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CYCLIC GRAVITY WAVES IN DEEP WATER
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Abstract

Numerical evidence is presented for the existence of unsteady periodic gravity waves of
large height in deep water whose shape changes cyclically as they propagate. It is found
that, for a given wavelength and maximum wave height, cyclic waves with a range of
cyclic periods exist, with a steady wave of permanent shape being an extreme member of
the range. The method of solution, using Fourier transforms of the nonlinear surface
boundary conditions, determines the irrotational velocity field in the water and the water
surface displacement as functions of space and time, from which properties of the waves
are demonstrated. In particular, it is shown that cyclic waves are closer to the point of
wave breaking than are steady permanent waves of the same wave height and wavelength.

1. Introduction

A number of surprising properties have been discovered in recent years for steady
periodic gravity waves of large height. These properties, reviewed by Schwartz
and Fenton [4], are associated with different forms of non-uniqueness or multi-
valuedness in steady waves whose height is near the maximum. Attention is
directed here towards unsteady periodic gravity waves of large height, partly
because most naturally occurring water waves are unsteady, and partly to study
the approach to wave breaking,

This investigation began with the development of a numerical method for
obtaining periodic wave group solutions of permanent envelope in which neither
the small wave height nor the narrow wave-band assumptions were made.
Solutions were calculated as the envelope length to wavelength ratio was de-
creased step by step until the two lengths were equal. It was discovered then that
solutions with the two lengths equal still existed as the envelope velocity was
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increased step by step. This set of periodic wave group solutions, with the
envelope length equal to the wavelength, and with a range of envelope velocities,
is the subject of the present investigation.

It is simpler to interpret these waves in a frame of reference moving with the
wave velocity rather than with the envelope velocity. Relative to the wave
velocity, the shape of the wave train changes cyclically as it propagates, as though
it were a periodic wave train set into an oscillation about a permanent shape. If
this interpretation is accepted, it is reasonable also to accept that there should be
a range of periods of shape oscillation, dependent on the amplitude of the shape
oscillation, because the phenomenon is nonlinear. The range of periods of shape
oscillation in the wave interpretation is equivalent to a range of envelope
velocities in the envelope interpretation. Although the numerical calculations were
made relative to a frame of reference moving with the envelope velocity, they are
presented here in terms of the wave interpretation.

2. Theory

One-dimensional inviscid irrotational periodic gravity waves of wavelength 2/,
of maximum height a above the mean horizontal water surface, with an amplitude
ratio ¢ = a/I, are described by

bt ¢, =0 fory<en(x,t), (2.1a)
¢, 9, ~>0 asy— —oo, (2.1b)

M= b+ eng, =0 fory = en(x, 1), 2.10)
1+ +1e($2+¢2) =0 fory=en(x,1). (2.1d)

The dimensional variables are the surface displacement a7, the velocity potential

(g)%a¢, and Ix, ly, (I/g)'/%t. The two lengths scales a, [ have been chosen for

reasons of convenience in the calculations. The true wave height (crest above

trough) to wavelength ratios are stated in each of the examples presented below.
Symmetric permanent wave solutions exist for which

n=Ya,cos{k(x —ct)}, (2.2a)
k
¢ = X b’ sin{k(x — ct)}. (2.2b)
k
The nonlinear algebraic equations for the first 2N amplitudes a,, b,, k=
1,2,...,N, and the velocity ¢, obtained by substituting the terminated series for 7

and ¢ into equations (2.1c, d), may be solved numerically for a given value of € by
one of a number of methods. For instance, the 2N + 1 variables may be found by
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solving the 2 N boundary conditions (2.1c, d) at each of N equally spaced points
over a half-wavelength 0 < x — ¢ <, together with the kinematic equation
17 = 1 at x — ¢t = 0. This in essence is the method used by Rienecker and Fenton
[2]. Alternatively, the N points may be equally spaced in the y-direction over the
above half-wavelength, using successive approximations to achieve this spacing. A
third method is to calculate Fourier transforms of the boundary conditions (2.1c,
d) after the terminated series for 7 and ¢ have been substituted, to find
numerically a,, b,, k = 1,2,...,N, and c¢. This is the method used in the present

investigation.
Cyclic periodic wave solutions exist for which
=23 Ya,cos{k(x — ct) + jar}, (2.3a)
]k
¢ =2 Tbpe*sin{k(x — cr) + jat}. (2.3b)
j ok

The wave velocity is ¢ in the sense that, relative to a frame of reference moving
with velocity ¢, the wave shape oscillates with an angular frequency a about a
symmetric shape. The terminated series for n and ¢ are substituted into the
boundary conditions (2.1c, d) and double Fourier transforms with respect to
x — ct and ¢ are calculated numerically to find a finite number of amplitudes a ,,
b, and the frequency a for given values of ¢ and c.

Before explaining the method in more detail, the amplitudes a,, b; are
discussed as functions of j and k. Each j is regarded as defining a waveband
containing all harmonics with wavenumbers k = 0, and amplitudes a;,, b, for the
given value of j. The dominant waveband j = 0, containing amplitudes a,,, by,
k= 1,2,..., describes the time independent contribution to the cyclic wave in a
frame of reference moving with the wave velocity. The amplitude ay, is zero
because 1 has a zero mean, and the amplitude by, is zero since any other value in
the expansion (2.3b) is meaningless. The waveband j = 1 contains amplitudes a,,,

k=12,...,and b,k =0,1,2,..., with a;y being equal to zero because # has a
zero mean. The waveband j = -1 contains amplitudes a_, ,, Kk = 1,2,..., and
by k=1,2,..., since b_, , is included with b ,. Similarly, successive wavebands
j=2,3,..., and j = -2, -3,..., each contain amplitudes Ay, by k=1,2,...,

together with b, when j > 0. The trend of the magnitudes of the amplitudes is
towards zero as | j | and k increase, with | b;, | tending towards zero much faster in
general than |a; | .
The series (2.3a, b) are substituted now into the boundary conditions (2.1c, d)
with the abbreviations
¢ = cos{k(x — ct) + jar},

sy = sin{k(x — ct) + jat}.
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If the resulting expressions are denoted by F and G, then
F=3 3 {(ke = ja)a,s; — kb e, }
K
_8(2 zkajksjk) X (2 Ekbjkesknclk) =0, (2.42)
J k ]k
G= 2 E {ajkcjk — (ke _ja)bjkedmcjk}
Jj ok
1 2
(2 2 kb e™7e; ) + E—e( 2 Dkbye ekvsjk) =0, (2.4b)
Jj Kk

where e®*" = exp{ekZ 2 a,c,.}. The definition of ¢ is equivalent to

Pp=~q%pq"pq
H=3% Ya,=1 (2.4¢)
J ok

Equations (2.4a, b) may be transformed numerically to
F=3Y 3F, 5mm=0, (2.5a)
G=Y G, =0, (2.5b)

m n
from which

=G,,=0 forallmandn. (2.6)
The Fourier coefficients Fm,,, G,, are nonlinear functions of a,, b, and a.

Equations (2.6) may be solved numerically by Newton’s method, which for F is
described by

? % (%)mn(”jk_“}k) +§ % (';%)%)m(bjk_b]k)

+() (a-a)=FE,, @)

for all m and n. Each coefficient on the left of equation (2.7) is an m, n Fourier
coefficient of a partial derivative of equation (2.4a), and the prime denotes the
new value of each variable. The coefficients and the right of equation (2.7) are
evaluated at the old values of the variables. There is a similar set of equations
derived from G and a single equation derived from H. The complete set of linear
equations is solved numerically for the differences a;, — aj,, b, — by, a — ', the
new values of the variables are calculated, and the process is repeated until the
differences are less than some small arbitrary number (107'° in the examples

following).
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The range of solutions was explored as the amplitude ratio ¢ and the wave
velocity ¢ were changed step by step. In general, the method converged to the
cyclic wave solutions without difficulty, the only exception being for cyclic wave
solutions near to permanent wave solutions, when care had to be taken to keep
the solution converging on the right path. One advantage of the Fourier trans-
form method is that the Fourier coefficients £, ,, G,, may be found for wave-
bands m and wavenumbers n outside those included in the calculation. This
information then shows which wavebands and which wavenumbers should be
included in the calculation to improve the precision with which equations (2.5a, b)

are satisfied over the complete range of x and ¢.

3. Examples

A range of cyclic wave solutions exists for certain given values of the amplitude
ratio ¢ as the wave velocity c is changed. As ¢ was increased at given e, the cyclic
wave solutions tended towards permanent wave solutions with the amplitudes
tending towards zero outside the j = 0 waveband and a tending towards a finite
limit. Each range of solutions had a lower bound as ¢ was decreased at given &,
but it has not been possible to isolate the physical constraint which determines
this lower bound. No cyclic wave solutions could be found for ¢ less than 0.261,
when the wave height to wavelength ratio is 0.0737 as the cyclic wave passes
through its maximum height and the cyclic wave is almost a permanent wave. It
appears that cyclic waves on deep water exist only at wave height to wavelength
ratios which are more than one half of the maximum wave height to wavelength
ratio for steady waves of permanent shape on deep water.

Although the range of solutions could be explored with equations (2.5a, b)
satisfied to low precision with few harmonics, computer restrictions meant that
only a few examples could be calculated to high precision with many harmonics.
Four such examples are presented below, with the second, third and fourth
examples containing as many harmonics as could be manipulated in double
precision by a Prime 750 computer.

The profiles of the four cyclic wave solutions over one wavelength and one
cycle of shape, relative to a frame of reference moving with the wave velocity, are
sketched in Figure 1. Starting from the symmetric initial shape, the crest moves
backwards, then forwards through the centre, and finally back to the centre. It is
noted, from equation (2.3a), that

nW(x—ct,t) =027 — (x —ct),20/a — t). (3.1)

The symmetric shape in the middle of the cycle (r = 7 /a) is flatter than that at
the ends of cycle (¢ = 0,27 /a). The data for the examples are now summarised.
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Figure 1. The profiles of each of the cyclic waves over one wavelength and one cycle of shape, relative
to a frame of reference moving with the wave velocity. The times within the cycle are shown on the
right of the profiles. Each profile is drawn to the same horizontal and vertical scales.

Example 1. ¢ = 0.3, ¢ = 1.0373, a = 0.5273.

The wave height to wavelength ratio at maximum wave height in the cycle is
0.0757 with a particle velocity at the crest of 0.3749 at this instant. The final
solution contains 217 harmonics (435 variables) in 14 wavebands —3 < < 10,
the wavenumber range being 0 < k < 25. The maximum Fourier coefficient F, ,
G,,, not included has magnitude 5 X 10~". The maximum magnitude of F and G
over the 64 X 64 points in space and time used for the final calculation is
3.8 X 107 with a root mean square deviation from zero of 1.8 X 10-3. Those
harmonics with amplitudes greater than 1073 in magnitude are tabulated in the
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Appendix. (A computer listing of all harmonics calculated for this and the
following examples may be obtained from the author.)

Example 2. ¢ = 0.4, ¢ = 1.0404, a = 0.4904.

The wave height to wavelength ratio at maximum wave height in the cycle is
0.0953 with a particle velocity at the crest of 0.5637 at this instant. The final
solution contains 301 harmonics (603 variables) in 17 wavebands -3 <j < 13, the
wavenumber range being 0 < k < 31. The maximum Fourier coefficient F,,,, G,,,,
not included has magnitude 5.2 X 1073, The maximum magnitude of F and G
over the 64 X 64 points in space and time used for the final calculation is
3.6 X 1073 with a root mean square deviation from zero of 2.6 X 107,

Example 3. ¢ = 0.5, ¢ = 1.0672, « = 0.3972.

The wave height to wavelength ratio at maximum wave height in the cycle is
0.1215 with a particle velocity at the crest of 0.7188 at this instant. The final
solution contains 295 harmonics (591 variables) in 14 wavebands -3 < j < 10, the
wavenumber range being 0 < k < 34. The maximum Fourier coefficient F,,,,, G,,,
among those not included in the final calculation has magnitude 1.0 X 10~*, The
maximum magnitude of F and G over the 128 X 64 points in space and time is
3.05 X 1072 with a root mean square deviation from zero of 1.5 X 1073, (The
calculation of the final solution from the previous solution containing 39 fewer
harmonics took about 24 hours of central processor time on a Prime 750

computer.)

Example 4. ¢ = 0.55, ¢ = 1.0799, a = 0.3199.

The wave height to wavelength ratio at maximum wave height in the cycle is
0.1319 with a particle velocity at the crest of 0.8303 at this instant. The final
solution contains 303 harmonics (607 variables) in 13 wavebands -3 < j < 9, the
wavenumber range being 0 < k < 30. The maximum Fourier coefficient F,,,,, G,,,,
among those not included in the final calculation has magnitude 8.2 X 1074, The
maximum magnitude of F and G over the 64 X 64 points in space and time used
for the final calculation is 5.2 X 1072 with a root mean square deviation from zero
of 3.2 X 1073. The wave profiles and the properties described below were plotted
both for the final solution and for the previous solution containing 28 harmonics
less, when the only discernible difference was a slight sharpening of the crest in
the final solution. Even though it would be preferable to include more harmonics,
it does appear that the properties are accurate to within the precision with which
the figures are drawn.
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It is of interest to compare each of the cyclic wave examples with a correspond-
ing permanent wave example, in particular the permanent wave with the same
wave height and wavelength as the cyclic wave has at each end of a cycle
(t = 0,2x). Each permanent wave is intermediate in shape between the symmet-
ric profiles of the corresponding cyclic wave at the times 0, 7/a, sketched in
Figure 1. The wave velocities of the four permanent waves are 1.0287, 1.0459,
1.0751, 1.0876, each being greater than the wave velocity of the corresponding
cyclic wave. The particle velocities at the crests of the four permanent waves are
0.3068, 0.4198, 0.6237, 0.7509, each being less than the particle velocity of the
corresponding cyclic wave. The ratio of the maximum particle velocity at the
wave crest to the wave velocity for the cyclic waves is 0.365, 0.542, 0.674, 0.769
and for the permanent waves is 0.298, 0.401, 0.580, 0.690 respectively. Given the
non-uniform properties that have been found for permanent waves as the limiting
wave is approached, any extrapolation of properties from large wave heights to
the limiting wave height must be treated with caution. However, the trends in the
two sets of ratios above suggest that the ratio for cyclic waves may reach one
before the limiting wave is reached, after which breaking would occur as a spilling
of the wave crest.

The water motion associated with cyclic waves is examined now from both the
Eulerian and Lagrangian viewpoints. The horizontal velocity profile under a wave
crest at the beginning of each cycle is sketched in Figure 2 for each of the four
examples of cyclic waves. The mean shear across the wave crest, defined arbi-
trarily as (u(en) — u(0))/en is 0.396, 0.634, 0.713, 0.840 respectively for the four
examples. In contrast, the four permanent waves have mean shears of 0.274,
0.368, 0.550, 0.685 respectively. If the mean shear is accepted as a measure of the
approach to wave breaking, a comparison of the two sets of measurements
suggests that the unsteady nature of cyclic waves causes them to be closer to the
point of wave breaking than are steady permanent waves of the same height and
wavelength.

An alternative view of the water motion is provided by the paths followed by
marked fluid particles. The path of a particle which began at a wave crest at the
beginning of a cycle is sketched in Figure 3 for each of the cyclic wave examples,
and in Figure 4 for each of the permanent wave examples. The location of the
particle at later times is marked on each path, where 27 /c is the wave period and
27/a is the period of one cycle of wave shape. (A second order Runge-Kutta
method was used to calculate the particle paths, whose accuracy could be checked
by confirming that the particle remained on the water surface.) The main
difference between the pairs of particle paths is that the cyclic wave particle paths
do not have any spatial periodicity, since the shape period 27 /a is not a rational
multiple of the wave period 27 /¢. The net horizontal distance covered by a fluid
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particle between loops on its path is less for the cyclic waves than for the
permanent waves, the reason being that the wave height and hence fluid velocity
of the cyclic waves is less in the middle of a cycle (¢ = #/a) than at the ends
(t = 0,27 /a), while the height of the permanent waves remains constant. In the
first two examples of cyclic waves, the interval between the first and second loops
lies in the middle of a cycle, making it shorter than the interval between the

second and third loops which lies at the end of a cycle.
0.83
o5 072 0.55
0.4 056
0.37 °
0.3
or [oX ] oPr (] 3
Y Y Y Y
-% - -7 he

Figure 2. The horizontal velocity profile under a wave crest at the beginning of a cycle (¢ = 0), for
each cyclic wave example.
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4. Discussion

The cyclic waves investigated here are particular unsteady solutions of the
equations governing waves on deep water in irrotational invisicid two dimensional
motion. The chosen form of solution (equations 2.3) is a simple unsteady
generalisation of the form for single crested permanent waves (equations 2.2). It
can be expected that a suitable form of solution describing a two-wavelength
wave group can be found which is an unsteady generalisation of the form for
double-crested permanent waves. This in turn should be capable of further
generalisation to all multi-crested permanent waves of the type described by
Saffman [3].

Ocean waves of large height are modelled often by steady waves of permanent
form. It may be more realistic to model regular ocean waves of large height by
cyclic waves, since naturally occurring waves are never completely steady.
Longuet-Higgins [1] derived a number of properties of steady permanent waves
near the point of wave breaking, including the existence of a sharp shear at the

- free surface of a steady wave of maximum steepness. The trend in the cyclic wave
examples above, together with the large increase in high wavenumber harmonics
in the velocity field as the wave height approaches the limiting case, suggests that
a sharp shear may occur at the free surface of cyclic waves before maximum
steepness is reached. Although no difficulties can be forseen in extending the
range of cyclic wave solutions to larger wave heights with a larger computer, the
increase in the number of high harmonics may place limits on the Fourier
transform method of solution.

Appendix

Table of harmonics for Example 1 with magnitudes exceeding 10~3:
a,
j=-Lk=1to5

0.00079 0.00039 0.0016 0.00006 0.00002

j=0k=1t08

0.73393 0.8848 0.01653 0.00374 0.00095 0.00026 0.00008
0.00002

j=1Lk=0t010

0.00000 -0.01372 0.09244 0.03460 0.01157 0.00381 0.00126
0.00042 0.00014 0.00005 0.00002
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J=2k=1twll
0.00010 -0.00344 0.00793 0.00734 0.00414 0.11095 0.0085
0.00035 0.00014 0.00006 0.00002

j=3k=1t12

—0.00000 0.00009 -0.00071 0.00053 0.00119 0.00106 0.00069
9.00039 0.00020 0.00009 0.00004 0.00002

= A L =2 ¢~ 12
i N SRV (e ) )

j
-0.00000 0.00004 -0.00013 0.00003 0.00014 0.00021 0.00019
0.00014 0.00008 0.00005 0.00003 0.00001

j=5k=3t013

-0.00000 0.00003 -0.00005 -0.00004 0.00000 0.00003 0.00004
0.00004 0.00003 0.00002 0.00001

j=6k=1
~0.00001

bk

Jj=-Lk=1t05

0.00077 0.00015 0.00002 0.00000 0.00000
j=0k=1138

0.72784 0.00516 0.00034 0.00003 0.00000 0.00000 0.00000
0.00000

J=1Lk=0t010

-0.00005 -0.03296 0.06498 0.00200 0.00018 0.00002 0.00000
0.00000 0.00000 0.00000 0.00000

J=2k=1tll

0.00071 —0.00454 0.00499 0.00045 0.00006 0.00001 0.00000
0.00000 0.00000 0.00000 0.00000

j=3k=1t012

—-0.00001 0.00024 0.00068 0.00045 0.00008 0.00001 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

J=4k=21013

—0.00001 0.00007 -0.00010 0.00004 0.00001° 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

J=5k=31013

—0.00001 0.00004 0.00003 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

j=6k=1
~0.00000
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