1 

Increased malnutrition 

phenotypes
3 

358 (28.0) 351 (32.2) 7 (3.7) <0.00

1 

 358 (34.5) 0 (0.0) <0.00

1 

Abbreviations: BMI, body mass index; +1, one month after baseline; ASMI, appendicular skeletal muscle mass index; ECOG, the Eastern 

Cooperative Oncology Group. 

1
 Median [interquartile range], all such values, compared using Wilcoxon’s rank-sum test. 

2 
Number (percentage), all such values, compared using a Chi-squared test. 

3 
Defined as an increase in the number of positive malnutrition phenotypes (as diagnosed using the Global Leadership Initiative on Malnutrition 

framework) from baseline to one month after baseline (might be one to two, or two to three). 
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