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Abstract. We give a discrete analogue of the harmonic morphism between two
Riemannian manifolds. Roughly speaking, this is a mapping between two graphs
preserving local harmonic functions. We characterize harmonic morphisms in terms
of horizontal conformality. Many examples including coverings, non-complete
extended p-sums and collapsings are given. Introducing the horizontal and vertical
Laplacians, the Green kernel estimates are obtained for the harmonic morphism. As
applications, a general and sharp estimate of the Green kernel for an in®nite tree is
obtained.
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1. Introduction. The last decade has seen an increasing interest in Discrete
Potential Theory; that is, the study of Laplacians, harmonic functions, Green's func-
tions, etc, associated with transition operators on graphs. The basic features remain
the same as in the continuous set-up, but one now has the advantage that they are
not obscured by technicalities stemming from local geometry and computations on
manifolds. It is therefore legitimate to take objects from continuous Potential Theory
and carry them over to the discrete setting to shed new light on the original issue.

In this paper, we want to discretize concepts of harmonic morphisms between
Riemannian manifolds; i.e., mappings that preserve harmonicity locally to graphs.
For Riemannian manifolds, harmonic morphisms were introduced by Fugulede [3]
and Ishihara [4] in the late 1970's.

A graph G � V;E� � is a collection of the set V of vertices and the set E of edges
connecting two vertices. For two graphs, G1 � V1;E1� � and G2 � V2;E2� �, a map-
ping ' : V1! V2 is called a harmonic morphism if f � ' is harmonic at x 2 V1

whenever f is harmonic at ' x� � 2 V2.
The stochastic meaning of harmonic morphism is that it is a mapping sending

the Brownian motion on a Riemannian manifold into another such under a suitable
random time change, and our discrete harmonic morphism is a mapping sending the
random walk on a graph into that of another graph.

In Section 2, we characterize harmonic morphisms in terms of horizontal con-
formality, (cf. Theorem 2.5) which enables us to give several examples of harmonic
morphisms. As an application, we obtain the Green kernel comparison theorem (cf.
Theorem 3.3) which states that, for a harmonic morphism ' : G1! G2 between two
in®nite graphs Gi i � 1; 2� �,

g1 x; y� � � m y� �
mh y� � g2 ' x� �; ' y� �� �;
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for all x and y in V1. Here gi are Green's functions on Gi. This Green kernel com-
parison theorem enables us to estimate Green's functions of several in®nite graphs
explicitly in Section 4.

2. Harmonic Morphisms. In this section, we de®ne two di�erent notions, a
harmonic morphism and a horizontally conformal map between two graphs. We
shall prove the basic facts about harmonic morphisms and state the main theorem
(cf. Theorem 2.5).

It is well known (cf. [2], [7], [10], [11]) that the discrete Laplacian for a graph
G � V;E� � acting on the space C V� � of real valued functions on V can be de®ned.

Definition 2.1

�f x� � � f x� � ÿ 1

m x� �
X
z�x

f z� �; f 2 C V� �;

where z � x means that z is incident to x.

Let us give an orientation on each edge of G � V;E� �, once and for all. For
e 2 E; let o e� �, t e� � be the origin and terminal of e, respectively. For e 2 E; let �e be the
reverse of e; that is, the origin of �e is t e� � and the terminal of �e is o e� �. Let E be the set
of oriented edges of G. Then E � e; �e; e 2 Ef g. A 1-form of a graph G � V;E� � is a
function ! on E satisfying that

! e� � � ÿ! �e� �; 8e 2 E:

We denote by A1 G� � the space of all 1-forms on G. Also let A0 G� � � C V� �.
The di�erential d : A0 G� � ! A1 G� � by

df e� � � f t e� �� � ÿ f o e� �� �; f 2 A0 G� �;

and the inner products on A0 G� � and A1 G� � are de®ned by

f1; f2� � �
X
x2V

f1 x� �f2 x� �; f1; f2 2 A0 G� �;

'1; '2� � �
X
e2E

'1 e� �'2 e� �; '1; '2 2 A1 G� �:

The co-di�erential � : A1 G� � ! A0 G� � is de®ned by

m x� �� !� � x� � � ÿ
X

e2E;o e� ��x
! e� � �

X
e2E;t e� ��x

! e� � ÿ
X

e2E;o e� ��x
! e� �; x 2 V;

for all ! 2 A1 G� �. It is known that for all f 2 A0 G� � and ! 2 A1 G� �
� df� � x� � � �f x� � and df; !� � � f; �!� �:
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A function f 2 C V� � is said to be harmonic at x if

f x� � � 1

m x� �
X
z�x

f z� �;

which is equivalent to �f x� � � 0. The spaces of harmonic functions and harmonic
1-forms are given as

H0 G� � � f 2 A0 G� �; �f � 0
� 	

; H1 G� � � ! 2 A1 G� �; �! � 0
� 	

;

Also the q-th Betti numbers of a graph G � V;E� � are de®ned by
bq G� � � dimHq G� �; q � 0; 1� �, respectively.

Let us now de®ne a harmonic morphism and a horizontally conformal map. Let
Gi � Vi;Ei� �; i � 1; 2 be two graphs and ' : V1! V2 a mapping.

Definition 2.2. (1) ' is said to be a harmonic morphism of G1 to G2 if for any
y 2 V2 belonging to the image of ', say y � ' x� �; x 2 V1, any function f on V2 that is
harmonic at y, the composition f � ' is harmonic at x.

(2) ' is said to be horizontally conformal if the following two conditions hold.
(a) For all z; x 2 V1; ' z� � � ' x� � or ' z� � � ' x� � whenever z � x.
(b) For all y 2 V2 and x 2 'ÿ1 y� �;# z 2 'ÿ1 y0� �; z � x

� 	
is constant in

y0 2 V2 with y0 � y.

The conditions of horizontal conformality correspond to the surjectivity of the
di�erential on the non-vanishing set of the energy density, and the conformality on
the horizontal spaces. The following Figure 1 illustrates harmonic morphism and
horizontal conformality.

Figure 1
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Remark 2.3. The probabilistic meaning of a harmonic morphism is the follow-
ing. Let Zi be the random walks, in general, the Markov process corresponding to
graphs Gi � Vi;Ei� �; i � 1; 2: Let ' : V1! V2 be a mapping. Then ' is a harmonic
morphism of G1 to G2 if and only if Z1 projects to Z2 by ' under a suitable random
time change on the set of non-negative integers.

Definition 2.4. Let ' : V1! V2 be a harmonic morphism of G1 to G2. For
x 2 V1, let us de®ne the vertical degree mv x� � and the horizontal degree mh x� � by

mv x� � � # z 2 V1; z 2 'ÿ1 ' x� �� � and z � x
� 	

;

mh x� � � # z 2 V1; z 62 'ÿ1 ' x� �� � and z � x
� 	

:

Clearly we have

m x� � � mv x� � �mh x� �:

Our main result can be stated as follows.

Theorem 2.5. Let Gi � Vi;Ei� �; i � 1; 2 be two graphs and ' : V1! V2 an onto
mapping. Then ' is a harmonic morphism if and only if ' is horizontally conformal.

To prove Theorem 2.5, for two graphs Gi � Vi;Ei� �; i � 1; 2 let di x; y� � be the
graph distance of Gi and mi x� � the degree of x 2 Vi for Gi. We also denote by Ni x� �,
the set of neighbors of x and x itself, where x 2 Vi.

Lemma 2.6. Let ' : V1! V2 be a harmonic morphism of G1 to G2. Then, for all
x 2 V1 and y 2 N x� �; d2 ' x� �; ' y� �� � � 1. Therefore ' is distance decreasing i.e.,

d2 ' x� �; ' y� �� � � d1 x; y� �;

for all x, y 2 V1.

Proof. Let v � ' x� �. Consider a function f on V2 de®ned by

f w� � � 1 w 2 N2 v� �;
0 otherwise.

n
Then, by de®nition, f is harmonic at v. Since ' is a harmonic morphism, f � ' is
harmonic at x. Therefore, we have

1 � f � ' x� � � 1

m1 x� �
X
y�x

f � ' y� � � 1

m1 x� �# y 2 V1; y � x; ' y� � 2 N2 v� �� 	
;

which implies that m1 x� � � # y 2 V1; y � x; ' y� � 2 N v� �� 	
: It follows that

' y� � 2 N2 v� � for all y 2 V1 with y � x.
To see the last statement, assume d x; x0� � � n, for x; x0 2 V1 and take a shortest

path c � z1; z2 � � � ; zn� � z1 � x and zn � x0� � connecting x and x0 with length
L c� � � n. Then ' c� � � ' z1� �; ' z2� �; � � � ; ' zn� �� � is a path in G2 connecting ' x� � and
' y� �, by virtue of the ®rst statement. Therefore, we have
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d x; x0� � � L c� � � L ' c� �� � � d ' x� �; ' x0� �� �:
&

Lemma 2.7. Let ' : V1 ! V2 be a harmonic morphism of G1 to G2. Let
v � ' x� �; x 2 V1 and w 2 V2 with w 2 N v� �. Then,

# y 2 V1; y � x; ' y� � � w
� 	 � mv x� �; if w � v;

mh x� �
m2 v� � ; if w � v;

8<:
which depends only on x if w � v.

Proof. For w 2 N v� �, we denote by

kw x� � � # y 2 V1; y � x; ' y� � � w
� 	

:

Then by de®nition we have kv x� � � mv x� �. If w � v, de®ne a function fw on V2 by

fw w� � � 1;

fw v� � � 1

m2 v� � ;
fw � 0 otherwise:

8>><>>:
Since fw is harmonic at v; fw � ' is harmonic at x, by de®nition. Therefore, we have

m1 x� �
m2 v� � � m1 x� �fw v� � � m1 x� �fw � ' x� �

�
X
y�x

fw � ' y� �

�
X

y�x;' y� ��v
fw � ' y� � �

X
y�x;' y� ��w

fw � ' y� �

� mv x� �
m2 v� � � kw x� �;

which implies the desired result. &

By Lemmas 2.6 and 2.7, we have immediately the following result.

Proposition 2.8. Let ' : V1! V2 be a harmonic morphism of G1 to G2 and
y � ' x� � 2 V2 with x 2 V1. Then we have ' N x� �� � � ' x� �� 	

or N ' x� �� �; and
m x� � � mh x� � � m y� �: �2:9�

Remark 2.10. The meaning of (2.9) in Proposition 2.8 is the following. If we
de®ne the curvature at x 2 V of a graph G � V;E� � by KG x� � � 2ÿm�x�, then

KG1
x� � � KG2

' x� �� �; for all x 2 V1:
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It is known that the analogy holds for a harmonic morphism between two
Riemannian manifolds.

Lemma 2.11. Assume that ' is horizontally conformal; i.e., (a) for all x 2 V1 and
y 2 V1 with y � x; ' y� � 2 N ' x� �� �; (b) for all x 2 V1 and w 2 V2 with w � ' x� �,
kw x� � � # y 2 V1; y � x; ' y� � � w

� 	
depends only on x. Then ' is a harmonic

morphism.

Proof. For any x 2 V1; kw x� � � # y 2 V1; y � x; ' y� � � w
� 	

depends only on x,
and so we denote k x� � � kw x� �: Put v � ' x� �. By (a), we have

m1 x� � � mv x� � �
X

w2V2;w�v
# y 2 V1; y � x; ' x� � � w
� 	

� mv x� � �m2 v� �k x� �:
�2:12�

Now assume that ' is harmonic at v � ' x� �; i.e.

m2 v� �f v� � �
X
w�v

f w� �:

Then, we haveX
y�x

f ' y� �� � �
X

y�x;' y� ��v
f ' y� �� � �

X
y�x;' y� ��w;w�v

f ' y� �� �

� mv x� �f v� � �
X
w�v

# y 2 V1; y � x; ' y� � � w
� 	

f w� �

� mv x� �f v� � � k x� �
X
w�v

f w� �

� mv x� � � k x� �m2 v� �� �f v� �
� m1 x� �f v� �
� m1 x� �f � ' x� �;

which implies that f � ' is harmonic at x. &

On combining Lemmas 2.6, 2.7 and 2.11, we obtain Theorem 2.5. &

We give here applications of Theorem 2.5.
Let ' : V1! V2 be a harmonic morphism of G1 to G2. By Theorem 2.5, it is

equivalent that ' is horizontally conformal. By the condition (a) of horizontal con-
formality, for each edge e 2 E1 of G1, the map ' sends it to an edge in E2 or one
vertex of V2. It is easy to see that the condition (b) is equivalent to the following
condition.

(b0) For each x 2 V1; y � ' x� � 2 V2 and each e0 2 E2 incident to y,
# e 2 E1;' e� � � e0; e is incident to x
� 	

depends only on x, but not on e0 2 E2 inci-
dent to x. Note that this number is equal to k x� �; x 2 V1.

Lemma 2.12. Let ' : V1 ! V2 be a harmonic morphism of G1 to G2. Then for
each e0 2 E2;# e 2 E1; ' e� � � e0

� 	
is independent of e0.
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Proof. Assume that two edges e0 and e00 in E2 are incident to a common vertex
y 2 V2. Due to the condition (b0), for each x 2 'ÿ1 y� � we have

# e 2 E1;' e� � � e0; incident to x
� 	 � # ~e 2 E1; ' ~e� � � e00; incident to x

� 	
:

Therefore,

# e 2 E1; ' e� � � e0
� 	 � X

x2'ÿ1 y� �
# e 2 E1; ' e� � � e0; incident to x
� 	

�
X

x2'ÿ1 y� �
# ~e 2 E1; ' ~e� � � e00; incident to x
� 	

� # ~e 2 E1;' ~e� � � e00
� 	

:

We assume that G is connected and so, given two edges e0 and e00 in E2, there exists
edges e0i in E2 i � 1; 2; � � � ; n� 1� � with e0i � e0 and e0n�1 � e00 such that each two e0i
and e0i�1 are contiguous by a common edge in V2. Applying the above argument to e0i
and e0i�1 in succession, we obtain Lemma 2.12. &

We have the following result.

Theorem 2.13. Let ' : V1 ! V2 be a harmonic morphism of G1 to G2. Then the
pull-back by ' induces an injection '� : H1 G2� � ! H1 G1� �, where H1�Gi� is the space
of harmonic 1-forms of graphs Gi � Vi;Ei� �.

Proof. We ®rst have to check that the pull-back can induce the homomorphism
of H1 G2� � into H1 G1� �. Due to the condition (b0), # e 2f E1; ' e� � � e0g depends only
on x, but not in e0 2 E2 (cf. Lemma 2.12). We denote by kx this number. Then for
! 2 A1 G2� �, i.e. a function on E2 satisfying ! e� � � ÿ! �e� �, we haveX

e2E1; o e� ��x
! ' e� �� � �

X
e02E2; o e0� ��y

X
e2E1; ' e� ��e0

! ' e� �� �

� kx
X

e02E2; o e0� ��y
! e0� �

 !
:

Therefore, if ! satis®es �! � 0; for x 2 V1 and y � ' x� � 2 V2;

m x� �� '�!� � x� � � ÿ
X

e2E1; o e� ��x
'�! e� �

� ÿ
X

e2E1; o e� ��x
! ' e� �� �

� ÿkx
X

e02E2; o e0� ��y
! e0� �

 !

� kxm y� ��! y� � � 0;
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which implies that ' induces a homomorphism '� : H1 G2� � ! H1 G1� �. To prove that
it is an injection, we assume '�! e� � � 0, for all e 2 E1, and so we have ! ' e� �� � � 0
for all e 2 E1. But since ' : E1! E2 is a surjection, we have ! e0� � � 0 for all e0 2 E2;
that is, ! � 0. &

Corollary 2.14. Let ' : V1 ! V2 be a harmonic morphism. Then the ®rst Betti
numbers and Euler numbers satisfy b1 G1� � � b1 G2� � and � G2� � � � G1� �:

Proof. It is clear due to Theorem 2.13; indeed, we have

b1 G1� � � dimH1 G1� � � dimH1 G2� � � b1 G2� �;

and � G2� � � � G1� �, since b1 Gi� � � 1ÿ � Gi� �: &

3. The Laplacians and Green Kernels of HarmonicMorphisms. We ®rst de®ne the
vertical and horizontal Laplacians for harmonic morphisms and apply them to
estimate Green kernels.

Definition 3.1. Let ' : V1! V2 be a harmonic morphism of G1 to G2.
(1) The vertical Laplacian is de®ned by

�vf x� � � f x� � ÿ 1

mv x� �
X
z�x

z2'ÿ1 ' x� �� �

f z� �;

where mv x� � is the vertical degree of x (cf. De®nition 2.4).
(2) The horizontal Laplacian is de®ned also by

�h f x� � � f x� � ÿ 1

mh x� �
X
z�x

z 62'ÿ1 ' x� �� �

f z� �;

where mh x� � is the horizontal degree of x (cf. De®nition 2.4).

Proposition 3.2. (1) � � mv

m �v � mh

m �h holds.
(2) Moreover, for f 2 C V2� �, we have

�v f � '� � � 0; �h f � '� � � �f� � � '; � f � '� � � mh

m
�f� � � ':

Proof. Since m x� � � mv x� � �mh x� �, for each x 2 V1; and

z 2 V1; z � xf g � z 2 'ÿ1 ' x� �� �; z � x
� 	[

z 62 'ÿ1 ' x� �� �; z � x
� 	

;

we have (1) immediately. For (2), note that for z 2 'ÿ1 ' x� �� � with z � x; f � ' z� � �
f � ' x� �, and by the de®nition of mv x� �, we have �v f � '� � x� � � 0, for all x 2 V1: For
�h f � '� �; we have

326 HAJIME URAKAWA

https://doi.org/10.1017/S0017089500030019 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030019


�h f � '� � x� � � f � ' x� � ÿ 1

mh x� �
X
z�x

z 62'ÿ1 ' x� �� �

f � ' z� �

� f � ' x� � ÿ 1

mh�x�
X

y0�' x� �

X
z�x

z2'ÿ1 y0� �

f � ' z� �:

But here, since f � ' z� � � f � ' y0� � for z 2 'ÿ1 y0� �, we haveX
z�x

z2'ÿ1 y0� �

f � ' z� � � # z 2 'ÿ1 y0� �; z � x
� 	

f � ' y0� �

� mh x� �
m ' x� �� � f � ' y0� �:

Hence, we have �h f � '� � x� � � �f� � ' x� �� �. It is clear that �v f � '� � � 0, and so

� f � '� � x� � � mh x� �
m x� � �h f � '� � x� � � mh x� �

m x� � �f� � ' x� �� �:

Proposition 3.2 is proved. &

Now let us recall the heat kernel and Green kernel for an in®nite graph
G � V;E� �. Let p x; y� �; x; y 2 V, be the one-step transition probability of a random
walk on G from x to y, that is,

p x; y� � �
1

m x� � y � x,

0 otherwise.

8<:
Let us de®ne inductively

pn�1 x; y� � �
X
z2V

p x; z� �pn z; y� �;

where p0 x; y� � is de®ned by

p0 x; y� � � 1 x � y;
0 x 6� y:

�
We call pn x; y� � the heat kernel and the Green kernel G x; y� � is de®ned by

G x; y� � �
X1
n�0

pn x; y� �;

for x; y 2 V. The graph is said to be transient if G x; y� � <1, for all x; y 2 V,
and recurrent otherwise. Note that if the graph is transient, the Green kernel
satis®es
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�xG x; y� � � p0 x; y� �:

Our next main result is as follows.

Theorem 3.3. Let Gi � Vi;Ei�; i � 1; 2� , be two in®nite graphs, and Gi, their
Green kernels. Let ' : V1 ! V2 be a harmonic morphism of G1 to G2. Then we have

G1 x; y� � � m y� �
mh y� �G2 ' x� �; ' y� �� �;

for all x and y 2 V1.

To prove this theorem, we need the maximum principle.

Lemma 3.4. Let D be a ®nite connected subset in a graph G � V;E� � and f, a
function on D [ @D satisfying

�f � 0 on D; and f � 0 on @D:

Then f � 0 on D [ @D.

For a proof, see [2] or [9, Lemma 1.3].

Lemma 3.5. Let G � V;E� � be an in®nite graph and G x; y� � be its Green kernel.
For a connected ®nite subset D with boundary @D in V, let us denote by GD x; y� � its
Green kernel; (see [9, De®nition 4.3]). Fix a vertex p 2 V and let Br p� � �
x 2 V; d x; p� � < r
� 	

; for all r > 0. Then we have

lim
r!1GBr p� � x; y� � � G x; y� �;

for every x and y 2 V.
For a proof, see [9, Theorem 4.6].

Proof of Theorem 3.3. For p 2 V1 and r > 0, let us de®ne

B1
r p� � � x 2 V1; d x; p� � < r

� 	
; B2

r ' p� �� � � y 2 V2; d y; ' p� �� � < r
� 	

:

By Lemma 2.6, we have

' B1
r p� �ÿ � � B2

r ' p� �� �:

Denote by G1;r x; y� � � G1B1
r p� � x; y� �; x; y 2 V1; and G2;r z;w� � � G2B2

r ' p� �� � z;w� �, z;w 2
V2, the Green kernel for B1

r p� � and B2
r ' p� �� �; respectively.

Now let us consider for a ®xed y 2 B1
r p� � the function u on B1

r p� �, de®ned by

u x� � � ÿG1;r x; y� � � m y� �
mh y� �G2;r ' x� �; ' y� �� �:

Then we have the following result.
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Lemma 3.6. (1) The function u on B1
r p� � satis®es

u x� � � 0; for all x 2 @B1
r p� �:

(2) Moreover, we have

�u x� � � 0; for all x 2 B1
r p� �:

Proof. For (1), we have G1;r x; y� � � 0 for all x 2 @B1
r p� � by de®nition (cf. [9,

Proposition 4.4]). Therefore, u x� � � 0 because of positivity of the Green kernels. For
(2), let x 2 @B1

r p� �. Making use of Proposition 3.2, we obtain

�1u x� � � ÿ�1;xG1;r x; y� � � m y� �
mh y� ��1;xG2;r ' x� �; ' y� �� �;

� ÿ�1;xG1;r x; y� � � m y� �
mh�y�

mh x� �
m x� � �2G2;r

ÿ �
' x� �; ' y� �� �:

Therefore, if x 6� y, we have,

�1u x� � �
0� 0 � 0; (if ' x� � 6� ' y� ��;

0� m y� �
mh y� �

mh x� �
m x� � > 0; (if ' x� � � ' y� ��.

8<:
If x � y, we have

�1u x� � � ÿ1� m x� �
mh x� �

mh x� �
m x� � � 0:

Therefore, we obtain �1u x� � � 0 for x 2 B1
r p� �: &

Proof of Theorem 3.3 (continued). By the maximum principle (Lemma 3.4), we
obtain

u � 0; on B1
r p� � [ @B1

r p� �:

Therefore, we obtain that, for x; y 2 B1
r p� � [ @B1

r p� �;

G1;r x; y� � � m y� �
mh y� �G2;r ' x� �; ' y� �� �:

Letting r!1, we obtain that for x; y 2 V1;

G1 x; y� � � m y� �
mh y� �G2 ' x� �; ' y� �� �:

We have proved Theorem 3.3. &

Remark 3.7. It is not true, in general, that the heat kernels pni x; y� � for the
harmonic morphism ' : V1! V2 of G1 to G2 satisfy
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pn1 x; y� � � m y� �
mh y� � p

n
2 ' x� �; ' y� �� �;

for each n � 1; 2 � � � and x; y 2 V1:
Indeed, if we consider the example given by Figure 2, we have p11 x; y0� � � 1

4
and

p12 ' x� �; ' y0� �� � � 0: However, Theorem 3.3 shows that

G1 x; y0� � � 4

3
G2 ' x� �; ' y0� �� �; G1 x; y� � � G2 ' x� �; ' y� �� �; y 6� y0� �:

4. Examples and applications. In this section, we give examples of harmonic
morphisms and show applications in estimates of the Green kernels for in®nite trees.

4.1. Coverings. A mapping ' : V1! V2 is a covering of G1 V1;E1� � to
G2 � V2;E2� � if ' : V1! V2 is surjective, m x� � � m ' x� �� � for all x 2 V1 and for each
x and z 2 V1;� x is equivalent to ' z� � � ' x� �. A covering is locally a distance pre-
serving mapping of V1 to V2. By de®nition, a covering is a harmonic morphism.

4.2 NEPS. Let us recall the de®nition of non-complete extended p-sum, we say
brie¯y, NEPS (cf. [7]): Let G1; � � � ;Gn be n graphs. Take a non-empty subset B in the
n-product space 0; 1f g � � � � � 0; 1f g satisfying that B does not include 0; � � � ; 0� �. Let
H be a graph whose set of vertices, V H� � is the product space
V H� � � V G1� � � � � � � V Gn� �. H is said to be NEPS with basis B if the adjacency
relation is de®ned as follows. For u1; � � � ; un� � and v1; � � � ; vn� � 2 V H� �, u1; � � � ; un� � �
v1; � � � ; vn� � if and only if there exists an element b � b1; � � � ; bn� � 2 B such that

ui � vi if bi � 0,
ui � vi inGi if bi � 1:

�

Figure 2
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Then we obtain the following result.

Proposition 4.1. Let H be NEPS of G1; � � � ;Gn with basis B. For each
i � 1; � � � ; n, the i-th projection of H onto Gi, de®ned by 'i ui; � � � ; un� � � ui, is a har-
monic morphism.

Proof. We only have to see horizontal conformality of 'i. It is clear that the
condition (a) is satis®ed. To prove (b) observe that for each ui 2 V Gi� �,

'ÿ1 ui� � � w1; � � � ;wiÿ1; ui;wi�1; � � � ;wn� �;wj 2 V Gj

ÿ �
; j 6� i

� 	
:

Let us take an element x � z01; � � � ; z0iÿ1; ui; z0i�1; � � � ; z0n
ÿ � 2 'ÿ1 ui� � and take vi 2 Gi

with vi � ui. The set z 2 'ÿ1 vi� �; z � x
� 	

coincides withn
z � w1; � � � ;wiÿ1; vi;wi�1; � � �wn� �; z � x

o
�
n
w1; � � � ;wiÿ1; vi;wi�1; � � � ;wn� �; 9 b1; � � � ; bn� � 2 B; bi � 1;

wj � z0j bj � 0; j 6� i
ÿ �

;wj � z0j bj � 1; j 6� i
ÿ �o

:

Let B0 be a subset of the nÿ 1� �-product 0; 1f g � � � � � 0; 1f g de®ned by

B0 � b1; � � � ; biÿ1; bi�1; � � � ; bn� �; b1; � � � ; biÿ1; 1; bi�1; � � � ; bn� � 2 B
� 	

:

Then # z 2 'ÿ1 vi� �; z � x
� 	

coincides with

# w1: � � � ;wiÿ1;wi�1; � � � ;wn� �; 9b0 2 B0;wj � z0j b0j � 0
� �

;wj � z0j b0j � 1
� �n o

;

which does not depend on vi. We have (b).

4.3. Collapsing. We give another type of harmonic morphism, which has no
analogy in Riemannian geometry. Let G � V;E� � be a graph, and V0 be a subset of
V satisfying the condition that V0 is connected to Vÿ V0 through only one vertex
x0 2 V0. Let y1; � � � ; yn

� 	
be the set of vertices in Vÿ V0 being connected to x0. The

collapsing is to produce a new graph G2 � V2;E2� � by shrinking V0 into one point,
say, p, and connecting all yi to p. Let us de®ne the collapsing of G to G2; ' : V! V2

by

' x� � � x x 2 Vÿ V0;
p x 2 V0.

�
Then we have the following result.

Proposition 4.2. The collapsing ' : V! V2 of G to G2 is a harmonic morphism.

Proof. We only have to prove for ' the condition (b) of the horizontal
conformality. First, let y 2 V2 with y 6� yr, y 6� p. Then 'ÿ1 y� � � y

� 	
. Since
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y0; y0 � y
� 	

does not intersect V0, we have z 2 'ÿ1 y0� �; z � x
� 	 � y0

� 	
. Thus

# z 2 'ÿ1 y0� �; z � x
� 	 � 1, which is independent on y0 2 V2 with y0 � y.

Second, let y � yi for some i � 1; � � � ; n. Then 'ÿ1 y� � � yi
� �. Let y0 2 V2 with

y0 � y. Then y0 2 Vÿ V0 or y0 � p. In the case y0 2 Vÿ V0, we have
z 2 'ÿ1 y0� �; z � x
� 	 � y0

� 	
, which implies that # z 2 'ÿ1 y0� �; z � x

� 	 � 1. In the case
y0 � p, we have z 2 'ÿ1 y0� �; z � x

� 	 � z 2 'ÿ1 p� �; z � yi
� 	 � x0f g. We have

# z 2 'ÿ1 y0� �; z � x
� 	 � 1, which does not depend on a choice of y0 2 V2 with y0 � y

in this case.
Third, let y � p. Then 'ÿ1 y� � � p

� 	 [ x 2 V0; x 6� p
� 	

. In the case x 2 V0 with
x 6� p; y0 2 V2; y

0 � p
� 	 � yi

� 	
. Then, z 2 'ÿ1 y0� �; z � x

� 	 � yi; yi � x
� 	

is an empty
set, so that # z 2 'ÿ1 y0� �; z � x

� 	 � 0 is independent of the choice of y0. In the case
x � p; y0 2 V2; y

0 � p
� 	 � yi; i � 1; � � � ; n� 	

, so that for y0 � yi; z 2 'ÿ1 y0� �; z � x
� 	 �

yi; yi � p
� 	 � yi

� 	
. Hence # z 2 'ÿ1 y0� �; z � x

� 	 � 1, which in independent of the
choice of y0 with y0 � p. We have established (b). &

Applying Theorem 3.3, we obtain the next result.

Theorem 4.3. Let G � V;E� � be an in®nite tree. Assume that W is a subset of V
satisfying

(a) VÿW is connected and an in®nite set, and
(b) m x� � � k > 3, for all x 2 VÿW.
Then we have

G x; y� � � kÿ 2

kÿ 3

1

kÿ 2

� �d2 ' x� �;' y� �� �
�x; y 2 V�

where we take V0 �W [ x0f g, x0 is a unique vertex in VÿW connected to some vertex
in W, and ' : V! V2 is a collapsing given by

' x� � � x x 2 Vÿ V0;
p x 2 V0;

�
where p 2 V0 is a unique vertex connecting to Vÿ V0, and d2 is the distance of the
graph G2 � V2;E2� �.

Proof. Let G2 be the resulting collapsing, which is a tree satisfying

m x� � � kÿ 1; for all x 2 V2:

Due to the above Theorem 3.3 and Theorem 7.2 in [9], we obtain

G x; y� � � G2 ' x� �; ' y� �� � � GTkÿ1 ' x� �; ' y� �� � � kÿ 2

kÿ 3

1

kÿ 2

� �d2 ' x� �;' y� �� �
:

We have established Theorem 4.3. &

The following Figure 3 illustrates the situation in Theorem 4.3.

Remark 4.4. (a) In general, a harmonic morphism is not rough isometric in the
sense of Kanai [5], [10]. In fact, ' : V1! V2 is rough isometric of G1 to G2 if and
only if there exist positive constants A and B satisfying
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Aÿ1d1 x; y� � ÿ B � d2 ' x� �; ' y� �� � � Ad1 x; y� � � B; d2 x0; ' V1� �� � � B;

for all x; y 2 V1 and x0 2 V2, where di is the distance of Gi; i � 1; 2. But in our
harmonic morphism, one can change the vertical part, i.e. making the collapsing
part V0 large, so that d1 x; y� � with x; y 2 V0 tends to in®nity, but keeping
d2 ' x� �; ' y� �� � � 0.

(b) We have not considered the case k � 3 in Theorem 4.3.
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