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Abstract

The structure of semigroups with atomistic congruence lattices (that is, each congruence is the
supremum of the atoms it contains) is studied. For the weakly reductive case the problem of
describing the structure of such semigroups is solved up to simple and congruence free semi-
groups, respectively. As applications, all commutative, finite, completely semisimple semigroups,
respectively, with atomistic congruence lattices are described.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 10, 08 A 30.

1. Introduction and Preliminaries

A lattice is atomistic if each element is the supremum of the atoms it con-
tains. Examples are the chain of two elements, the power set lattice of a set
or the partition lattice of some set. In [3] it is shown that a semilattice has
an atomistic congruence lattice if and only if it is a locally finite tree. In
this paper we study the structure of semigroups whose congruence lattices
are atomistic. Examples are congruence free semigroups (as a trivial case),
left (right) zero semigroups, null semigroups, rectangular bands and semi-
groups whose congruence lattice is Boolean. In the second section we obtain
necessary conditions on a semigroup in order that its congruence lattice be
atomistic. The main tool for investigating the structure of such semigroups
S is to consider the decomposition of § into its J-classes. We introduce
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the construction of trees of 0-simple semigroups and show that each globally
idempotent semigroup with an atomistic congruence lattice can be so con-
structed (Theorem 1). The structure of such a semigroup can be described
by a locally finite tree X, O-simple semigroups I indexed by the elements of
X and partial homomorphisms between the nonzero parts of the semigroups
I . Furthermore, if an arbitrary semigroup has an atomistic congruence lat-
tice then it is an inflation of such a semigroup.

In Section 3 we study the problem for weakly reductive semigroups and
obtain necessary and sufficient conditions in order that the congruence lattice
be atomistic (Theorem 2). Using this characterization we are able to char-
acterize all commutative, finite and completely semisimple semigroups with
atomistic congruence lattices (up to locally finite trees and simple groups).
This will be done in Section 4. Furthermore, we observe that the properties
“atomistic” and “Boolean”, “complemented modular” and “relatively com-
plemented” for the congruence lattice of a weakly reductive semigroup are
strongly connected.

For the remainder of this part we collect some definitions and results which
are basic for our considerations (for further details see [4] or [6]).

A semilattice is a (locally finite) tree if each interval [x, y]={z:x <z <
y} is a (finite) chain. For a semigroup S, S* = § if S hasno zeroand S* =
S\{0} if 0is the zeroof S;and S' =S if S hasanidentityand S' = SU{1}
suchthat 1 ¢ § and sl = 1s = s for all s €S otherwise. Green’s relation J
is defined by a J b if and only if J(a) = J(b), where J(x) is the principal
ideal generated by x (that is, J(x) = s'xs! ). The J-class containing a
is denoted by J,. The set I(a) = J(@)\J, = {x € J(a):J(x) # J(a)} is
an ideal in J(a) (or empty). The semigroup J(a)/I(a) is called a principal
Sactor. Each principal factor is either simple, O-simple or null (see [4]). A
semigroup is (completely) semisimple if each principal factor is (completely)
(0)-simple. Let S be a subsemigroup of a semigroup 7. Then T is an
inflation of S if there exists a function f:T — S such that f]S =idg and
ab=(af)(bf) forall a,be T. In this case f is the inflation function. A
semigroup S is weakly reductive if for a, b€ S, za=zb and az = bz for
all z€ S imply a=2>b. A semigroup S is globally idempotent if s?=85.
The lattice of all congruences on a semigroup S is denoted by ConS. The
identical and the universal relations are denoted by &g = ¢ and wg = o,
respectively. A congruence p on S is an atom if it covers ¢, to be denoted
by p > ¢, thatis, ¢ < p and [¢, p] = {¢, p}. The set of all atoms of Con S
is denoted by AtS. For an arbitrary relation R on S, R" is the congruence
on S which is generated by R.

For 0-simple semigroups we have the following result.
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REesuLT 1 [5). A O-simple semigroup is congruence free if and only if for
any two distinct elements x,y € S there exist u,v € S such that uxv =0
and uyv #0 or uxv #0 and uyv =0.

2. Trees of O-simple semigroups

In this section we obtain necessary conditions on an arbitrary semigroup
S in order that its congruence lattice be atomistic. For this purpose we study
the decomposition of S into its J-classes and the ordered set S/J. We
introduce the construction of trees of O-simple semigroups and show that
each globally idempotent semigroup S whose congruence lattice is atomistic
can be so constructed.

LemMA 1. Let p € AtS and apb for J, > J,. Then J < J, implies
that J < J,. In this case J(a) = J,UJ(b).

PrOOF. Let x = sat for s, teS'. Then x = satpsbt. Since J_ and J,
are contained in I(a) we obtain that sat = sbt. Otherwise (sat, sbt)" is a
proper congruence which is strictly contained in p.

Conversely, if ConS is atomistic any two of such neighbours in S/J are
“linked” by an atom.

LEMMA 2. Let J, < J, and assume that J < J, implies that J < J,. If
ConS is atomistic then there exists v € J, and an atom p such that apv.

PrOOF. We consider the congruence (a, b)*. Since ConS$ is atomistic
there exist p,, ..., p, € AtS such that a =a,p,a,---p,a, = b for certain
a;€ S and p; C (a, b)". Since {a, b} C J(a), all q; are contained in J(a),
thatis, J, < J,. Let i be the smallest index such that J, < J, =J,.

—1
The assumptlon on J, then implies that J, < J,. Since J = J and
i_1 P;a;, by Lemma 1, we get that J >J, and thus J = J,. Also aJa, |
1mphes that a = sa;_,t forsome s, ¢ e S' and thus a = sa,._lt p;sa;t. Now
J,,<J, and Lemma | imply that J_, = J,.

:at sat

LeEMMA 3. If Con S is atomistic then S/J is a locally finite tree.

ProoOF. S/J is directed so it suffices to show that each interval in S/J
is a finite chain. Let J, > J,; there exist atoms p,,..., p, such that
a=bypb---p,b,=b and b, € J(a) forall i. Let g(a,b) = n be
the shortest possible length of all such sequences and
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h(J,, J,) =min{g(x, y):xJa,yJb}.
By induction on h(J,, J,) we show that each interval in §/J is a finite
chain. If A(J,, J,) = 1 then an immediate consequence of Lemma 1 is
that [J,, J 1= {J,, J,}. Let J, < J , h(J,, J,) =n > 1 and suppose that
(Vs )] is a finite chain whenever h(Jy, J)<n.letu=a,pa --p,a,=
v for certain p;, € AtS such that uJa, vJb and a;, € J(a) for all i.
In particular, J, < J,. If J = J, then h(J,,J)) = h(J,,J,)) <n,a
contradiction. Therefore J, < J,. Also, since J(a) = J, uJ (a,) then
a; € J(a,). Therefore, J < J and aq, € J(a,) forall k > 1. In particular
h(J, , J,) < n and our assumptlon applies: [J,, ,Ja,] is a finite chain. If
J, e (J, J,] then J =J or J < J . Therefore [J,, J,] = [J,, J, 1U
{J } is a finite chain. '
In the next statements let us assume that Con S is atomistic.

LEMMA 4. Let J, > J, . Then there exists a partial homomorphism f.J, —
J, sothat xy = (xf)y and yx =y(xf) forall x € J, and y € S such that
xy, yx € J(b), respectively. In particular, if xy € J(b) for x,y € J, then

=xNHWS).

ProoF. By Lemma 2, there exists an atom p such that a pu for some
ueJ,. Let x € J;; x = sat for some s§,t € S'. Then x = satpsut.
By Lemma 1, sut € J,. If xpv for some v € J, then v = sut since
p|J(b) = . Thus for each x € J, there exists a unique element in J, to be
denoted by xf such that x pxf. Let y € S such that xy € J(b). Then
xy p(xf)y. Then p|J(b) =¢ implies that xy = (xf)y. Nowlet x,y € J,
such that xy € J,. Then x pxf, y pyf and the definition of f imply that
(xy)f pxy and xy p(xf)(yf). Since p|J(b) =¢ we get that f is a partial
homomorphism.

This result can be extended to any comparable J-classes.

LEMMA 5. Let J, > J, . Then there exists a partial homomorphism f:J, —
Jy, such that xz = (xf)z or zx = z(xf) forall x € J,, z €S such that
xz or zx € J(b), respectively.

Proor. The interval [J,, J ] is a finite chain so there exist unique J,
suchthatJ—J >J o= J, = Jy. Let fiJ, —»J bethe
mapping con51dered in Lemma 4. Let f LG f,- Then f is a partial
homomorphism and for x € J,, z € § such that xz € J(b), by Lemma 4
we obtain that xz = (xf,)z = (xflfz)z =--=(xfify--f)z=(xf)z. The
analogous argument for zx completes the proof.

ProPOSITION 1. Each non-maximal J-class of S is the non-zero part of a
O-simple semigroup. In particular, S is semisimple.

https://doi.org/10.1017/5144678870003024X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003024X

[5] Atomistic congruence lattices 63

PrROOF. Let J, < J ; b = sat for some s, teS'. Since J,<J,, T,
we obtain that b = (sf)(ag)(th) where f, g, h denote the mappings con-
structed in Lemma 5 so that sf, ag,the J,.

LEMMA 6. The semigroup S is an inflation of s2.

PROOF. The case where S = S” is trivial. Let @ € S\S” and let J, denote
the unique J-class which is covered by J,. Let fp:J, — J, be the partial
homomorphism constructed in Lemma 4. Let z € §; a cannot be written
as a productso J,, < J, and thus J,, < J,. By Lemma 4, az = (af,)z and
by analogy, za = z(af,). Now define f.S - §? by xf=xf if xe S\S
and xf = x otherwise. Then f is an inflation function.

Since inflations are trivial from an algebraic point of view we consider the
semisimple semigroup S? rather than § itself. The results so far motivate
the following construction.

CONSTRUCTION. Let X be a locally finite tree, to each o € X associate a
0-simple semigroup I, (# {0}) sothat I, NI, =@ if a# . For a € x*
let f:I. — I’ be a partial homomorphism where o® denotes the unique
element of X such that o > a*. Let f, ,=id,- and f be defined by
fa,ﬂ=j;lf f where the a; saredeﬁnedby a—al>-a2 a, = B.

We suppose that for arbitrary a € Ia and be I the set
D(a, b) = {y € X:(af, ,)(bf, ,) is defined in I}

is not empty. Let J(a, b) denote the greatest element of D(a, b). Let
S =U(I}:a € X) and define a multiplication * on S by the rule

axb=(af, 5,.5)0f3 5a5) (@a€l,, Bl

where the right hand side product is defined in I;(a 5y

DeFINITION. The groupoid S is a tree of 0-simple semigroups, to be de-
noted by S = (X; I, f, ﬂ) If each I, a € X, is congruence free (with
zero and not the null semigroup of order two) then S is a tree of congruence
free semigroups.

If X has a least element u then by definition I; is closed under mul-
tiplication and thus is a simple semigroup. If, in addition, S is a tree of
congruence free semigroups then the congruence freeness of I, *U{0} implies
that I consists of exactly one element. A straightforward verlﬁcatlon shows
that S is a semigroup. Similar constructions appear in [1], [2], [7], {9], [12].

We now are able to formulate

THEOREM 1. If S is globally idempotent and Con S is atomistic then S
is a tree of 0-simple semigroups.
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PRrROOF. By Proposition 1 we observe that S is semisimple and hence each
principal factor is (0-)simple. Let X = S/J. X is a locally finite tree. For
a=J, let I =J(a)/I(a). Then I, =J and S=|J{I:a € X}. For a >
a’ let f, be equal to the mapping f:J, — J,+ such that apaf for some
atom p which was obtained in Lemma 4. Let a,be S, a€ I, = J, and
be I =J, andlet y=J ,. Let f ., and fﬂ’y be defined according to the
rules of the construction. Then by Lemma 5 we have that (af, )b fp,y) =
ab € I; . Therefore D(a, b) is not empty. Also, y = J,, is the greatest
element of D(a, b). To see this suppose that d = (af, ;)(bf; ;) € I; for
some 0 > y. Then ab € J(d) and so again by Lemma 5 we obtain that

b= (afa,(,)(bfﬂ’a) which implies that y =4 .

3. Weakly reductive semigroups

We now restrict our investigations to the case when S is weakly reductive.
A weakly reductive semigroup S cannot be an inflation of a semigroup T #
S. Therefore, if ConS is atomistic then weak reductivity of S implies
global idempotency and thus we may assume that S = (X; I, f, p) a tree
of O-simple semigroups. In the next statements we assume that ConS is
atomistic and S is weakly reductive. Lemma 7 is straightforward to prove.

LEMMA 7. Let S =(X;1,, f, ;). Then S is weakly reductive if and only
if each principal ideal of S is weakly reductive.
DEFINITION. Let a € X and x, y € I, . We define a relation 7, by
xt yeuxvel suvel Yu,veL).
Then 7,U{(0,, 0,)} is the greatest congruence on I_which saturates I ,
that is, in particular, the greatest nonuniversal congruence on I .
LEMMA 8. Let o € X" . Then the restriction of f, to an arbitrary t_-class
Is injective.
ProOOF. Let p, denote the greatest congruence on S which saturates I; ,
in particular,
xpyeoxvel cupwel Yu,veS).

We will prove that pall;" = 1, . Obviously we have that pa|I; C 7, . Suppose

that x7, y but (x,y) & p,. We may assume there exist u, v € S' such
that uxv eI, and uyv ¢ I, and {u,v}NS# . Then J,, J, > J, and
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so uxv = (uf)x(vg) and uyv = (uf)y(vg) such that uf,vg e (I;)l and
{uf,ve}nl. #@.1f {uf,vg} C I, then the proof is finished. If not then
we may suppose that uf € I; and v ¢ S. Since I is O-simple there exists
w €I, suchthat (uf)xw €I, . Then (uf)yw &I since (uf)y ¢ I. . This
again is a contradiction to x 7,y .

Now suppose that xf, =yf, for x,y suchthat x7 y. Then xpxf =
vf,py forsome p € AtS. p does not saturate I; thus pnNp, # p which
implies that pn p, = ¢. Therefore x =y.

LEMMA 9. Let o € X" . Then the restriction of [, toan arbitrary t_-class
Is constant.

PROOF. Let x,y € I; with xt, y. The congruence p, as defined in
Lemma 8, is a supremum of atoms. So x =g, p, a,---p,a, =y for certain
elements a; and atoms p, C p,. Since p _ saturates I;‘ , we observe that
a; €I forall i. Let z € I for some y < . We have that p,|I; = ¢
for all 6 < a since p; is an atom. Hence a,z = q,,z and zag; = za,,
for all /. Multiplying the sequence x = q,p,q,---p,a, =y by z on the
left and right, respectively, we obtain that (xf )z =xz=yz = (yf )z and
z(xf) = zx = zy = z(y f,) , respectively. Weak reductivity of the semigroup
I=U(I;:y < a) then implies that xf, =y, .

PROPOSITION 2. If o is not minimal in X then I_ is congruence free.

PRrROOF. 7, is the identical relation. Therefore, by Result 1, 7 is congru-
ence free.

LEmMA 10. Let S = (X; 1, fa ﬂ) be a tree of 0O-simple semigroups. Let

a>B>y>0€X and xpy forsome x €., yel; and p € ConS.
Then zfy ,pz forall zeI;.

Proor. See [1, Lemma 9].
Using the following definition, the mapping f, may be regarded as a bi-
nary relation on S':

xfyexel and xf =y.

LEMMA 1. Let S=(X; 1 j; [,) be a tree of congruence free semigroups.

b a’
Then p € ConS isan atom ifand only if p = (j;UsS)o(fa_lUt:S) for some
aeX".
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PROOF. Let ¢ = (f Ugg)o (j:;' Uég) for some o € X. Then for u # v
we have uév ifandonlyif u=vf , v=uf or uf =vf . Itcan be seen
easily that & is a congruence. Let 7, where ¢ # n C &, be a congruence.
Then unv for some u # v. If u =vf then znzf forall z € I; by
Lemma 10andso n =&. If uf =vf and u # v then there exist x, y EI;‘
such that xuy € I; and xvy & I; , or conversely. Again by Lemma 10, we
obtain that n = ¢. Conversely, let p be an arbitrary congruence and x py
for x # y where xe€ I, y€ly. If a# B then we assume that aff <a. It

is easy to see that zj;,aﬂ pz forall ze IZ and thus (j;Uss)o(fa_IUsS) cp.
If a =pB and x # y then by the same argument as in the first half of the
proof we obtain that (f, Uegg)o (j;—l Ueg) Cp.

LEMMA 12. Let S=(X; 1, f, B) be a tree of congruence free semigroups

where X has no least element. If Con S is atomistic then for x,y € I, there
exists y < a such that xfa,y =yf, ;-

PrOOF. Let x,y €1, and x = x,p, x,--- p, X, =y for some atoms p;
such that all x, € J(x). For x # y let g(x,y) = n denote the smallest
length of such a sequence. We prove the assertion by induction on g(x, y).
If g(x,y)=1 then by Lemma 11, xf =yf . Let g(x,y)=n>1 and
suppose that the assertion is true whenever g(u, v) < n. Let a, be defined
by x, €1, . Then o; < a forall i since x; € J(x). If a;=a forall i then

x,f, =x,j'; =-.-=x, f =yf whichisa contradictionto g(x,y) > 1. Let
J be the first index such that a;<a. Then x,f, =x, [, =---= j—nf; =X;.
Therefore j = l:x; = x,f, = xf, . By the same argument we obtain that
x,_, = x,f, =y/f, . Now there are two alternatives: (i) x; € J(x,) = J(x,_,)

forall 1 <i<n-—1 and (ii) there exists i, 1 <i<n-1, such that x, €
I = Jxo =J, . Since all x; € J(x) only these two cases are possible. For the
first case we have that g(x;, x,_,) <n andso x,f+ ,=x,  f.. , forsome
y<a'. Then xf, ,=xf+ , =X, [+ ,=Vf, ,. In the second case we
have g(x, x;) <n and g(y, x;) < n and therefore xf, , =xf, = Yy
for some y < «.

Of course the condition of Lemma 12 is equivalent to the condition: for
any ael’ and be I; there exists y < @, f such that af, ,=bf; ,.

Using the following known lemmas, we thus have obtained a characteriza-
tion of weakly reductive semigroups with atomistic congruence lattices.

NortaTION. For an arbitrary set X, let P(X) be the lattice of all subsets
of X.

LEMMA 13. Let X be a locally finite tree. Then Con X = P(X").
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ProOOF. See [3, Lemma 3].

LEMMA 14. Let S=(X; 1, f, ﬂ) be a tree of congruence free semigroups
I, such that forall a € I, and b € I; there exists y satisfying af, , =
bfp’y. Then ConS = ConJX.

ProoF. The lemma is a consequence of the proof of [2, Theorem 8].

LEMMA 15. Let S=(X; 1, f, ﬂ) be a tree of 0-simple semigroups where

I is congruence free for all o € X* and X has a least element u. Then
Con S = Con X x ConI;.

ProOF. The lemma is a consequence of the proof of [2, Theorem 8].
Using this and the fact that a product of two lattices is atomistic if and
only if each factor is atomistic, we can formulate

THEOREM 2. Let S be a weakly reductive semigroup. Then Con S is atom-
istic if and only if S is isomorphic to one of the following :

(1) a simple semigroup I such that Conl is atomistic,

(ii) a tree of congruence free semigroups (X ; 1,, f, g) such that for each
xel , ye I; there exists y < a, B satisfying xf, ,=y/fy .;

(iii) a tree of O-simple semigroups (X;1_, f, , ﬂ) where X has a least

element u such that 1 ; is a semigroup of type (i) and S/I; is a semigroup
of type (ii).

4. Applications

In order to study special classes of semigroups we first need a result for
groups.

PROPOSITION 3. A group has an atomistic congruence lattice if and only if
it is a direct sum of simple groups.

Proor. For a group we may identify congruences and normal subgroups.

NECEssITY. Suppose that the group G has an atomistic congruence lattice.
Let {N,;:i € I} be the set of all atoms of the lattice of normal subgroups of
G. Then G =\/(N:i€l). Let A be defined by

A= {K CIVieK:N,n\/(N:je K\{(i}) = {1}}.
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Then A is not empty. Let C C A beachainand J = |JC. If J &€ A4
then there exists j € J such that N, C V(Nz:ie€ J,i#j). Let n€ N,
n # 1. Then there exist ,,..., i e J\{j} such that n € N V- vN
Then N, ﬂ(Nil V"'VNik) {1} and so N; C N,l V- ka because N
is an atom. This is a contradiction to the definition of A because thcre
exists C € C which contains the indices i, as well as j. Therefore J € 4.
Now by Zorn’s Lemma there exists a maximal element in A, to be denoted
by K. If K = I then we obviously have that G = } (N;:i € I). Now
suppose that K # I. Let j e I\K. If Nj is not contained in \/(N,:k €
K) then there exists i € K such that N, C \/(N,:k € K,k # i)V N
because KU {j} € A. Let N =V(N,:k € K, k # i). Then we obtain that
{{1}, N B N, NVN;, NVN j} forms a non-modular sublattice of the lattice of
all normal subgroups of G, a contradiction. Therefore, N 3 V(N,:k € K)
which implies that G =} (N, :k € K)). Then each normal subgroup of some
N; is a normal subgroup of G and therefore all N, are simple groups.
SUFFICIENCY. Let G = ) G; be a direct sum of simple groups G;. Let
N be a normal subgroup of G and n€ N. Then n=a, ---a,b where the
element a; belongs to some non-commutative group G; and b belongs to

the centre of G. To each a; there exists ¢; € G; such that ac; # ca;.

Then ncin_lci_ =aca, cleNnG and aca 'c” ;él. Since G,

is simple G; C N. Irll lpz;rtlcular a, € N for alf ’z land therefore b € N.
The order of b is square free: o(b) = p,---p, for some distinct primes
p;. Let ¢; = p,---p/p;. Then (b%) = z, and (b%) C N. The groups
G, and (b%) are atoms in the lattice of all normal subgroups of G. Then
neG, -G (b")-- (b%) C N implies that N is the supremum of the atoms
it contains.

4.1. Commutative semigroups.

We first treat the globally idempotent case. A commutative semigroup is
O-simple if and only if it is a commutative group with a zero adjoined. Such a
semigroup is congruence free if and only if its non-zero part consists of only
one (idempotent) element. So § = (X; 1, f, ) the tree of congruence
free semigroups, degenerates to the locally ﬁmte tree X. Furthermore, a
commutative group has an atomistic lattice of subgroups if and only if it is a
direct sum of cyclic groups z, of prime order. So for the globally idempotent
case we have exactly the three cases: (i) a direct sum of cyclic groups z, of
prime order, (ii) a locally finite tree, (iii) an ideal extension of a semigroup
G as (i) by a semigroup X as (ii) with zero.

For the general case we need the following proposition.
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ProPoOSITION 4. Let T be an inflation of a semigroup S such that all
homomorphic images of S are weakly reductive. The Con T is atomistic if
and only if ConS is atomistic and the inflation function f is trivial, that is

(T\S)f1=1.

PrOOF. Suppose that Con T is atomistic. For each congruence p on S,
pUer is a congruence on T . Therefore, if ConT is atomistic the same
holds for ConS. Let p be defined by xpy ifandonly if x,y € S or
x,y €T\S. Let x,y € T\S and x = x;p,x,---p,x, =y for some
atoms p, C p. Since the p,’s are atoms we have that p,|S = ¢. Therefore,
xNz=xz=yz=(yf)z and z(xf) =zx =zy = z(yf) forall z€ S.
Weak reductivity of S then implies that xf = yf. Conversely, let T be
an inflation of a semigroup S such that all homomorphic images of S are
weakly reductive, suppose that Con.S is atomistic and |(7\S)f] =1 where
f stands for the inflation function. Let a € S denote the element of S which
defines the multiplication of the inflation, that is xf = a for all x € T\S'.
Let x € T\S, b € S and suppose that xpb for some p € ConT. We
obtain that xz =azpbz and zx = zapzb forall z€ S. Since S/(p|S) is
weakly reductive we have a pb. Now we may apply Lemma 11 in [2] which
proves that under this condition the mapping p — (p|S, p|T\SU{a}) is an
isomorphism between Con7 and ConS x Eq7T\S U {a}.

Summarizing these observations we may formulate

THEOREM 3. A commutative semigroup S has an atomistic congruence
lattice if and only if S is isomorphic to one of the following:

(i) a direct sum of cyclic groups z, of prime order

(ii) a locally finite tree;

(iii) an ideal extension of a semigroup of type (i) by a semigroup of type
(ii) with zero;

(iv) an inflation of a semigroup of type (i), (ii) or (iii) with a trivial
inflation function.

We observe that for commutative semigroups S the conditions “ Con S is
atomistic” and “Con S is relatively complemented” are equivalent (see [2,
Corollary 14]).

4.2. Finite semigroups.

Again we first treat the globally idempotent case. Put S =(X; I, fa ﬁ) "
a tree of O-simple semigroups. Finiteness implies that all I are completely
O-simple. If o is not minimal in X then I_ is congruence free and therefore
I = MO(Ia ,A,,P) where P isa A x I -matrix of zeros and ones such
that each row and each column contain a one and no two rows and no two
columns are identical (see [11] or [6]). X has a least element x and I; is
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a completely simple semigroup. Therefore, I; = M(I, G, A, P). Suppose
that Con/ ; is atomistic. Con I; is isomorphic to Ad = Ad(/, G, A, P),
a sublattice of Eq/ x NorG x EqA, the lattice of admissible triples (see
[6]) (Nor G denotes the lattice of all normal subgroups of G ). An element
(¢, N,n) €Eql x NorG x EqA is admissible if

ilj =>pl,-p,,_,-'p;,jp;j' €N VA, u€eA
and

Anp=p,p,.p,p, €N Vi,jel.
All elements of the form (¢, N, ¢) are admissible. Furthermore if (£, N, )
is admissible and { C £ then ({, N, ¢) is also admissible. (w, G, w) is

admissible and hence the supremum of admissible atoms. If ({, N, €) is an
atom in Ad(/,G, A, P) and { # ¢ then N = {1} and { is an atom in

Eql. Let i,j€I and A € A. There exist atoms p,, ..., p, in Ad such
that
(1) (lal,l)plpn(]slsl)

Each p, whose first entry is a proper equivalence commutes with each p,
whose first entry is the identity. Therefore in (1) we may omit the latter ones.
Thus for each i, j € I there exists £ € EqQJ such that i¢j and (&, {1}, &)
is admissible and therefore (w, {1}, €¢) is admissible. The same holds for
(¢, {1}, w) and thus (w, {1}, w) is also admissible. We have thus obtained
that all triples are admissible and then I; =~ ] x G x A, a rectangular group
(see [8]). Since each partition lattice is atomistic Con I; is atomistic if and
only if Nor G is atomistic, that is if and only if & is a direct sum of simple
groups. If S is a tree of congruence free semigroups then finiteness implies
that X has a least element z. Then |I;| =1 and therefore xf, , =y fﬁ, 4
for arbitrary x € I; and y € I; . Since Proposition 4 here also applies, we
can formulate

THEOREM 4, Let S be a finite semigroup. Then ConS is atomistic if and
only if S is isomorphic to one of the following:

(i) a rectangular group I x G x A such that G is a direct sum of simple
groups,

(ii) a tree of congruence free semigroups;

(iii) a tree of 0-simple semigroups (X ; I_, j; B) such that I; is a semi-
group of type (i) (where u denotes the least element of X) and S/I; isa
semigroup of type (ii);

(iv) an inflation of a semigroup of type (i), (ii) or (iii) with a trivial
inflation function.
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In [4, Theorems 3.11 and 3.14] the partial homomorphisms between non-
zero parts of completely O-simple semigroups are described.

Completely semisimple semigroups can be treated in the same way as the
globally idempotent case of finite semigroups, omitting the finiteness condi-
tions. Here it may happen that the locally finite tree X of S=(X; I , f 8)
has no least element and so in (ii) the condition “for x € I, and y € I; there
exists y < a, f such that x f =y f ” must be added. An example in [1]
shows that this is really necessary In [2 Section 5] a necessary and sufficient
condition for this property is given. The present section is closely related
to [2, Section 5]. Again for finite and completely semisimple semigroups the
properties “ Con .S is atomistic” and “ Con S is relatively complemented” are
equivalent.
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