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The simplest type of Lie semigroups are closed convex cones in finite dimensional
vector spaces. In general one defines a Lie semigroup to be a closed subsemigroup of a
Lie group which is generated by one-parameter semigroups. If W is a closed convex cone
in a vector space V, then W is convex and therefore simply connected. A similar
statement for Lie semigroups is false in general. There exist generating Lie semigroups in
simply connected Lie groups which are not simply connected (Example 1.15). To find
criteria for cases when this is true, one has to consider the homomorphism

induced by the inclusion mapping i:S-*G, where S is a generating Lie semigroup in the
Lie group G. Our main results concern the description of the image and the kernel of this
mapping. We show that the image is the fundamental group of the largest covering group
of G, into which S lifts, and that the kernel is the fundamental group of the inverse
image of 5 in the universal covering group G. To get these results we construct a
universal covering semigroup 5 of 5. If j : H(S) : = S n S~' —» S is the inclusion mapping of
the unit group of 5 into S, then it turns out that the kernel of the induced mapping

may be identfied with the fundamental group of the unit group H(S) of 5 and that its
image corresponds to the intersection H(S)nC~\ n^S), where n^s) is identified with a
central subgroup of 5.

1. The universal covering semigroup 5. Let A" be a path connected space and
x0 e X. In the following we write Q(X, x0) for the set of all continuous loops y: [0,1]—> X
with y(0) = y(l) =Jt0 and Jt^{X,x0) for the quotient of Q(A',x,)) modulo the homotopy
relation with fixed endpoints. This is the fundamental group of X with respect to xn. If
y:[0,1]—>Ar is a continuous path, which is not necessarily a loop, we write [y] for the
homotopy class of y with fixed endpoints. For paths a, /J:[0,1]—*X, we set a(t): =
<x(l-t), and

for/e[<U]
i) f o r , 6 [ U ] .

Note that this implies that [ar<>j3] = [<*][/?] if <* and /3 are loops. If X is a topological
monoid we usually use the unit element as base point. Since the isomorphy class of the
group Jt\(X, xQ) is independent of xn, we also write nt(X) for the fundamental group of X
without reference to a base point.

We recall the basic definitions and properties concerning Lie semigroups.

DEFINITION 1.1. For a closed subsemigroup 5 of a Lie group G we define

L(5): = {X e L(G): exp(K +X) <= 5}

to be the tangent wedge of 5. In fact, it turns out that L(S) is a wedge, i.e. a closed
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convex cone in the Lie algebra L(G) [5, V.I.6]. A closed subsemigroup S of G is called a
Lie semigroup if it is reconstructable from its tangent wedge in the sense that

5 = <expL(5)>.

If W is a wedge in a Lie algebra g, we say that W is generating if g = W — W, and Lie
generating if g is the smallest subalgebra containing W. The subspace H(W) := W D — W
is called the edge of H(W) and W is said to be pointed if H(W) = {0}.

We say that a Lie semigroup 5 s G is generating if the wedge L(5) is Lie generating
in L(G).

From now on G denotes a connected Lie group and 5 is a generating Lie semigroup
in G.

PROPOSITION 1.2. fFor a generating Lie semigroup S in G the following assertions hold
1) There exists an analytic path a: [0,1]—» G such that

ar(0) = l and ar(]0,1]) c int(5).

2) 7/ie interior int(S) is a dense semigroup ideal.
3) S and int(S) are path connected.
4) S is locally path connected.
5) S is semi-locally simply connected.

Proof. 1) follows from [6, Theorem 2.1].
2) That int(S) is a semigroup ideal is a consequence of the fact that a product of an

arbitrary set and an open subset of a topological group is open. Let a be as in 1) and s eS.

Then sal - 1 is a sequence in int(S) which converges to 5. Hence 5 c int(S).
\n/

3) It is immediate from the definition that a Lie semigroup is connected. Therefore
the path connectedness of 5 follows from Corollary 2.7 in [6]. If a,b eint(S), then
U : = aS~l D bS~l is a neighbourhood of 1 in G. Therefore there exists s0 e int(S) D U.
Hence a,bes0S and s0S is path connected. Thus a and b are connected by a path
lying in int(S).

4) Let s eS and U be an open subset of G containing s. We have to show that UHS
contains a path connected neighbourhood of s with respect to 5. Let a:[0,1]—>S be as in
1) with the additional condition that JO;([0, 1]) c 5 fl (/ (reparametrization). Then
sa(l) e int(S) D U. Hence, there exists a contractible 1-neighbourhood W in G such that

U and (WjDS)a([0 , l ] )c5rH/ .

Let x,yeV:=(WsnS)a([0,l]). Then x=x'a(tx) and y=y'a(ty), where f,,fye[O,l]
and x', y' e (Ws D 5). To show that V is path-connected we have to show the existence of
a continuous path in V from x to y. First we observe that

ax:[tx,l]^S,t^x'a(t) and ay:[t,,i\->S,t»y'a(t)

are paths in V connecting x and y with jc'a'(l) and y'a(l) respectively. But x'a(l),
y'a(l)e Wsa(i), which is a contractible subset of V. Therefore jc'ar(l) and .y'ar(l) may
be connected by a path in V. Consequently V is a path-connected neighbourhood of s in 5
which is contained in SOU.

t For the proof of 4) the author thanks Prof. Dr. K. H. Hofmann.
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5) We keep the notation from 4). We show that every loop /3: [0, l]-» Ws n S is in 5
homotopic to the constant loop. Let

forre [o,|]

forre [l-|,l].
Then F: [0,1] x [0, l]-» S is continuous and satisfies F(0, t) = /3(f) and F(s, 0) = F(.s,1) =
/S(0). Moreover, y:/>->F(l,f) is homotopic to ar<>/3a'(l)<><* a n d Pa(X) l i e s i n t h e

contractible subset Wsa(l) of 5. Consequently

THEOREM 1.3. For every generating Lie semigroup ScG there exists a locally
compact topological monoid S and a mapping p: S—> S with the following properties.

1) 5 is path connected, locally path connected, and Jtt(S) = {1}.
2) p :S—»5 is a covering and a semigroup homomorphism.
3) int(S) : = p~'(int(5)) is a dense semigroup ideal in S.
4) If q :T—>S is a covering homomorphism of path connected topological monoids,

then there exists a unique covering homomorphism p:S-*T such that p(ls) = IT
and q°p = p.

Proof. 1) The existence of a universal covering p:S—>S follows from [13, p. 229]
because 5 is path connected, locally path connected, and semi-locally simply connected.

2) To define the structure of a monoid on 5, we choose l ep~ ' ( l ) . Let ms:S x S—*S
denote the multiplication of 5. Then ms°(p Xp):S x S—*S lifts uniquely to a continuous
mapping ms-S x S—*S such that mj(I, I) = I and p°ms = ms°(p xp) . This follows from
[13, p. 221] because S x S is path connected, locally path connected, and simply
connected [13, p. 203]. We show that 5 is a monoid with respect to this multiplication.
The mapping a:S-+S, s>-»is satisfies p ° a = p =p ° ids and <*(!) = ! . Now the unique-
ness of the lift [13, p. 221] implies that or = idg. Thus h = s for all seS. That i is a right
unit follows similarly. Since

p ° (ms x ids) °ms = p° (ids x »»s) ° "*s

and (11)1 = 1 = 1(11), the fact that S x S x 5 is path connected, locally path connected,
and simply connected [13, p. 203] implies that

(ms x ids) °ms = (id§ x ms) ° mj,

i.e. multiplication on 5 is associative [13, p. 221]. That p:S—>S is a homomorphism is a
consequence of

ms°(pxp)=p°ms.

3) As the inverse image of an ideal, the subset int(5): = p~1(int(5)) is a semigroup
ideal. Since p is a local homeomorphism and leint(S), it follows that ieint(S).
Therefore 5 e s int(5) c int(5) for all s e S.
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4) That there exists a continuous mapping p:S—>T such that q°p =p and p(i) = 1T

follows again from [13, p. 221] and Proposition 1.2. If mT: T X T—» T denotes multiplica-
tion in T, then

p ° ms(l, i) = mT°(pXp)(i,i)
and

q°mT°(pXp) = ms°(qXq)°(pXp)
= ms°(p xp)=p°ms
= q°p°ms.

Now the uniqueness assertion of [13, p. 221] for the lift of this mapping shows that

mT°(pXp)=p°ms,

i.e. p is a morphism of topological monoids.
We claim that p is surjective. Let t e T and ft: [0, l]-> T be a path with )8(0) = 1T and

)8(l) = f. Then there exists a path a:[0,l]^>S such that a-(O) = 1, p°ar(l) = q(t), and
p°a = q°fi. Hence /3(1) = f = p(ar(l)) [13, p. 221] and p is surjective. Now it follows
immediately from the definition that p is a covering.

REMARK 1.4. In [7] Kahn defines the notion of a covering semigroup (5, <p) of a
topological semigroup 5 as a pair of a topological semigroup 5 and a covering q>:S—>S.
He calls a semigroup 5 simply connected if for every covering semigroup (S, q>) of 5 the
mapping (p is a homeomorphism. Now Theorem 1.3.1 and [14, p. 84] show that our 5 is
simply connected in this sense. Therefore (S,p) is simply connected covering semigroup
of S in the sense of Kahn [7, p. 430]. Some of the results of Section 1, in particular
Corollary 1.8, can already be found in Kahn's paper. Since the proofs are rather short we
include them for the sake of completeness.

PROPOSITION 1.5. Let I be a dense path connected semigroup ideal in the path
connected topological monoid S. Suppose that there exists a path /3: [0, l]-» 5 such that

0(0) = 1 and /3(]0,l])c=/.

Then the inclusion i:I—>S induces an isomorphism

Proof. Let xoel be a fixed point which serves as base point for / and 5
simultaneously

1) i* is injective. Let yeQ(l,x0) such that i*[y] = [i»y] = 1 in n^S). Then there
exists a continuous mapping F:[0,1] x [0, l ] ->5 such that

F(0, t) = y(t),F(l, t)=x0, and F(s, 0) = F(s, 1) =x0

for M e [0,1]. We define G:[0,l] x [0 , l ] -*S by G(s,t) := F(s,t)P(s(l -s)t(l - / ) ) ,
where fi is a continuous curve [0, l]-» S such that /3(0) = 1 and /3(]0, lj) c /. Then G is a
deformation of y to the constant path in JC0 and imGc/because F(0, t),F(l, t)elfor all
t e [0,1]. Hence [y] = [x0] and i* is injective.

2) i« is surjective. Let [y] e jt^S) and y:[0, l]-» 5 with y(0) = y(l) =JC0. Then

F:[0,1] x [ 0 , 1 ] ^ 5 , (M)~/S(f(l -t)s)y(t)

deforms the path y into a path which lies entirely in /. Hence [y] e im(i*).
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COROLLARY 1.6. 1) The inclusions i: int(S)—> S, T: int(S)—»• 5 induce isomorphisms

) and i* : jr,(

Proof. The first statement follows from Propositions 1.2 and 1.5, and the second
statement is a consequence of 1) and Theorem 1.3 because JT,(S) = {1}.

LEMMA 1.7. (Hilton's Lemma for monoids) Let S be a topological monoid,
y: [0,1]—* S a continuous path with y(0) = 1, and y' e Q(5,1). Then

where yy'(t) = y(t)y'(t).

Proof. We set

•y'(2t) if te [0,1]

. ' ( 1 ) i f f e |

and

fl iff 6 [<U]
W) l y ( 2 f - l ) if* e [£,!]•

Then

r]T]' = r)'r) = t

Clearly [r\\ = [y] and [r}'] = [y']. Therefore

[Yf] = [W] = [r)'r,) = [y'y] = [V O r,] = [y' O y].

COROLLARY 1.8. Lef p : 5—» S be as above, then the following assertions hold:
1) Let y denote the lift of y with y(0) = 1. r/ten r/ie mapping [y]>-»y(l),

JT|(5)—>kerp w an isomorphism of groups.
2) ker/> c Z(5) := {5 e 5: (Vf e 5)5f = ts}.
3) ^i(5) is abelian.
4) ^ (S) actt/ree/y on S, i.e. d e n^S), s eS and ds = s implies that d = 1.
5) 5 is cancellative, i.e. ab = ac or ba = ca implies that b = c.

Proof, (cf. [7, pp. 432, 433]) 1) Let y, y' e Q(5,1). Using Lemma 1.7 we find that

Hence [y] •-» y(l) defines a monoid homomorphism. It follows from the construction of S
that it is bijective and therefore p~'(l) is a group isomorphic to JT^S).

2) Let dep~\\) and 5 e 5. Then there exists y' e Q(S, 1) with y'(l) = d and a path
y:[0,1]—»5 such that y(l) = 5. Then Lemma 1.7 shows that

Hence d is central in 5.
3) This is a consequence of 2).
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4) Suppose that ds = s, that 5 = y(l), and that d = a(l) with a e Q(5,1). Then

and therefore Hilton's Lemma implies that

This shows that
[or] = [aO(yOy)] = K«Oy)Oy] = [rOr] = [1],

i.e. d = l.
5) Suppose that ab = ac with a,b,c eS. Then

P(a)p(b) = p(ab) =p(ac) =p(a)p(c)

implies that p(b)=p(c). Therefore we find denx{S) such that c = bd. Hence ab =
a(bd) = (ab)d = d(ab) and 4) shows that d = i, i.e. b = c. The other implication follows
similarly.

PROPOSITION 1.9. The set p~l(H(S)) agrees with the unit group H(S) of S. The
mapping p \H^) defines a covering of Lie groups.

Proof. It is clear that p~1(H(S)), as the inverse image of a subsemigroup, is a closed
subsemigroup of 5 and that it contains H(S). Let x ep~i(H(S)). Then there exists s eS
such that p(x)s = 1. Let s =p(y). Then p(xy) =p(x)p(y) = 1 and therefore xy ep" ' ( l ) .
Since p~ (1) is a subgroup of 5 (Corollary 1.8), it is contained in H(S). Thus x e H(S)
because S\H(S) is a semigroup ideal.

Since p:S—*S is a covering, it is obvious that the restriction of p to H(S) is a
covering morphism of topological groups. Therefore H(S) is a Lie group and P\H(S) a
covering morphism of Lie groups.

EXAMPLE 1.10. We note that the semigroups S need not be generated, not even
topologically, by an arbitrary small neighbourhood of 1. To see this, let G,:=IR2 and
5 , : = R + ( l , - l ) x K + ( l , l ) . Set G:=R xR/Z and write p : G , ^ G , (x,y)*-»(x,y + Z)
for the quotient homomorphism. Then the image 5 =p(5,) of 5! in G is a generating Lie
semigroup with ;r,(S) = Z (Theorem 3.4 below). The universal covering 5 corresponds to
the subsemigroup Z + 5, of G,. The subsemigroup 5, is a closed neighbourhood of 1 in S
and H(S) = Z is not connected.

PROPOSITION 1.11. For X eL(S) we set yx:U
 + ̂ S, t<-+exp(tX). Then X>-+fx « 0

bijection from L(S)-»Hom([R + ,5). Define Exp:L(S)->5, ^ ^ ^ ( l ) . Then the
semigroup

5L:=(Exp(L(5)))

is a neighbourhood of 1 in S. It is the smallest subsemigroup topologically generated by
every neighbourhood of 1 in S. Moreover

Proof. The first statement follows from the fact that p : 5 - > 5 induces a local
isomorphism from a neighbourhood of I in 5 to a 1-neighbourhood in 5. Now the second
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statement follows from the assumption that S is a Lie semigroup, and the last assertion is
clear because ;r,(S)SL is a ^(SJ-saturated subset of 5 which is mapped surjectively onto
5.

LEMMA 1.12. Let q:G^>G denote the universal covering group of G, identify
with kerq and Ji\(S) with p~x(l). Then there exists a continuous homomorphism i:S—*G
such that q°i = i°p, J \n^s)= '*> ana> the image oflis the path-component of 1 in q~\S).

Proof. The only thing we have to prove is the existence of f. The rest follows from
the identification of nx(S) and Jti(G) with subgroups of 5 and G respectively. Let Sj be
the path-component of 1 in q~\S). It follows from Proposition 1.2 that q~\S) is locally
path connected because q is a local homeomorphism. Therefore 5L is an open closed
connected component of q~l(S). Now the universal property of S (Theorem 1.3.4)
implies the existence of a surjective semigroup covering ?:5—»S, such that q°l = p.

THEOREM 1.13. Let j:H(S)—>S be the inclusion mapping and

the induced homomorphism of the fundamental groups. Then

kery* = nx(H(S)) and imy, = H(S)0 n w,(5).

Proof. Let H(S) be tbe_universal covering group of H(S)- Then there exists a Lie
group homomorphism q:H(S)^H(S)0 such that p°q: H(S)—>H(S) is the universal
covering morphism of H(S). The homomorphism /* corresponds to the homomorphism

where nJJ-I^S)) is identified with the corresponding subgroup of H(S). Thus
H(S)0= tf(S)/kery'» implies that kery* = ^(//(S),,).

The image is clearly contained in D ' :=H(5) o n Jt,(S). But H(S) = H(S)0/D' and
therefore D' = imy».

The situation of Theorem 1.13 is illustrated in the following diagram.

! I 1
H(S) > H(S)a > H(S)

! I
s —* s

COROLLARY 1.14. The mapping /„: JT,(//(5))—* n^S) is
1) injective iff H(S) is simply connected.
2) surjective iff H(S) is connected.
Proof. In view of Theorem 1.13 we only have to show that the connectedness of

H(S) follows from the surjectivity of y*. If n{(S) = JT^S) D H(S)O then jr^S) c H(S)0 and
therefore, according to Proposition 1.9,
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EXAMPLE 1.15. 1) Let G:=SU(2)xR. Then L(G) = su(2) ®U = u(2). Then there
exists a pointed invariant wedge C c L(G) with non-empty interior (take the matrices
with spectrum on the positive imaginary axis in u(2)). Take X e su(2). Then exp IRA" is a
circle group in G because exp IRA' is a torus and the maximal tori in SU(2) are of
dimension 1. We set W :=UX + C and 5:= (exp W). Then S is a generating Lie
semigroup in G. That L(5) = W follows from [9, Proposition 3.11] because exp H(W) is a
closed subgroup of G, SU(2) is the unique maximal compact subgroup of G, and
su(2) DW = H(W).

According to Theorem 3.11 below, we know that G = SS~f = S~1S. Therefore 5 is
simply connected (Theorem 3.4). Hence 5 agrees with 5 and we have an example, where
H(S) is not simply connected. In view of Corollary 1.12 this is related to the fact that the
circle exp IRA' cannot be deformed to a constant loop in H(S), but if one pushes it far
enough into the interior of 5, for example into a coset of SU(2), the contraction becomes
possible.

2) That H(S) need not be connected follows from Example 1.10.
3) Let g be a Lie algebra which contains a pointed generating invariant cone C, G^

the simply connected Lie group with L(GC) = gc, and G := (expCc g) c Gc. Then the set
5 :=G exp(/C) is a generating Lie semigroup in Gc ([8, Cor. 3.6] or [2, Theorem 3.12]).
We claim that H(S) = G and that S = G Exp(/C).

Clearly G x C is a simply connected, locally path connected space. Therefore the
mapping q>:G xC—>S, (g,c)>-^ge\p(ic), which is a covering, lifts to a covering
q>:GxC—>S with po(p = (p. Since 5 is simply connected and locally path connected
(Proposition 1.2), the mapping <p is a homeomorphism. This proves that H(S) = G and
that S = G Exp(/C).

We will return to these examples later (Example 2.11), where we will see that the
semigroups 5 are not realizable as subsemigroups of groups.

2. The relation to the free group over 5. Let us return to the problem from the
beginning. Given a generating Lie semigroup ScG, we consider the inclusion mapping
i:S—*G and the associated homomorphism i*:jii(S)—>jii(G) with respect to the base
point 1. The main achievement of Section 1 is the realization of Jii(S) as a concrete
subgroup of the centre of the locally compact semigroup 5. In the following we identify
JTi(S) with this subgroup of 5, and similarly n^G) with the corresponding subgroup of G,
the universal covering group of G.

We start with the determination of the image of /„. To state the first main theorem,
we recall the following result from [5, VII.3.28]:

THEOREM 2.1. Let ScG be a generating Lie semigroup. Then there exists a covering
group p:G(S)—*G and a continuous homomorphism y5:5—*G(S) which has the
universal property of the free topological group on 5, i.e. for every continuous
homomorphism q>:S—*K, where K is a topological group, there exists a continuous
homomorphism q>: G(S)—* K such that <p = (p°Ys- The group G{S) is the largest covering
of G in which S lifts.

Our first main result will be the identification of nx{G{S)), as a subgroup of nx(G),
as the image of i*.
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First we need more detailed information about the situation of this theorem. We start
with a general lemma about subsemigroups of metrizable topological groups.

LEMMA 2.2. Let G be a metrizable topological group, S c.G a closed subsemigroup
with non-empty interior, and D c. Z{G) a discrete central subgroup. Then the following
assertions hold:

2) D, := D DSS~l = Dr\S~lS is a subgroup of D.
3) The semigroup 5,: = Z), S is relatively open and closed in the semigroup 52: = DS.
4) 52 = DS,.
5) dS, = d'S, iffded'D,.

Proof. 1) If g = s^s2
1 with sus2eS, then g = SIS0SQ1S2\ where soeint(S) is

arbitrary. Then s^sih s2s0 e int(5) and the assertion follows.
2) Set D, :=DnSS~ ' . It is clear that Dt = D^\ Let d = SiS2"'eDb where sus2eS.

Then 5, and s2 commute with d and therefore with each other. Hence d = s2
xS\ eS~lS.

By symmetry we see that S~'SnD equals Du too. If d'=s[s'2~
i with sI,.s2eS, then

dd' =SiS2
ld' = s1d's2

x e55~'. Thus D\cD, and consequently D, is a group.

3) Let g=X\m dnsn with dneD and s n e 5 . Suppose first that dn e Dl and g =

<is e DS = 52. We choose an element sQ e int(S). Then gsn = dss0 = lim dnsns0 and ss0 e
n—»°°

int(5). Therefore there exists noeN such that d~xdnfsnasae'm\.(S). Then d~'dnoeS5~'n
D = Dx. This shows that d e D{ and g e 5, = D,5. So we have proved that S, is relatively
closed in S2.

To show that 5, is also relatively open in 52 we assume that g = ds e DXS = 5^ By the
same argument as above we find n0 e N such that d~ldn e D, for n > «„. But this means
that eventually dn e Dx and dnsn € 5,. Thus Sj is also relatively open.

4) We only have to prove that SXD is closed. So let g = lim dnsn with dne D and
n—><x>

sneSt. Because G was supposed to be metrizable we may replace sn by d'^s'n, where
d'n e D\ and s'n e S. Hence we may assume that sne S. Then there exists m e N such that
dmsmegSS~l because 55"' is a 1-neighbourhood in G. Thus g edmsmSS~l cD55~' =
Dint(S)int(5)~'. Choose d s D and a,be'mt(S) such that g = dab~\ Then a =
lim d~ldnsnb e int(S) and there exists noe N such that d~ldnsnb e S whenever n £ % In

this case d~ldn e S(snb)~l c 55"1 and so dn e dDx. Now g = lim dnsn e dD^5 = dS[.
n—»oo

5) If d5, =dDlS = d'DiS = d'Su then d~'d'e55"'D, c55~ ' . Therefore d'erf

PROPOSITION 2.3. Lef S c.G be a generating Lie semigroup, p-.G^^G a covering
morphism with expG =/?°expCl, and 5, c G, f/ie L/e semigroup with L(5,) = L(5). T/ien
the following are equivalent:

1) S lifts into G,.
2) r/ie subsets dSx, d e ker /? are r/ie connected components of the closed semigroup

S2: = ker <p . 5 , .
3) S , V n D = {l}.
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Proof. 1) => 2): Suppose that y: 5 -» G, is a lift of 5 into C,. Then p ° y = ids and y(5)
is a locally compact subsemigroup of Gx with

expcX =p°y(expcAT) = p(expG| A') for all X e L(5).

Thus y(expc X) = expG| X for all I e L(5). This proves that y(S)cS,. On the other
hand it is clear that p{Sx)c.S. The mapping y°p agrees with the identity on the dense
subsemigroup (expG| L(5)) of S, and therefore y°p \Si = idSl. In particular y(5) = 5,.

This proves that S'[1S1 fl D = {1} because 5 = s'd with s, s' e 5, implies that p(s) =
p(s') and therefore s = s'. It is clear that the subsets dSi c 5 are connected. We prove that
they are pairwise disjoint. If this is false, we find d eker/A{l} such that d51n51=?t0.
Choose s,s' eSi with ds =s'. Then p(s) =p(s') which proves that s =s' because p \s is
injective. It follows from Lemma 2.2 that the sets dSt are open closed subsets of the
closed semigroup DSU

2)=>3): Assume that the sets dSu dekerp are the connected components of the
closed semigroup 5 .̂ If d e StS~[l Ci D, then dS, = 5X and therefore d = l.

3)4>1): Suppose that DnS ,Sr 1 = {l}- Lemma 2.2 implies that the subsets dS, of
£>S, are open and closed in the closed semigroup 52.

Now p(S2)= p(Si) = S because this is a closed subsemigroup of G which contains
expGL(5). We claim that p |5l is injective. To see this, let s,s' eSi with p(s)=p(s').
Then there exists d e kerp with s' = dseSln dSu i.e. d e S^ST1. Thus d = 1 and s =s'.
Therefore the restriction /? |^,:5j—*5 is a continuous locally homeomorphic bijection,
whence an isomorphism of topological semigroups. We conclude that (p \ St)~

l:S—*Sl is
a lift of 5 into G,.

REMARK 2.4. Note that the proof of Proposition 2.3 even shows that the condition
D fl S^f1 = {1} implies the existence of a closed subsemigroup 5 of G = GJD with
L(5) = L(5,) (cf. Theorem 1.13 in [11]).

So far this was not directly related to the fundamental group of 5 but now the largest
part of the work is done and we can put the pieces together.

PROPOSITION 2.5. Let Sj := (expGL(5)). Then

im /* = 515f1 D Jii(G) and keri# = ,

where (im i*)Si is the path-component ofl in ^- 1(5).

Proof. Let D 1 :=5i5f 1 n w,(G). According to Lemma 2.2 this is a subgroup of
JT\{G). Let l:S—*G be the homomorphism from Lemma 1.12.

If d = s1s2l eD, with 5!,52eint(5), then there exist continuous mappings
o-,/3:[0,l]^5 such that a(0) = l , a(l) = j , , 0(0) = s2, and jB(l) = l. Thus p(or(l)) =
p(si)=p(s2)=p(P(0)) and therefore (p°a)O(p°P) is a continuous path in S whose
homotopy class corresponds to d. Hence d e i{nx{S)).

If, conversely, d = X{x), then there exists y e Q(S, 1) such that d = [y]. According to
Proposition 1.2 and Corollary 1.6 we may assume that y([0,1]) c int(S) U {1} c
(expGL(5)). Therefore y([0, l])cDSv Using Lemma 2.2 we find that y([0,1]) c D^
because it is connected. Consequently y(l) e D,.

With Proposition 1.11 we conclude that

c i(
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According to Lemma 1.12 the semigroup I(S) agrees with the path-component of 1 in
q~l(S) which is open and closed in q~*(S) because q~1(S) is locally path connected
(Proposition 1.2). Therefore 5,Dj = l(S) and jr^SjD,) = kerf.

THEOREM 2.6. im i* = JTI(G(5)).

Proof. Let D ' c D : = i , ( G ) c G be a subgroup, G':=G/D', q'-.G^G' the
corresponding covering homomorphism, and S':=(expG. L(S)), 5] := (exp<jL(S)) the
Lie subsemigroups of G' and G generated by L(5).

Then

S'S-1 = int(S')int(S'yl cq'^q'^y1.
Therefore

S'S'-1 <~)q'(D) = q'(S{STl) r\q'(D) = q'(S1ST1 n D) = q'(im U).

Now Proposition 2.3 shows that 5 lifts to G' if and only if q'(im /*) = {1}, i.e. im i» c D'.
So the largest covering group of G into which S lifts is G/imi* and therefore

COROLLARY 2.7. The mapping i* w surjective if and only if G(S) = G, i.e. if S does
not lift into a non-trivial covering group of G.

COROLLARY 2.8. Let q':G'—*G be a covering of Lie groups, D':=ker</', S'^G'
the Lie semigroup with L(S') = L(5), and q":G^>G' the universal covering of G'. Then

Proof. This follows from the proof of Theorem 2.6.

COROLLARY 2.9. / / ;r,(S) = {1}, then G(S) = G, i.e. every simply connected gener-
ating Lie semigroup S c G lifts into the universal covering group G of G.

The following diagram represents graphically most of the situation of the preceding
discussion.

S * G • G

1' i I'
S » G{S) * G

EXAMPLE 2.10. Let G = Sl(2, U) and

*) e G:a, b, c, d>

Then 5 is a Lie semigroup and the mapping exp:L(5)-»5 is a homeomorphism
[5, V.4.24]. Therefore ^^5) = {1} and G(S) = Sl(2, U)~ (Corollary 2.9).

THEOREM 2.11. The homomorphism l:S-*G (Lemma 1.12) has the universal
property of the free group on S, i.e. for every homomorphism a:S^*T, where T is a
group, there exists a unique homomorphism a ^ G - * Tsuch that ax°l= a.
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Proof. Let T be a group and a:S—> T a homomorphism. Then

is a homomorphism into a group such that

ker )8 = ker a D ker ? c ker F.

Therefore ker /S is a discrete subgroup of JT,(S). Set 5, : = 5/ker /3 and S? := int(S)/ker j3.
Then 5, is a covering semigroup of 5 which can be algebraically embedded in a group.
Then G(S?), the free group on S°u admits the structure of a Lie group [5, VII.3.27], and
the corresponding universal homomorphism ax: S?-» G(S°) is an embedding onto an open
subsemigroup of G(S°). The homomorphism i is constant on ker /S. Therefore it induces
a homomorphism pt :5, —» G which has an extension to a homomorphism p j : G(S'j')—» G
with p[°al =px \SK We conclude that p! is a surjective covering of Lie groups, because it
is continuous on 5, and therefore everywhere, and />i(5?) is an open subset of G. But G is
simply connected and therefore p[ is an isomorphism. Hence p , |5o is injective and this
proves that ker/3 = kerr, i.e. ker f c ker a, whence a factors to a homomorphism
a':i(S)^> T with a'°l=a.

It remains to prove that a' permits a continuation to a homomorphism <X\.G—*T
with ax°l= a. We use [5, VII.3.28] and Proposition 2.5 to see that G(f(5)) = G. Then
the universal property of G(i(5)) provides a continuation of a' to the whole group G.

COROLLARY 2.12. Every quotient S/D with keri^^D cnx(S) is not algebraically
embeddable in a group.

EXAMPLE 2.13. We assume the notation from Example 1.15.3. If g is a semisimple
Lie algebra containing a pointed generating invariant cone C, then the centre of a
maximal compactly embedded subalgebra k is non-trivial [5, III.4.7]. Therefore the centre
of G is infinite and Z(G) c Gc is finite. We conclude that G ¥=G and therefore that 5 =£ S
(Example 1.15.3). Now Corollary 2.12 shows that no quotient S/D, i.e. no non-trivial
covering semigroup of 5 is isomorphic to a subsemigroup of a group. The simplest
example is the semigroup 5 = S1(2, R)exp(iC)cSl(2,C), where KX{S{ = I_ and S =
Sl(2, IR)~Exp(/C). Another interesting example is Howe's oscillator semigroup (cf. [4]).
Here 5 = Sp(n, R)exp(iC)cSp(«,C), the group Sp(«,C) is simply connected, and

(«, R)) = Z. Consequently nt(S) = Z. The Oscillator semigroup is the double cover
2 of 5. Its group of units is the well known metaplectic group Mp(n, R) which is a

double cover of the symplectic group H(S) = Sp(n, IR).

3. Groups with directed orders. In Section 2 we have considered the relations
between the free group G(5) over 5 and the set homomorphism /N,:^:1(5)^^1(G). Now
we consider a particular class of generating Lie semigroups, namely those for which
G = S~lS. We show that this condition implies that i* is an isomorphism. Note that this is
equivalent to S = q~l(S) c G, where q: G—> G is the universal covering of G (Proposition
2.5).

DEFINITION 3.1. Let 5 c G be a Lie semigroup. Then we define a left invariant
quasiorder ^s on G by
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LEMMA 3.2. The quasiorder < s is directed {filtered) iff G = 55"1 (G = S~'5).

Proof. If ^ 5 is directed and g e G , then there exists 5 € G such that 1 <s5 and g<55.
Hence seS and gesS"1 . If, conversely, G = SS~1 and g,g'eG, then g~'g'=Si.sJ1.
Thus g ,g ' ^ s g ' 5 2 = g5i. The proof for the second statement is similar.

Note that ^s is filtered iff <s-i is directed.

LEMMA 3.3. If S is generating, the quasiorder < 5 is filtered, and KcC is compact,
then K is bounded from below, i.e. there exists g0 e G such that K c g(tS.

n

Proof. It is clear that K c U g int(S). Let K c | J g, int(S). Then there exists gH e G
SEC ,= 1

s u c h t h a t g o — s g \ , - - - , g n - T h e r e f o r e g , i n t ( S ) c g 0 i n t ( S ) f o r i = l , . . . , n a n d c o n s e -
quently Kcgoint(S).

THEOREM 3.4. Let S c G be a generating Lie semigroup such that (G, <) is filtered
(directed). Then the homomorphism i*:nx(S)-* n{(G), which is induced by the inclusion
i:S-*G, is an isomorphism.

Proof. Let [y] e ^ (S ) , where y:[0,1]—>S is a continuous mapping with y(0) =
y(l) = l. Suppose that '*([y]) = D°y] = 1- Then there exists a continuous mapping
F:[0, l ]x [0 ,1 ]^ G such that

F(0,r) = y (0 ,F ( l , 0 = l and F(s, 0) = F(s, 1) = 1.

According to Lemma 3.3 there exists g0 e G such that /C : = F([0,1] x [0,1]) c g() int(S).
In particular we have that legoint(S), i.e. go1 e int(S). Hence there exists a continuous
path a-: [0,1]-* 5 such that a-(0) = land a(l) = go1 (Proposition 1.2). Now

in JTI(5) because (s, 0*-»go }F(s, t) is a deformation of gc7'y to the constant path go' in 5.
Now

defines a continuous deformation of the path ^ O S o V O * t o 7- Thus [y] = 1 in n{(S).
So we have proved that it is injective.

Let [y] e Jr,(G) and y: [0, l]-» G with y(0) = y(l) = 1. Then, by the same argument
as above, there exists a goe G such that y([0,1]) cgoint(5). By the same construction as
in the first part of the proof we find a path a: [0,1]—»S such that

If (G, %) is directed, the first part of the proof shows that the inclusion S~l^>
induces an isomorphism ^(S"1)—»ii\(G). Then we apply the inversion G^G, g<-^g
to see that the inclusion S—*G also induces an isomorphism ;r,(S)—» JT,(G).

COROLLARY 3.5. / / 5 c C is a Lie semigroup such that G = SS~l, then G(S) = G.

Proof. This follows from im i, = Jtx(G(S)) = n^G) (Theorem 2.6, Theorem 3.4).
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REMARK 3.6. Let S be an abstract subsemigroup of an abstract group G such that
G = SS~l. Then G(S) = G holds in this general context. The simple proof can be found in
[1, p. 36]. It does not depend on the results of this paper.

REMARK 3.7. Note that it was already clear from Proposition 2.3 that G(S) = SiS]"1

implies that G(S) = G (cf. [12, Proposition 3.6]). But that G = SS~l implies even that
G(S) = 5,5f' because S^f1 then is a subgroup of G(5) [12, Proposition 1.2].

COROLLARY 3.8. If G is a simply connected Lie group and J c C o generating Lie
semigroup such that < s is filtered or directed, then S is simply connected.

REMARK 3.9. We remark that this corollary is an answer to Problem PVII.2 in [5]
and also to Problem 3.1 in [3, p. 122]): Is a Lie subsemigroup of a simply connected Lie
group simply connected? This corollary gives a sufficient condition for simply connected-
ness. That a generating Lie semigroup S in a simply connected Lie group G is not always
simply connected can be seen with Example 2.13, where we have the Lie semigroup
Sl(2, R)exp(iC) in the simply connected group Sl(2, C).

REMARK 3.10. Note that <5 is in particular directed if 5 is invariant. For weaker
conditions on 5 which guarantee that < 5 is directed, see [10, Remark 11.12].

THEOREM 3.11. (Ruppert) If S is a generating Lie semigroup in the connected solvable
Lie group G, then G(S) = G.

Proof. This is Theorem 3.7 in [12].

THEOREM 3.12. (Ruppert) If S is a generating Lie semigroup in the connected Lie
group G with compact or nilpotent Lie algebra, then G = SS~X = S~1S, and in particular
G(S) = G.

Proof. The nilpotent case is [12, Proposition 1.5]. So we may assume that L(G) is
compact. Then the commutator group G' is a compact semisimple Lie group, and
Si:=SG'/G' is a generating Lie semigroup in the abelian Lie group GIG'. Now the
assertion follows from [12, Corollary 2.5] and the observation that G/G' = 5,5r1 = 5r '51.

THEOREM 3.13. Let S be a generating Lie semigroup in G and suppose that one of the
following conditions is satisfied:

1) G is nilpotent.
2) L(G) is a compact Lie algebra.
3) S is invariant in G.
Then /* :nx(S)—*n^{G) is an isomorphism.
4) If G is solvable then /* is surjective.

Proof. This follows from Remark 3.10, Theorem 3.11, Theorem 3.12, and Theorem
3.4.

EXAMPLE 3.14. We have seen in Example 2.10 that there exist Lie semigroups 5 c G
with G{S) =£ G and therefore homomorphisms a:S-*T, where T is a group, such that o-
has no extension to G. This does not occur when L(G) is a compact Lie algebra. So one
is led to the question whether this is true or not if T is a compact group. But even in this
particular case there exist counterexamples as the following construction, due to Karl H.
Hofmann, shows.
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Let 5 c G be a generating Lie semigroup with G(S)j=G (Example 2.10) and let
D c G(S) denote the kernel of the covering G(S)-*G. In Example 2.10 we have that
D = JTI(S1(2, IR)) = Z. Next we take a semidirect product G1 = Hx\K, where AT is a
compact group, 5X c Gx is a generating Lie semigroup, and there exists a homomorphism
f:D-* Z(G]) such that f(D) £ H. The simplest example for such a group is Gx = IR x S1,
the cylinder, where 5j = exp Wt for a generating pointed cone Wx c L(Gt) = IR © IR with
Wr fl ({0} @ IR) = {0}. Note that every non-trivial abelian group, in particular D, permits
a non-trivial homomorphism to 51.

Now we set G2:= G(S) x Gx and 52:= 5 x Su where 5 is identified with its lift in
G(5) (Theorem 2.1). We define a homomorphism

and set D':= {(d,f(d)):d e D}. Then JZ(D')^{1} because f(D) <£ H. We claim that
525J1 n D' = {1}. If (su s2)(s[, s^y1 e D', then ^ i " 1 e SS"1 n D = {1} (Proposition 2.3).
Hence Si = s{. Therefore

implies that ^ r 1 = / ( l ) = 1, i.e. s2 = s2 and the claim follows.
Now we set G3 := G2/D' and write q:G2—>G3 for the quotient homomorphism. Then

53 := q(S2) is a generating Lie semigroup G3 which lifts to S2 in G2 (Proposition 2.3). Let

Then ;r° a- :53^ K is a homomorphism of S3 into the compact group K and JT° or permits
no continuation to G3. In fact, if /3: G3—* K is such a continuation, then

) = JI° a°q(s2) = Jt(s2) Vs2 € 52.

Hence /3°q = JZ and x(ker q) = n(D') = {1}, a contradiction.
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