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THE DUALS OF GENERIC SPACE CURVES
AND COMPLETE INTERSECTONS

by J. W. BRUCE

(Received 21st April 1982)

In a previous paper we discussed the duals of generic hypersurfaces: both smooth
hypersurfaces in IR" and algebraic hypersurfaces in real or complex projective space P".
In this note we show how to extend the methods of [1] to cover the case of complete
intersections in P" and preface this with a brief discussion on the contact of space
curves in U3 with planes. We shall use the notation of [1].

1. Space curves

Following [5] (see [8]) we can study the contact of a space curve CclR3 with planes
by considering the family of height functions H:CxS->U,H(x,a) = x.a where S2 is the
unit sphere in U3 and . denotes the usual Euclidean inner product. The set
I, = {(x,a)eCxS2:Ha:C-*R has an A ^ singularity} is the unit normal bundle to C.
The image of Z in IR x S2 under the map (H, n)(x, a) = (H(x, a), a) is the dual of C, the set
of all planes tangent to C. Here we are parametrising the planes in IR3 by their unit
normals and distance from 0. (This actually gives a double covering of the planes since
(c,a) and (—c, —a) determine the same plane.)

If we project X onto S2 we obtain the Gauss map of C. The local structure of the
dual and Gauss map will, by [1], generically be that of a Legendre (resp. Lagrange)
mapping and is determined by the type of singularities of the functions Ha. Generically
one expects Al, A2 and A3 singularities and that these will be versally unfolded by
the family. One can determine the geometric conditions which give rise to these
singularities quite easily.

Proposition 1.1. Assume the space curve C has nonzero curvature at P. Then a plane
through P has order of contact 1 with C unless it contains the tangent line, 2 if it does, but
is not the osculating plane at P and 3 if it is the osculating plane and the torsion of C at P
is nonzero. If the torsion is zero but its derivative does not vanish, this order of contact is
4. In general, if the order of contact is d^.2, the function Ha has a singularity of type
Ad-X. This is universally unfolded by the family H in each of the above cases.

Proof. These assertions are easily verified. For example taking the Xi.X2.X3 axes to
be the tangent, normal and binormal at P, the curve is given locally as a function of arc
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length s as

KK . , „ K , K

t)s4 + 0(5)1

where O(p) denotes a function which vanishes at s=0 to pth order. Short computations
now give the result. (Note that K=£O is a generic condition (see [2] Section 2 for
example)).

The dual will have a cuspidal edge of points corresponding to the osculating planes of
the curve, and swallowtails corresponding to osculating planes at points of zero torsion.
The Gauss map has folds and cusps (respectively) at these points. (Note that this
characterises points of zero torsion on a generic curve as those points inside every
neighbourhood of which there exists a pair of distinct points sharing a common tangent
plane.)

2. Complete intersections

One can specify a curve C in P3 as the zero set of two homogeneous polynomial
equations /i(x0, ...,x4)=/2(x0, ...,x4) = 0. We want to consider the contact of such a
smooth curve C with the planes of P3. To ensure that C is smooth we shall ask that
{fi — 0} is nonsingular along C and that {/j = 0} and {/2 = 0} meet transversally in C.
Such curves are complete intersections. If fx is of degree d± and f2 of degree d2 clearly the
complete intersections are parametrised by an open non-empty subset W of a product of
two projective spaces

where PNj is the projective space of non zero homogeneous polynomials of degree dj. As
in [1] we want to prove that the dual of C, i.e. those planes tangent to C, has the local
structure in the dual space P3 as described in Section 1. The key again is to show that
for du d2 sufficiently large there are sufficiently many deformations of C in the space W
to ensure versality of a certain contact map.

Since we are addressing ourselves to local matters we can work in an affine chart, say
xo = l, and write /j(l,x1,x2,x3) as /Hx^x^X;,). Without loss of generality we may
suppose that / t and/2 vanish at OeC3 and the tangent to / i = / 2 = 0, the curve C, at 0 is
the x3-axis. We measure the contact of C with planes by considering the restriction of
the family

H:C3xC2->C

(x, a)->X! + a2x2 + a3x3 =Ha(x)
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to C x C2 near x = 0, which we also denote by H. Parametrising C as
x(u)=(xl(u),x2{u),u) we see that Ha has a singularity at u if and only if

dx, dx2
-^-+a2~ + a3 = 0atu,
du du

if and only if {x1 + a2x2 + a3x3 = Ha(u)} is tangent to C at x(u). So if
Z = {(x,a)eCxC2:(dH/du)(x(u),a)=0} the image of I under (#,7r):CxC2->CxC2

(where n(x,a) = a) is part of the dual of C corresponding to points near 0. (Clearly the
other part can be obtained by using the family G:C3xC2-»C defined by G{x,a) = alxl

+ x2 + a3x3.)
Now by a linear change of co-ordinates on C3 we may suppose that the tangent plane

to {fj=0} at 0 is Xj = 0. Applying the implicit function theorem to the equations / t =
/2 = 0 we can find smooth functions gi(x3),g2(x3) with fj{gi(x3),g2(x3),x3) = 0,j=l,2, so
that C is parametrised near 0 by (gi(u),g2(u),u).

Indeed by applying the implicit function theorem to the map C3 x W->C2 given by
(x,/)->/(x) (where / has two components f\,f2) we can find smooth functions gug2

defined on some neighbourhood of (0,fuf2)eCxW with (gi{u,f),g2{u,f),u)
parametrising the curve {/=0} near OeC3.

Proposition 2.1. Let H:C x C2 x W->C be the map ff(u,a,f)=g1(u,f) + a2g2(u,f) + a3u
defined for u close to 0, / close to (/i,/2). If dt^.k then the k-jet extension
j\H:CxC2 x W->Jo(l> 1). defined by (u,a,f)->k-jet of H( — ,a,f) at u, is a submersion at
(O^^f^f^Xfor any oeC2. (Here we are taking k-jets without constant terms, which is the
reason for the subscript 0 in the jet space.)

Proof. It is clearly enough to consider the case dx = k. We shall use the tangent
vectors in the W space coming from the path {fi + sx3,f2)=fs, for l^p^k. If gi(x3,s) are
the corresponding families then fi(g1(x3,s),g2{x3,s),x3) + 5ilsz3 = 0, and differentiating
this identity with respect to s, and setting s=0 we obtain

t ^ ^ 0 (1)
j=lOXj OS

Using the path fs the corresponding tangent vector in the jet space JQ(1, 1) is the fc-jet
of (8H/ds){u,a,f(0)). But dH/ds = (dgjds) + a2(dg2/ds). Now (a/1/ax1)(0) = c1 say with
CifO, and (dfJdx2)(0) = 0, so {dfjdx2)(g^x3),g2{x3),x3) can be written x3hx{x3).
Similarly (df2/dx2)(0) = c2^0 and (df2ldxl){g1{x3),g2{x3),x3) = x3h2{x3). Using (1) when i
= 2 it follows that if jr(dg2/ds)£Q, then f~\dgJds)±0. Taking r-jets of (1) when i=l ,
for O^r^p we now find that c1-j"(dgl/ds)= -xp

3, and so jk(dH/ds)= -(cJ'^l+Oip
+ 1), where 0(p+l) denotes a polynomial of degree ^ p + l . Since c1^=0 the result now
follows.

Of course working with the other family G, and the associated G we will obtain a
submersion provided d2^k, by using tangent vectors of the form (/i,/2 + sx?). Now
using the compactness of C, and Thorn's fundamental transversality lemma one can
deduce, just as in [1], the following theorem.

https://doi.org/10.1017/S0013091500016965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016965


262 J. W. BRUCE

Theorem 2.2. Provided dy and d2 are ^.4 for (fi,f2) in an open dense subset of W the
dual of C = {/t =/2 = 0} is locally generic i.e. ignoring quasi global self intersections the
dual has the local structure of the discriminant variety of an AUA2 or A3 singularity.

Proof. We only need to consider the jet space J4(C, C) and transversality to the
orbits of 0,x,x2,x3 and x4.

Exactly the same ideas will give similar results for arbitrary complete intersections. If
in some affine chart the variety V is given by fl(xl,...,xn)=--- =fr(xl,...,xn) = 0, with the
tangent space at 0 to /; = 0 given by x, = 0 we can parametrise V locally by
(gi(Xr + i,--;Xtt),...,gr(xr + 1,...,xn),xr + l,...,xn). Considering H:C"~r xCn~x xW-^C defined
by H(u,a,f)=gl(u,f) + a2g2(uJ)... + argr(u,f) + ar + lur + l + --- + anun we find that the
jet extension j\H is a submersion at (0,a,(/!,...,/„)) for any aeC""1 if the degree of
f^d^k. This time one uses the paths (fl + s(f>(xr+u...,xn),f2,...,/r) where the 0's are
homogeneous polynomials of degree p, 1 ^ p ̂  k. One can deduce

Theorem 2.3. For n ̂  6 the duals of an open dense set of complete intersections in P"
have the local structure of the discriminant varieties of simple singularities provided the
degrees dt of the defining equations satisfy d^n. For curves which are complete
intersections the same holds for any n, and the simple singularities are of type Ap, l^p^n.

Proof. This follows from the fact that for k^.n, n>m, Jk
0(m, 1) has a stratification by

the orbits of simple singularities and strata of codimension >m + n— 1, so since we can
ensure transversality of each of the contact maps with the stratification the result
follows. The assertion for curves follows because the only orbits of JQ(1, 1) are those of
0,x and type Ap, 1 ^p^k—l.

Remarks 2.4.

(i) Clearly all of the above discussion also works for real complete intersections in
real projective n space IRP".

(ii) In proving that the jet extension map j\H is a submersion we used very few of
the tangent vectors to W at (/i,...,/r), indeed only some of those from the first
component. Consequently one might hope that one could relax the conditions on
the dt and still obtain a submersion. For example perhaps Theorem 2.2 holds
whenever d1,d2^2c? (It is clearly false if either dt = l.) Unfortunately although this
may be the case the techniques used in this paper will not by themselves give a
proof. For a computation along the lines of that given in Proposition 2.1 shows
that (with the notation used there) when a2 = 0 and dx=1 the only tangent
vectors one can obtain in J$(l, 1) are those with initial terms
*3,*3>£i»gi,xigux3g2,g\,gig2,g2

2. So if gi and g2 vanish to sufficiently high
order we do not obtain a submersion onto J%{\, 1). In other words for dy = 2 (or
indeed dx = 3) we need some further information on the contact of the curve with
its tangent planes before our methods are to be of any use.

(iii) For «>6 for both smooth submanifolds of R" and complete intersections in P"
one has to replace the stratification by orbits of simple singularities by
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Looijengas canonical stratification because one encounters uncountably many
orbits i.e. smooth moduli. Unfortunately apart from the simple orbits and some
results on the simple elliptic families £6 due to Wall [8] (and following Wall's
ideas £7 [3]) nothing is known about this stratification. In the algebraic case,
where one is not interested in the Gauss map i.e. the bifurcation set but only in
the dual i.e. the discriminant set of the singularity results of Looijenga,
Wirthmuller and Damon ([5], [9], [4]) show that for many unimodular families
the discriminants are all homeomorphic and one can obtain a corresponding
extension of Theorem 2.3 for larger values of n.
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