
SOME RESULTS ON v-MULTIPLICATION RINGS 

MALCOLM GRIFFIN 

1. Introduction. A family 12 of valuations of the field K is said to be 
of finite character if only a finite number of valuations are non-zero at any 
non-zero element of K. If w 6 12 has ring dlw and maximal ideal tym then 
A = r^wen 9îw is said to be defined by 12 and ^ H i is a prime ideal called 
the centre of w on A and denoted by Z(w). If $lw = Az{w), then w is said to be 
an essential valuation for A. A domain defined by a family of finite character 
in which every valuation is essential is called a ring of Krull type. 

By generalizing a proposition due to Lorenzen we extend some results 
known for Prufer rings to ^-multiplication rings. We use these results to 
investigate the relationship between ^-multiplication rings and rings of Krull 
type. Finally we investigate the preservation of rings of Krull type under 
various extensions. Further properties of rings of Krull type are investigated 
in (2, 3). 

We give a brief outline of results from the theory of systems of ideals. For 
further details the reader is referred to Jaffard's book (4). 

Let A be a ring with quotient field K. To each non-zero fractionary ideal 
M associate a fractionary ideal Mr so that this mapping has the following 
properties: 

(1) M C Mr; 
(2) M C Nr implies that MT ÇZ Nr; 
(3) A = Ar] 
(4) aMT = (aM)r for all a £ K. 

The ideals of the form MT are said to form a system of r-ideals for A. An 
r-ideal, Mri is a finite (an integral) r-ideal if M is a finitely generated (an 
integral) ideal. An integral r-ideal, Mr, is a prime r-ideal, if ab £ Mr, with 
a, b (z A, a Q Mr, implies that b G Mr. An integral r-ideal, Mr, is a maximal 
r-ideal if Afr Çk NT C. A implies that Nr = MT. 

The product of r-ideals is defined by MT X rNr = (MrNr)r. It is easily 
shown that (MN)r = Mr Xr Nr = M Xr N. An r-ideal M is r-invertible if 
there is an r-ideal N such that M X T N = A. 

We say that the r-system is coarser than the g-system if for every frac­
tionary ideal M, Mg ÇZ Mr. The coarsest possible system of ideals is the 
v-system which is defined by Mv = H ^ D M (X). Any r-system of ideals gives 
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rise to a new system of ideals, the rs-system, defined by Mu = U^6(g Nr, 
where @ is the family of ideals generated by finite subsets of M. An r-system 
is said to be of finite character if it is equal to its own rs-system. The zvsystem 
(which is of finite character) is called the t-system. 

We use the following propositions, the proofs of which may be found in (4). 
I. Any r-invertible r-ideal is a y-ideal. 

II. If the system of r-ideals has finite character, then (a) all r-invertible 
r-ideals are finite, and (b) if Mr C A, then MT is contained in a maximal 
r-ideal; this maximal r-ideal is prime. 

A Prufer ring is a ring in which every finitely generated ideal is invertible. 
A ring in which the finite ^-ideals, with the product defined above, form a 

group is called a v-multiplication ring. 
Let A be a ring with quotient field K. Form a multiplicative pre-ordered 

group by setting x < y when x, y £ K and y = ax for some a G A. The 
corresponding ordered group is called the divisibility group of A. 

Let T be a totally ordered group. A subgroup A of T is called an isolated 
subgroup if ô G A with <5 > 7 > 0 implies that 7 G A. 

Let T be a totally ordered group; then a subset U of T is called an upper 
class provided that: 

(1) if a G U and 0 G V with 0 > a, then & Ç. U\ 
(2) there exists 7 G T such that 7 $ U. 
If T is a totally ordered group it is possible to construct a totally ordered 

monoid A* (7), and a one-to-one map <f> from the upper classes of Y into A* 
such that: 

(1) UC U'^<t>(U) > <t>(U')) 
(2) </>([/+ V) = 4>(£/)+ </>(tn. 
There is no loss of generality in assuming that the image T* of the upper 

classes of r under <j> contains T as an ordered group. 
Let w, w' be valuations of K with groups T, r ' and rings 9Î, 9?'. Then wr 

is coarser than w, written wf < w if 9î Q 3?r. 
If w' < w, then for some prime ideal $ of $R, 9t' ^ 9?^ and V ^ T/A, 

where A is the isolated subgroup of V generated by those elements of SR which 
do not belong to $ . 

2. Rings defined by well-centred valuat ions . A valuation w with ring 
containing A is said to be well centred on A if for each positive element 7 in 
the value group of w there is an element a £ A such that w(a) = 7 . I t is 
easy to show that if w is essential for A then w is well centred on A. 

Let w be well centred on A with value group Tw. For a fractionary ideal 
M, define w(ifcf) = {w(x)| x G M, x F^ 0}. Then if a G w(Af) and /3 > a 
there exists a £ A such that w{a) = 0 — a > 0, since w(#) = a for some 
x G M, ax G -M" and w(ax) = a + P — a = /3; it follows that 0 G w(M). Also, 
since Jkf is fractionary, w(M) is bounded below. It follows that w(M) is an 
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upper class. For each such w we may define M(w) 6 Tw* to be the element 
corresponding to the upper class w(M). 

Let 0 be a family defining A with every valuation of 12 well centred on A. 
We define a map <& by associating to each non-zero fractionary ideal M of 
A an element of YIw& I V given by ($(M))W = M(w). We define addition 
and order on Ylu>& ^w* componentwise using the structure on each Tw*. 

THEOREM 1. Let 12 be a family of well-centred valuations of K defining A. Let 
non-zero fractionary ideals of A. Then 

(1) M C N implies that $>(M) > $(N); 
(2) $(MN) = $(M) + $(N); 
(3) *(EtuMt) = n < € 7 *(ilf<); 
(4) if $((xi. . . xn)M) = $((xi . . . xn)N) with xt 6 K, i = 1, . . . , n, then 

$(M) = $(N); (50 $(Mr\ N) > $(M) V $ ( # ) . 
//" a// /Ag valuations of 12 are essential we have in addition: 

(5) $(Mr\N) = $(Af) V $(iV); 
(6) $(ikr(Z,n AO) = $(MLr\MN); 
(7) $ ( ( M + A O ( i k m i V ) ) = $(AfiV); 
(8) $(MP> (L + N)) = $ (Mnz,+ MHN). 

If the valuations of 12 are essential and N and Nf are finitely generated, then 
(9) 3>(Àf: N) = $(Af) - Q(N); 
(10) $((L + M): N) = $(L: N + M: N); 
(11) $ (M: NHN') = $(ilf: iV + M: iV'). 

Proof. (1) Trivial. 
(2) If * € AfiV, then 

w 

1 

with at £ M, bi £ N. Thus w(x) > mini<i<ri {w(af) + w(bt)\, so that 

If a G w(M), j8 6 w(iV), let x £ M, y £ N be such that w(x) = a, 
w(y) = 0. Then x;y G MTV, «^(x^) = a + 0, so w(M) + w(N) C w(MN) and 
w(M) + w(iV) = w(MN). 

Since (AfiV) (w) G rtt*, Af (w) 6 r„,*f N(w) G r„,*, correspond respectively 
to the upper classes w(MN), w(M), w(N), it follows that M(w) + N(w) 
corresponds to the upper class w(M) + w(N) = w(MN); that is 

(MN)(w) = M(w) + N(w). 

This holds for all w Ç 12 so that (2) is proved. 
(3) Since w(a + b) > min {w(a), w{b)} with equality when w(a) ^ w(b), 

it follows that w(Mt + Mk) = w(Mt) U w(Mk) and 

wŒitiMt) = \Jiaw{Mt), 
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so that (Et€iMt)(w) = inf,€7{Jkfi(w)}, and $(Ziei M) = Ai€i$(M). 
(4) From (2) it follows that ( (xi . . . xn)M) (w) = (xi. . . xn) (w) +Jkf (w) and 

((xi . . . xn)N) (w) = (xi. . . xn) (w) + N(w), but 

(xi . . . s»)(w) = infi< î<w^(xO 

and consequently has an inverse in rw* (for it is an element of r^ ) . We 
deduce that M(w) = N(w) and consequently that <i>(ikf) = $(iV). 

(5') This is trivial since for all w G 12, w(M C\ N) C w(M) Pi w(iV). 
(5) Using the fact that intersections of ideals are preserved on passing 

to quotient rings, 

ytw(Mr\N) = AP(Mr\N) = APMC\APN = $twMr\ MWN, 

so that 

W(MC\N) = w(diw(Mr\N)) = w(mwMr\ ytwN) 
= w(SRw M) n w(3t„ N) = w(M) H w(iV). 

Hence (ilf r\N)(w) = M(w) V iV(w) and $(M n N) = $(M) V 3>(iV). 
(6-8) Since the valuations in 12 are essential, 9^ = AP, but transition to 

quotient rings preserves sums, products, and intersections of ideals, so it is 
sufficient to prove (6), (7), and (8) componentwise. These relations follow 
at once from (2), (3), and (5) applied to each quotient ring dtw. 

(9) Since quotients of ideals by finitely generated ideals are preserved by 
passage to quotient rings, 

WW(M: N) = AP(M: N) = AP M: AP N = diw M: Mw N 

= {x € K\ x^w N ç ?ftw M} = {x G K\ w{x) + N(w) > M(w)} 

= {x £ K\ w(x) > M(w) - N(w)}, 

for since N is finitely generated, N(w) G Tw. Thus (M: N) (w) = M(w)—N(w), 
i.e. $(M: iV) = $(M) - $ ( # ) . 

(10, 11) It is sufficient to prove (10) and (11) componentwise, i.e. we may 
assume that A = dlw, and hence, since the ideals of a valuation ring are 
totally ordered by inclusion, that L C M and Nf C JV. Then 

(L + M): iV = Jkf: N = L: iV + M: N, 

M: (N r\ N') = M: N' = Af : iV' + Af : iV. 

This completes the proof. 

We define an equivalence relation on the non-zero fractionary ideals of A 
by setting M s= N when $(M) = $(iV). 

Let Mc = KJNssMN. Then by Theorem 1 (3) we see that $(MC) = $(M) 
and Mc is the largest ideal which is equivalent to M. 

We note that ii x £ K, then (x)c = (x) and it follows as a consequence 
of Theorem 1 (2) that (xM)c = (x)Mc = xMc. Since it is obviously true 
that M C Me and that if M C iVc, then ikfcÇI iVc, we see that we have a 
system of ideals, the c4deals. 
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PROPOSITION 2. Let Œ be a well-centred family of valuations defining the ring 
A. Let M be any fractionary ideal. Then Mc = C\wen M$lw. 

Proof. Let M' = f"Va M$tw. 
From M = MA = M ( H ^ 3 U Q M$lw it follows that M C M' so that 

MCQ (M')c. 
From M' ç ikT9î̂  we deduce that ikf O ) > (Af3tw) (w) = M(w) so that 

U O e ^ Mc, and consequently (ilf')c = Mc. 
Now if x Ç (ikf')c, then from w(x) > ilf'(w) > M(w) it follows that there 

exists y £ M such that «;(#) > w(y), i.e. x G 9îw y Ç 9xw M. Since this holds 
for every w Ç 12, x É H ^ f i SRW M" = M', and (M')c Q M'. 

Thus M' = (Mr)c = Mc. 

3. Systems of ideals. 

PROPOSITION 3. The following conditions for an integral domain A are equiva­
lent: 

(1) the finite v-ideals of A are v-invertible; 
(2) there is a system of ideals of A, the r-ideals, such that for any finite integral 

r-ideal M and family of integral r-ideals Nt, i G / , with non-zero intersection 

MXri^teiNt) = nwiMXrNi); 

(3) there is a system of ideals of A, the r-ideals, such that for any finite integral 
r-ideals M and N, (M + N) Xr (MH N) = M XrN. 

Proof. We first show that if the finite v-ideals are v-invertible, then (2) holds 
for the v-ideals. Let M be a finite integral v-ideal and Nu i £ / , be integral 
v-ideals with non-zero intersection. 

M(nieiNt) ç MNt Q {MNt)v = M XvNt, 
so that 

Mxv(nieiNi) = (M(niaNt))v ç niei (M XV N<). 
Since M is a finite v-ideal, it has an inverse M~1, and 

M'1 Xv ( r \ 6 7 (MXvNJ) e M-1 XvMXvNt = Nt, 
so that 

M'1 Xv (n<€ / (MXvNt)) ç n , € 7 i V , 
and 

niel (M XvNt) QMXV (n^Ni); 
hence 

ni€I(MXvNt) = MXvin^Nt). 

We show that if (2) holds for the r-ideals, then so does (3). For any integral 
ideals we have (M + N)(MH N) Ç MN + NM = MN so that 

(M+ N) Xr (MC\N) ^MXrN. 
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By (2) we deduce that 

(M+N) Xr(MnN) = ((M+ N) XTM)r\((M+ N) XrN) 3 i f XrN 

and hence (M + N) Xr (MH N) = M XrN. 
We prove by induction on the number of generators of the finite f-ideal 

L = (mi. . .mn)r that if (3) holds then every finitely generated r-ideal is 
r-invertible. 

It is obvious that every principal ideal is r-invertible. We assume that 
every r-ideal with n — 1 or less generators is r-invertible. Let 

M = (mi . . . m„_i)r, N = (mn) ; 

then by (3) L Xr (MH N) = (M + N) Xr (MH N) = MXrNbutM, N 
have inverses M~1

1 iV-1, so that 

L Xr (MC\N) XrN-1 XrM-i = M XrN XrN-1 XrM-1 = A 

and L is r-invertible. 
Since every finite r-ideal is r-invertible, the finite r-ideals coincide with the 

finite ^-ideals and (1) is proved. 

PROPOSITION 4. Let the r-ideals be a system of ideals of A having finite charac­
ter. Let II be the family of maximal r-ideals. Then Xr = Pip€n A P Xr. If Xr = A, 
then A = r\PeuAPX and APX = AP. 

Proof. If a G APXr, then for some x G Xr and b G A, b d P, a = x/b, 
i.e. a~xx = b so that arxXr Pi A (£ P. Consequently it follows that if 

a G r\p£ii AP Xr, 

then for each prime P G II, a_1X r C\ A <£ P and so 

A = {a-^Xr C\ A)T = (a-iXJr C\A = a-'Xr C\ A. 

It follows that 1 G a~1Xr so that a £ Xr and Xr 2 Ppen AP Xr. The oppo­
site inclusion follows immediately since Xr ^ AP Xr. 

Let Xr = A. Since A P is a local ring, either 4̂ P X = 4̂ P or 4̂ P X CI 4̂ P P . 
In the latter case P = APP C\ A ~^_ APX C\ A 3 1 and consequently 
Xr Q Pr = P C A, a contradiction. I t follows that APX = AP and also 
that Xr = A = C\P(:uAP = r\PenAPX. 

THEOREM 5. Let A be a ring with a system of ideals having finite character, 
the r-ideals. If L, M, N represent any integral r-ideals, then the following six 
conditions are equivalent: 

(1) the finite r-ideals form a group] 
(2) Apis a valuation ring for each maximal r-ideal; 
(3) LXriMHN) = {LXrM)C\ (LXrN); 
(4) (M+ N) Xr (MC\N) = M XrN. 
(5) every finite r-ideal is r-invertible; 
(6) L H (M + N)r = ( i n M + LC\ N)r. 
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Proof. We show that (1) => (2) =̂> (3) => (4) => (5) => (1) and that 
( 2 ) ^ ( 6 ) . 

Let II be the family of maximal r-ideals. 
(1) => (2). Let P G n. Since P is a prime ideal, there exists a valuation 2̂  

with valuation ring $R Z) A and with centre P on A (9, p. 12). It follows 
that AP Ç 9Î. Let x G 9Î. Let (3/1, . . . , yn)r be the inverse of (1, x)r in the 
group of finite r-ideals, so that (yi, . . . , yn, xyi, . . . , xyn)r = A. 

By Proposition 4, 

A = r\p^AP{yu . . . , yn, xylt . . . , x;yw} 

C AP{yu . . . ,yn, xyh . . . , x ^ } 

£ fôbi, • • • ,yn,xyi,... ,ry»} 

= fty<, 

where w(yt) = mini< K„ {wiyj), w(xyj)}. 
Hence 1 G 9fyz, and since this means that w(yt) < 0, we have yt Q P. But 

yu xyt G A so x = xyi/yi £ AP and ^4P = 9?. 
(2) => (3). It follows from Propositions 4 and 2 that 

Mr = nPeUMrAP = (Mr)c, 

i.e. that Mc ÇZ Mr. 
By Proposition 4, i P , P Ç II is a defining family of (essential) valuations 

for A, and so using Theorem 1 (6), 

(3.1) LXc{Mcf\Nc) = {LXCM)C\ (LXcN). 

Consequently it follows by Proposition 3 that every finite c-ideal is £-invertible 
and hence, by the result quoted in the Introduction, that the finite c-ideals 
and finite ^-ideals coincide. Now for any finite set X C A, 

Xv = Xc CI Xr (Z Xv 

and it follows that the finite ideals of all three systems coincide. Since a 
family of finite character is the finest having specified finite ideals, for any 
set X Ç A, Xr Ç Xc, and since Xc C Xr, it follows that the ^-system and 
r-system are identical. (3) follows immediately from (3.1). 

(3) =̂> (4) => (5). This follows from Proposition 3. 
(5) => (1). If M is finite, then it has an inverse M~l, but M~l has an in­

verse My and so must be finite by the result quoted in the Introduction; 
consequently, the finite ideals form a group. 

(2) => (6). Now that we have shown that the c-ideals and the r-ideals 
coincide, this follows from Theorem 1 (8). 

(6) => (2). If (6) holds, then, for a, b £ A 

(a) = (a) r\ ((b) + (a - b))r = ((a) H (b) + (a) H (a - 6))r> 

so that 

A = or1 ((a) H (b) + (a) H (a - b))r = (a-1 ((a) H (6) + (a) C\ (a - b))r. 
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By Proposition 4 it follows that for each P Ç II 

A pa'1 ((a) r\ (b) + (a) H (a - 6)) = AP, 

that is 

((a) C\ (b))AP + ((a) H (a - b))AP = aAP 

or (a)* H (6)* + (a)* C\ {a - b)* = (a)*, where (a)* denotes the ideal a^4P. 
Thus a = t + (a - b)c with * £ (a)* H (6)* and 6c € (a)*. 

If c is a unit of APy then 6 £ (#)*, i.e. a\b. 
If c is not a unit of ^4P, then 1 — c is, since AP is a local ring; so 

(a)* = (a(l - c))* = (t - be)* C (6)*, i.e. 6|a. 

We conclude that AP is a valuation ring, since its divisibility group is 
totally ordered. This completes the proof. 

Because the r-ideals of Theorem 5 have finite character and the finite 
r-ideals are the y-ideals, it follows that the r-ideals coincide with the /-ideals. 
Thus any ring satisfying Theorem 5 is a ^-multiplication ring. A more par­
ticular case is given by the following corollary. 

COROLLARY (Krull (6), Jensen (5)). Let A be an integral domain with integral 
ideals L, M, N. Then the following conditions are equivalent: 

(1) the finitely generated ideals form a group] 
(2) AP is a valuation ring for every maximal ideal P of A; 
(3) L(Mr\N) = LMC\ LN; 
(4) (M + N)(Mr\N) = MN; 
(5) LC\ (M+ N) = LC\M + LHN; 
(6) A is a Prufer ring. 

Proof. This follows by noting that the ideals have finite character. 

We note that the finite ^-ideals of a ^-multiplication ring form a lattice-
ordered group with the order relation Xv < Yv when Yv C Xv. 

Jaffard (4, p. 55) has shown that a ^-multiplication ring A may be charac­
terized in terms of its divisibility group G as follows: A is a ^-multiplication 
ring if and only if there exists a lattice-ordered group G containing G as a 
subgroup in such a way that every element of G is the infimum of a finite 
number of elements of G. 

G is lattice-order isomorphic to the lattice-ordered group of finite ^-ideals. 
A ring A is said to be an essential ring if it is equal to the intersection of 

its essential valuations. 
Theorem 5 and the remarks following it show that every ^-multiplication 

ring is an essential ring. We conjecture that the converse is false but have 
no counterexample. 
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4. Rings of Krull type and v-multiplication rings. 

LEMMA 6. Let G be a lattice-ordered group. Let gt G G+, i = 1, . . . , n, n > 2, 
be such that gi V g2 V . . . V gn~i £ & and gw £ & for i = 1, . . . , » - 1. 
TTKJW g'n = g„ - gw A (gi V . . . V gn-i) > 0 and g't = gt - gt A gn > 0, 

i = 1, . . . , n — 1; but g'n A g' i = 0, i = 1, . . . , n — 1. 

Proof. The first two conclusions follow easily, since from the hypothesis 
gn > gn A (gi V . . . V gre_i) and gi > gi A gn- If n = 2 and 

gz - gi A g2 > fe > 0, i = 1, 2, 

then gi > fc + gi A gi > 0, i = 1, 2, 

so that gi A g2 > h + gi A g2; thus A = 0, i.e. g \ A g'2 = 0. 
Now we treat the general case: 

(gl V . . • V gn-l) + gn A gi = (gl V . . . V gn-l + gn) A (gl V . . . V gn-l + gi) 

> (gi + gn) A (gl V . . . V gn_i + gt) 

= gi + (gl V . . . V gn-i) A g». 

Thus (gi V . . . V gn-i) - (gi V . . . V g„-i) A gn > gi - gn A gi = gr
t. But 

by the lemma in the case n = 2, 

((gi V . . . V g,_i) - (gi V . . . V g,_i) A gn) A (gn - (gi V . . . V gn-i) A g„) = 0, 

so that certainly gf
 t A g'n

 = 0-

A lattice-ordered group is said to satisfy Conrad's (F)-condition (1), if each 
positive element is greater than only a finite number of pairwise disjoint 
elements. 

THEOREM 7. The following three conditions on a ring A are equivalent: 
(1) A is a v-multiplication ring in which the lattice-ordered group of finite 

v-ideals satisfies Conrad's (F)-condition; 
(2) A is a v-multiplication ring in which no non-zero element belongs to an 

infinite number of maximal t-ideals; 
(3) A is defined by a family of essential valuations having finite character, 

i.e. A is a ring of Krull type. 

(1) =» (2). Let x Ç A. Let Xu . . . , Xn be a family of finite sets each con­
taining x such that (X\)v, . . . , (Xn)v are a maximal set of pairwise disjoint 
z/-ideals in the corresponding lattice. Let Ply . . . , Pn be maximal /-ideals con­
taining Xi, . . . , Xn respectively. We show that x is contained in no other 
maximal /-ideal. 

Suppose that x £ P, P 9e Pu i = 1, . . . , w. Let bt £ P,bt Q Pt and at G Pu 

at 2 P, for i = 1, . . . , n. 
For each i = 1, . . . , n, (Xt)v $£ P. For, suppose that (Xt)v Ç P , then, 

since (X*, a*)» $£ (X*, bt)v $£ (X*, af)B we may apply Lemma 6 with n = 2 
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to show that the finite ^-ideals (Xu at)v Xv {Xu au b%)v~
l, (Xiy bt)v Xv (Xt, 

a>u bi)v~
l are disjoint and obtain a contradiction to maximality by substituting 

them for (Xt)v in the set {(Xi)v, . . . , (Xn)v\. 
From (XJt&P it follows that rù(Xi)9ç£P (8, p. 210), i.e. that 

(X1)v V (X2)v V . . . V (Xn)v £ (fiu • • • , bn, x)v > P . Since (bu . . . , & » , x)v 

ÇË (Xt)v, i.e. (6i, . . . , bn, x)v ^ (Xt)v for i = 1, . . . , n, we may apply 
Lemma 6 to construct a set of n + 1 finite disjoint y-ideals containing x, 
contradicting the maximality of {(Xi)v, . . . , (Xn)v}. It follows that the 
maximal /-ideals containing x are a subset of {Pi, . . . , Pn}. 

(2) => (3). Let II be the family of maximal /-ideals. By Theorem 5, for 
each P G II, i P isa valuation ring. Since each element of K belongs to only 
a finite number of maximal ideals, the family {AP, P G II} has finite charac­
ter. Finally, by Proposition 4, A = C\PeuAP. We conclude that A is a ring 
of Krull type. 

(3) => (1). We show first that the c-ideals have finite character; we need 
to show that if a G Mc, then for some finite set of elements of M 

mu i = 1, . . . , w, a G (mi, . . . , mn)c. 

Let mi G M\ then 3>(a) > $(mi) except at a finite number of valuations, 
say w2 . . . wra. By definition of M(Wi) there exists mz- G i f such that 

^i(fl) > Wi(mt) > Af (w*)> i = 2, . . . , n. 

Now since w(a) > min {w(mi), . . . , w(mw)} for all w G 0 we conclude that 
the c-ideals have finite character. 

Now by Theorem 1, since the valuations of the defining family 12 are 
essential, 

(M+N) Xc(McnNc) = MXCN. 

Thus by Theorem 5, A is a ^-multiplication ring and the c-ideals are the 
/-ideals. 

Let X, Y be finite sets containing a given element x G A and such that 
Xv, Yv are disjoint. Then $((X, F)„) = $(X, F) = 0. It follows that each 
w G Œ is zero on some element of X U F. We conclude that the number of 
disjoint finite ^-ideals containing x is no greater than the number of non-zero 
valuations at x. 

5. Preservation of rings of Krull type under extension. 

PROPOSITION 8. Let £2 be a family of valuations defining the ring A. Let Kr be 
an algebraic extension of the quotient field K, of A. Let W be the family of all 
the extensions of the valuations in 0 to the field K'. Then 

(a) 12' defines the integral closure A' of A in Kf; 
(b) all extensions of essential valuations for A are essential for Ar; 
(c) if 0 is of finite character and K' is a finite extension of K, then 12' is of 

finite character. 
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Proof. This proposition is well known for discrete rank-one valuations (9, 
Theorem 30, p. 87). The generalization to arbitrary valuations requires only 
minor changes in detail and will not be given. 

COROLLARY. Let A be an essential ring with quotient field K. Let A' be the 
integral closure of A in an algebraic extension of K. Then A' is an essential 
ring. 

COROLLARY. Let A be a ring of Krull type with quotient field K. Let A ' be 
the integral closure of A in a finite algebraic extension of K. Then A' is a ring 
of Krull type. 

PROPOSITION 9. Let 12 be a family of valuations defining A. Let 12' be the family 
of canonical extensions of valuations of 12 to K(Xi)ia, where K is the quotient 
field of A. Let ^ be the family of valuations of K(Xt) ia defined by the irreducible 
polynomials of i£ [XJ^/ . Then: 

(1) A[Xt]iei is defined by 12' U ^ ; 
(2) each valuation of ^ is essential for A[Xi]ia; 
(3) the canonical extension of an essential valuation is essential; 
(4) if 12 is of finite character, so is 12' U ^ . 

Proof. This proposition is well known for discrete rank-one valuations (9, 
Theorem 39, p. 111). The generalization to arbitrary valuations requires only 
minor changes in detail and will not be given. 

COROLLARY. If A is an essential ring, so is A[Xi]ia. 

COROLLARY. If A is a ring of Krull type, so is A[Xi]ia. 

Let 12 be a family of valuations. We say that a family of valuations 12' is 
coarser than 12 if there is a m a p / , from a subfamily 12i of 12 onto 12', such that 
w > f(w) for all w £ 12i. 

Obviously, if 12 is of finite character then 12' is of finite character. 

PROPOSITION 10. Let 12 be a defining family for the ring A; let w Ç 12 be essential 
for A. Let 12' be a family of valuations which is coarser than 12 and defines the 
ring A'. Let w' £ 12' with w' < w. Then w' is essential for A'. 

Proof. Let P be the centre of w on A and P' be the centre of w' on Af. Let 
S be the complement of P in A, and S' the complement of P' in A'. 

Since 12' is coarser than 12, A' 3 A, and since w' < w, S CI S'. Thus 

9Î„ = AP = AS^A'S, = (Af)P, 

Hence {Af)P> is a valuation ring and w' is essential. 

COROLLARY. Let 12 be a defining family (a defining family of finite character) 
of an essential ring (a ring of Krull type) A. Let 12; be coarser than 12. Then 12r 

defines an essential ring {a ring of Krull type) A'. 
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If w' G 12', then wf < w G 12 and w is essential for A, so that w' is essential 
for A', i.e. .4' is an essential ring. 

If 12 is of finite character so is 12'. 

LEMMA 11. Let il be a defining family of finite character for A. Let S be a 
multiplicatively closed subset of A with 0 $ S. Then there exists 12' coarser than 
12 such that 

A s = (^wçv' 9îw>-

Proof, liw G 12, then there exists w' < w which is the finest of the valuations 
v < w such that Z(v) H 5 = 0. 

Indeed, let 

aw = {y <w\z(v)ns = 0}. 
Then (Sw is non-empty since it contains the trivial valuation. Let 

If a G Z(wf) and a ^ 0, then a - 1 G 9L' so that there exists v G @w such 
that a - 1 G 9ît» i.e. a G ^V, thus, a ^ Z(D) and a G S. It follows since wr < w 
that «/ G ®w and hence is the finest valuation of (§M,. 

Let w run through 12; the w"s define a coarser family 12'. 
Since S C\ Ziw') = 0, 5 is contained in the group of units of 9?^, so that 

if a/s G A s then a/s G 9Î«,', hence 

The converse inclusion consists of showing that if 

x G C^w&' 9t«>, 

then there exists a G S such that ax G A. 
Let a G S be such that the set 121 of valuations w G 12 with w(ax) < 0 is 

minimal (such an element exists since 12 has finite character). 
Suppose that w' G 12i. Let A be the largest isolated subgroup of the value 

group T of w' not containing w'(ax). Let v < wf be the valuation with group 
T/A, so that v(ax) < 0. Suppose that Z(v) C\ S = 0, then there exists w G 12' 
with w > v, i.e. w(ax) > 0 so that v(ax) > 0, a contradiction. From 
Z(v) H 5 9e 0 it follows that ??(&) > 0 for some b £ S. Suppose that wf ibn ax) 
< 0 for all n\ then nw'(b) < — ze/(ax) for all n, and «/(&) generates an 
isolated subgroup not containing w'(ax), so that wr (b) G A and v(b) = 0, 
a contradiction. It follows that for some n, w'(bn ax) > 0. Since bna G 5 and 
since any w G 12 is positive at bnax if it is positive at ax, we conclude that 
121 is not a minimal family. This contradiction implies that 121 = 0, so that 
ax G A and the lemma is proved. 

PROPOSITION 12. Let Abe a ring of Krull type. Let S be a multiplicatively closed 
set 0 G S. Then As is a ring of Krull type. 
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Proof. By the preceding lemma, As has a defining family which is coarser 
than the family of finite character defining A; hence, by the Corollary to 
Proposition 8, As is a ring of Krull type. 
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