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Abstract

Consider an urn model whose replacement matrix is triangular, has all nonnegative entries,
and the row sums are all equal to 1. We obtain strong laws for the counts of balls
corresponding to each color. The scalings for these laws depend on the diagonal elements
of a rearranged replacement matrix. We use these strong laws to study further behavior
of certain three-color urn models.
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1. Introduction

Consider an urn with balls of (K + 1) colors. Initially, the counts of balls of each color are
nonrandom, strictly positive real numbers and the total count of balls in the urn equals 1. Let
the row vector C0 denote the initial count of balls of each color. The composition of the urn
evolves by adding balls of different colors at times n = 1, 2, 3, . . . as follows.

Suppose that R = ((rij )) is a (K + 1) × (K + 1) nonrandom balanced (that is, each row
sum is the same and, hence, without loss of generality, equal to 1) replacement matrix with
nonnegative entries. Let Cn denote the row vector of the counts of balls of each color after the
nth trial, n = 1, 2, . . . . At the nth trial, a ball is drawn at random from the urn with the current
composition Cn−1, so that the ith color appears with probability Cn−1,i/n, i = 1, . . . , (K +1).
If the ith color appears then, for j = 1, . . . , (K + 1), rij balls of the j th color are added to the
urn before the next draw, together with the drawn ball. It is of interest to study the stochastic
behavior of Cn as n → ∞.

In the case when R is irreducible, let πR be the unique stationary distribution satisfying
πRR = πR. Then (see, for example, Gouet (1997)) Cn/(n + 1) → πR almost surely. Note
that πR is also a left eigenvector of R corresponding to the eigenvalue 1. However, when R

is not irreducible or balanced, the number of balls of different colors may increase at different
rates and strong or weak limits for Cn are not known in full generality.

Janson (2006) considered two-color triangular urn models, where the replacement matrix
was not necessarily balanced, and identified the weak limits of Cn in all possible cases. He
mentioned urns with more colors and triangular replacement matrices as possible objects of
further study (cf. Janson (2006, Problem 1.16)). Flajolet et al. (2006) considered a three-color
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572 A. BOSE ET AL.

urn having balanced triangular replacement matrix R with further conditions on the entries and
obtained weak limit theorems.

Motivated by these results, we consider balanced, triangular urns with an arbitrary (but finite)
number of colors. This assumption of balancedness on R allows us convenient application of
martingale techniques. In contrast, Janson (2006) used the theory of branching processes
and Flajolet et al. (2006) used generating functions. However, the application of martingale
techniques to the study of urn models is not new; see, for example, Gouet (1997) and Bai and
Hu (1999).

With appropriate scalings, we establish almost-sure convergence of each color count to a
nonzero limit. Under an additional assumption, see (2.2), the limits are expressed in terms of
the limits of certain martingales and left eigenvectors of appropriate submatrices of R. These
strong laws for urn models with an arbitrary but finite number of colors and balanced triangular
replacement matrices are the main contributions of this paper.

The outline of the rest of the paper is as follows. In Section 2 we first describe a rearrangement
of colors which converts any triangular balanced replacement matrix to an appropriate standard
form. Our results are better described with reference to this standard form. Of course,
the convergence holds without assuming the standard form, but then the rates are indirectly
identified only through an algorithmic approach; see Remark 3.3. We also state the additional
assumption (2.2) required to identify the limits in somewhat explicit forms. In this section we
also establish the notation used to describe the limits and state some necessary auxiliary results.

In Section 3 we state and prove the main theorem. For a color whose corresponding
diagonal entry is larger than all the preceding entries, we consider the right eigenvector of
R corresponding to this eigenvalue and normalize the corresponding linear combination to
obtain a martingale. This martingale turns out to be L2-bounded and, hence, converges almost
surely. The convergence of the individual color count then follows, since earlier colors have
lower rates. For colors whose corresponding diagonal entry is not larger than the previous
entries, we first show that the appropriately scaled color count is L1-bounded. Then we form
the appropriate martingale and obtain the convergence.

In Section 4 we analyze the three-color urn model with triangular replacement matrix as a
corollary and obtain the asymptotic behavior of linear combinations of color counts. This gives
an indication of further results that can be proved using the strong laws of this paper.

2. Notation and preliminary results

Suppose that R is a balanced triangular replacement matrix with row sums equal to 1.
Denote the diagonal elements of R as rk, 1 ≤ k ≤ K + 1. Let 1 = i1 < i2 < · · · <

iJ < i(J+1)(= K + 1) denote the indices of the running maxima of the diagonals, namely,
r1 = ri1 ≤ ri2 ≤ · · · ≤ riJ ≤ ri(J+1)

= rK+1 and, for ij < k < i(j+1), we have rk < rij for
j = 1, 2, . . . , J .

Remark 2.1. Since the row sums are equal to 1 and the elements of R are nonnegative, all the
diagonal elements will be less than or equal to 1. Thus, (K + 1) will always be an index of the
running maximum of the diagonals.

The running maxima of R also leads to the following concepts.

Definition 2.1. Suppose that R is a balanced triangular replacement matrix. For j = 1, 2, . . . ,

J , the colors indexed by ij , ij + 1, . . . , i(j+1) − 1 constitute the j th block of colors, ij is called
its leading index, and the corresponding color is called the leading color of the j th block. The
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color indexed by (K + 1) will be the leading color and the sole constituent of the (J + 1)th
block.

The triangular replacement matrix R with the indices of the running maxima of the diagonals
can be visualized as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 r12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
r2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

. . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ri2−1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ri2 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
. . . · · · · · · · · · · · · · · · · · · · · · · · ·

rij
· · · rij ,k · · · rij ,i(j+1)−1 rij ,i(j+1)

· · · · · ·
. . . · · · · · · · · · · · · · · · · · ·

rk · · · rk,i(j+1)−1 rk,i(j+1)
· · · · · ·

. . . · · · · · · · · · · · ·
ri(j+1)−1 ri(j+1)−1,i(j+1)

· · · · · ·
ri(j+1)

· · · · · ·
. . . · · ·

ri(J+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here r1 = ri1 ≤ ri2 ≤ · · · ≤ rij ≤ ri(j+1)
= ≤ · · · ≤ ri(J+1)

give the running maxima of the
diagonal entries. It will be helpful to study the concepts of rearrangement and blocks, while
keeping this visualization in mind.

To study urn models with triangular replacement matrices, we need to arrange the colors
systematically, which we describe next. This particular rearrangement keeps the replacement
matrix triangular. The new replacement matrix is obtained by pre- and post-multiplication of
R by permutation matrices. Thus, it remains balanced with row sum 1 and has the same set
of eigenvalues. The elements of the new eigenvectors are also suitable rearrangements of the
original elements.

Definition 2.2. The colors are said to be arranged in the increasing order if R satisfies the
following: with 1 = i1 < i2 < · · · < iJ < i(J+1)(= K + 1) as the indices of the running
maxima of the diagonals, for ij < k < i(j+1), j = 1, 2, . . . , J , we have

k−1∑
m=ij

rmk > 0. (2.1)

It is easy to see that (2.1) is equivalent to the fact that, for any nonleading color with index k

in the j th block, namely, for ij < k < i(j+1), j = 1, 2, . . . , J , the part of the kth column in
the j th block has at least one nonzero entry. Also, note that condition (2.1) holds only for
nonleading colors.

The next proposition shows that any urn model with triangular replacement matrix can be
transformed into another urn model with a triangular replacement matrix such that the colors
are in increasing order.

Proposition 2.1. Suppose that R is a balanced triangular replacement matrix with row sums
equal to 1. Then there exists a rearrangement of colors into the increasing order, such that the
replacement matrix remains triangular.
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Proof. From Remark 2.1, the (K + 1)th color forms the last block as required. We will now
construct the other blocks inductively going backward. Within a block, the construction will
move forward.

Suppose that we have constructed some blocks. If the leading index of the last constructed
block, say i, is 1, we are done.

If i > 1, we construct the next (previous) block as follows. Let k < i be such that
rk = max{rm : m < i}. The color with index k is declared to be the leading color of the present
block under construction and the index of this color may change, as discussed later, through
rearrangement.

By our choice of leading colors, the diagonal entries of the indices of the leading colors will
be in nondecreasing order, as required.

Next we decide which of the intermediate colors with index m, k < m < i, will be in the
present block. This will be done through a process of rearrangement described inductively
going forward.

Suppose that l colors, including the leading color, satisfying (2.1), have already been obtained
through rearrangement for the present block and the index of the leading color has changed to
k′(> k) after this rearrangement. Then the index of the last considered color was k′ + l − 1. If
k′ + l = i, we have considered all intermediate colors and the construction of the block is over.

If k′ + l < i, consider the color with index k′ + l. By our choice of the leading color of the
present block, we must have rk′ > rk′+l . If we have

∑k′+l−1
m=k′ rm,(k′+l) > 0, we take the color

with index k′ + l as the (l + 1)th color of the present block.

Otherwise, rm,(k′+l) = 0 for m = k′, k′+1, . . . , k′+l−1. In this case we reshuffle the colors
to bring the (k′+l)th color ahead of the k′th one, and then rm,(k′+l), m = k′, k′+1, . . . , k′+l−1,
will be the only entries that will move below the diagonal of the k′th column in the reshuffled
replacement matrix. Hence, the reshuffled replacement matrix will remain triangular. After
reshuffle, this color will have index k′ and the index of the colors already in the present block
will increase by 1, with the present leading index increasing to k′ + 1. The number of colors
in the present block will remain at l. This gives the forward induction step for constructing a
block. Since a color is shuffled if it fails to satisfy (2.1), all the remaining colors will satisfy this
condition. Thus, we complete the backward induction step for the rearrangement of blocks.

In view of the above proposition, we will always assume, unless otherwise mentioned, that
the colors are indeed in increasing order.

Note that if rij = rij+1 and rm,i(j+1)
= 0 for all m = ij , ij + 1, . . . , i(j+1) − 1, then we

can reshuffle the colors to bring the i(j+1)th color ahead of the ij th one, yet maintaining the
triangular structure of the replacement matrix and the increasing order of the colors. Hence,
the rearrangement of colors into the increasing order will not be unique. To make the above
rearrangement of colors into the increasing order a unique one, we further assume that

i(j+1)−1∑
m=ij

rm,i(j+1)
> 0 whenever rij = ri(j+1)

. (2.2)

Assumption (2.2) is equivalent to requiring that there is at least one nonzero entry in the i(j+1)th
column in the part corresponding to the j th block. Its significance is discussed in Remark 3.1,
below.
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We define the following submatrices and vectors corresponding to different blocks of colors.

Definition 2.3. Let R(j) be the submatrix formed by the rows and columns corresponding to
the indices of the j th block. We will also write λj = rij = r

(j)
1 . The part of the vector Cn

corresponding to the j th block will be denoted by C
(j)
n . Finally, ρ(j) will denote the part of the

ij+1th column corresponding to the j th block.

By the definition of a block, rij = λj is the strictly largest eigenvalue of R(j) and has
multiplicity 1. Let π (j) be the unique left eigenvector of R(j) corresponding to the eigenvalue
λj normalized so that its first element is 1. Then π (j) satisfies

π (j)R(j) = λjπ
(j), π

(j)
1 = 1.

Observe that if ij ≤ m, k < i(j+1) then Cnm = C
(j)

n,(m−ij +1) and rmk = r
(j)

(m−ij +1), (k − ij + 1).

Here π
(j)
k , Cnk , and C

(j)
nk denote the kth coordinate of π (j), Cn, and C

(j)
n , respectively.

Next we define an index to count the number of times the diagonal entry corresponding to a
leading color has occurred before. This is important in obtaining the rates of convergence for
the color counts in Theorem 3.1.

Definition 2.4. For the j th block with leading color index ij , let

νj = #{m : rm = λj , m < ij }.

Observe that, if rm = λj for some m < ij then m is a leading index as well. So, if it is the
first time a diagonal has value λj , we have νj = 0. Also, note that λj−1 = λj if and only if
νj > 0, and in this case, νj−1 = νj − 1 holds.

The following useful result is obtained as a consequence of the above definitions.

Lemma 2.1. If the colors are in increasing order and the replacement matrix R is triangular,
then all the coordinates of the vector π (j) are positive.

Proof. We prove this by induction on the coordinates of the vector.
Observe that if rij = 0 then the j th block has only one color, namely, the ij th color. By

the choice of normalization, π
(j)
1 = 1. If rij = 0 then, by the above observation, the proof is

complete. So, without loss of generality, we can take rij > 0.
Now assume that the first k(< i(j+1) − ij ) coordinates of π (j) are positive. By the property

of the eigenvector of R(j), we have
∑k+1

m=1 π
(j)
m r(m+ij −1),(k+ij ) = rij π

(j)
k+1. This gives

π
(j)
k+1 = 1

rij − rk+ij

k∑
m=1

π
(j)
m r(m+ij −1),(k+ij ).

The denominator on the right-hand side is positive, since rij is the strictly largest eigenvalue.
By the induction hypothesis, π

(j)
m > 0 for m = 1, . . . , k. Also, by (2.1), r(m+ij −1),(k+ij ) > 0

for some m = 1, . . . , k. This proves the induction step and the lemma.

We also denote �n(s) = ∏n−1
i=0 (1 + s/(i + 1)). Recall that Euler’s formula for the gamma

function gives

�n(s) ∼ ns

�(s + 1)
if s is not a negative integer. (2.3)

https://doi.org/10.1239/jap/1245676107 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676107


576 A. BOSE ET AL.

3. Main results

Now we state and prove our main result on the strong convergence of individual color counts.

Theorem 3.1. Suppose that R is a (K + 1) × (K + 1) balanced triangular matrix with row
sums equal to 1 and (J +1) blocks, and that the colors are in increasing order, satisfying (2.2).
Then, for j = 1, 2, . . . , J + 1,

C
(j)
N

Nλj (log N)νj
→ π (j)Vj almost surely and in L2,

where VJ+1 = 1. If r1 = 0 then V1 = C01. If r1 > 0 then V1 is a nondegenerate random
variable. For j = 2, 3, . . . , J , if νj = 0 then Vj is also a nondegenerate random variable. If
νj > 0, we further have

Vj = 1

νj

π (j−1)ρ(j−1)Vj−1. (3.1)

Remark 3.1. Owing to Lemma 2.1, the entries of π (j−1) are all positive, and ρ(j−1) has at
least one positive entry by (2.2), which means that π (j−1)ρ(j−1) > 0 and, hence, recursively,
all the Vj s are nondegenerate.

Remark 3.2. If rj = 1 for some j ≤ K then the rest of the entries in the j th row are 0.
Thus, (2.1) requires that rj+1 = 1 and that the (j + 1)th color will be the leading color of a
new block. However, if (2.2) is also assumed, even this is not possible. So, in the setup of
Theorem 3.1, we must have rj < 1 for all j ≤ K .

Remark 3.3. The rearrangement of colors into the increasing order and condition (2.2) help us
identify the limits in Theorem 3.1. However, it will be clear from the proof that even without
this assumption, appropriate strong laws hold. In this approach we do not use the concept of
blocks. It can be shown that

1

Nr1
CN1 → W1 almost surely

for some random variable W1. We can then inductively define the rates for all colors j > 1 as
follows: assume that, for all 1 ≤ j ≤ k, there exist sj , δj , and random variables Wj such that

1

Nsj (log N)δj
CNj → Wj almost surely.

If the part of the (k+1)th column above the diagonal has all zero entries then, for some random
variable Wk+1,

1

Nr(k+1)
CN,(k+1) → Wk+1.

On the other hand, suppose that rj,(k+1) > 0 for some j = 1, 2, . . . , k. Consider all the
colors indexed by j such that rj,(k+1) > 0. Let the highest rate of convergence for such color
counts be ns(log n)δ . Then we can say that

1

an

CN,(k+1) → Wk+1 almost surely
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for some random variable Wk+1, where

an =

⎧⎪⎨
⎪⎩

ns(log n)δ if rk+1 < s,

ns(log n)δ+1 if rk+1 = s,

nrk+1 if rk+1 > s.

It is not clear whether we can easily write down how the Wks are related. However, under
condition (2.2), if we rearrange the colors into the increasing order, the subvectors corresponding
to each block obtained from the rearranged Wks are of course the same as the π (j)Vj s and will
satisfy (3.1).

Proof of Theorem 3.1. The proof is through induction on the index of color l. Let χn be the
row vector of order (K + 1) whose mth entry is 1 if the mth color is drawn at the nth draw and
whose other entries are all 0. Let Fn denote the σ -field generated by {χk : 1 ≤ k ≤ n}.

We first quickly verify the result for l = 1. If r1 = 0 then the entire first column is 0, so the
first color count cannot change whichever color is drawn. Thus, Cn1 stays constant at C01 and
the result is trivially true. Next consider r1 > 0. In this case, we pool all the remaining colors,
giving us the replacement matrix (

r1 1 − r1
0 1

)
.

Then the result for l = 1 follows from Proposition 2.2(iii) of Bose et al. (2009).
Now assume that the result holds for the first (l − 1) colors for some l ≥ 2. Suppose that

the next color is the kth color of the j th block. Then we have l = ij + k − 1.
The following two observations follow from the induction hypothesis.

(i) If l is a leading color, that is, k = 1 and l = ij , we have

CNm

Nλj−1(log N)νj−1
→

{
π

(j−1)
m+1−i(j−1)

Vj−1 if i(j−1) ≤ m < ij ,

0 if m < i(j−1),
(3.2)

almost surely, as well as in L2.

(ii) If l is not a leading color, that is, k > 1 and l > ij , we have

CNm

Nλj (log N)νj
→

{
π

(j)
m+1−ij

Vj if ij ≤ m < l,

0 if m < ij ,
(3.3)

almost surely, as well as in L2. In particular, we have, for m < l,

E[CNm] =
{

O(Nλj−1(log N)νj−1) if k = 1,

O(Nλj (log N)νj ) if k > 1.
(3.4)

We separate the proof into three cases: k = 1, νj = 0; k = 1, νj > 0; and k > 1.
Case 1: k = 1 and νj = 0. Let ζ be a right eigenvector of R for the eigenvalue λj = rij ,

such that ζij = 1 and ζk = 0 for k > ij . Observe that, since R is triangular, an eigenvector with
the above conditions can be obtained by solving a triangular system of equations. Moreover,
since νj = 0 gives rk < rij for all k < ij , we would further have ζk ≥ 0 for k ≤ ij .
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Consider the martingale UN = CNζ/�N(λj ). Then the martingale difference is

UN+1 − UN = λj

�N+1(λj )

(
χ

N+1 − CN

N + 1

)
ζ .

Denote by ζ 2 the column vector whose coordinates are squares of those of ζ . Hence, we have

E[(UN+1 − UN)2 | FN ] = λ2
j

(�N+1(λj ))2

(
CNζ 2

N + 1
−

(
CNζ

N + 1

)2)

≤ 1

(�N+1(λj ))2

CNζ 2

N + 1

≤ ‖ζ‖∞
(N + 1)�N+1(λj )

UN

≤ ‖ζ‖∞�(λj + 1)
1 + U2

N

(N + 1)1+λj

for all large enough N , where ‖ζ‖∞ is the largest coordinate of ζ (recall that all the coordinates
of ζ are nonnegative), and the last inequality follows by using the fact that 2UN ≤ 1 + U2

N

and (2.3).
As in the proof of Proposition 2.2(iii) of Bose et al. (2009), this gives an iteration for

1 + E[U2
N ], and we can prove that UN is L2-bounded and, hence, converges almost surely, as

well as in L2. Thus, by (2.3), CNζ/Nλj also converges almost surely, as well as in L2, to Vj ,
say.

Note that U1 = C1ζ/(1 + λj ) = (C0ζ + λjχ1ζ )/(1 + λj ). Since all the coordinates of C0
are positive, χ1 takes all coordinate vectors as values with positive probability. Thus, χ1ζ is
constant if and only if all the coordinates of ζ are of the same value. This will be the case if and
only if the corresponding eigenvalue is 1, which, by Remark 3.2, holds if and only if l = K +1
and j = J + 1. So in this case, CNζ = N + 1 and we have UN = CNζ/(N + 1) = 1 = VJ+1.

If j ≤ J , U1 is nondegenerate and, hence, has positive variance. Since UN is a martingale,
the variance of UN is nondecreasing and the limit variable has nonzero variance. So the limit
variable Vj is nondegenerate for j ≤ J .

Finally, using the limit of CNζ/Nλj , since ζk = 0 for k > ij and ζij = 1, we have

lim
N→∞

1

Nλj
C

(j)
N1 = Vj −

ij −1∑
m=1

ζm lim
N→∞

1

Nλj
CNm almost surely and in L2,

provided that the limits on the right-hand side exist. Since νj = 0, we have λj−1 < λj , and
by (3.2), the limits on the right-hand side are all 0. Thus,

1

Nλj
C

(j)
N1 → Vj almost surely and in L2,

and Vj is nondegenerate for j ≤ J , VJ+1 = 1. Since π
(j)
1 = 1, we have proved the induction

step for case 1.
For the other two cases, the proof is carried out in two steps. We first show the

L1-boundededness of ZN := C
(j)
Nk/(N

λj (log N)νj ) and then we show the required almost-sure
convergence and the L2-convergence by constructing an appropriate martingale.
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Step 1: L1 bound. Observe that CN+1,l = CNl + ∑l
m=1 χ

N+1,m
rml, which gives

E[CN+1,l | FN ] = CNl

(
1 + rl

N + 1

)
+ 1

N + 1

l−1∑
m=1

CNmrml, (3.5)

leading to

E[CN+1,l] = E[CNl]
(

1 + rl

N + 1

)
+ 1

N + 1

l−1∑
m=1

E[CNm]rml.

Iterating, we have

E[CN+1,l] = C0l�N(rl) +
l−1∑
m=1

rml

N∑
n=0

1

n + 1
E[Cnm]�N(rl)

�n(rl)
.

To conclude, using C0l = C
(j)
0k and CNl = C

(j)
Nk ,

E[C(j)
Nk]

�N(rl)
= C

(j)
0k +

l−1∑
m=1

rml

N−1∑
n=0

1

n + 1

E[Cnm]
�n(rl)

. (3.6)

Case 2: k = 1 and νj > 0. We also have νj−1 = νj − 1 and rl = λj = λj−1. Then
using (2.3), (3.4), and (3.6), we have

E[C(j)
Nk]

�N(λj )
= C

(j)
0k +

l−1∑
m=1

rml

N−1∑
n=0

(log(n + 2))νj−1

n + 1

E[Cnm]
nλj (log(n + 2))νj −1

nrl

�n(rl)

= O((log N)νj ).

Thus, again using (2.3), {ZN } becomes L1-bounded.
Case 3: k > 1. Here we have rl < λj . Then using (2.3), (3.4), and (3.6), we have

E[C(j)
Nk]

�N(rl)
= C

(j)
0k +

l−1∑
m=1

rml

N−1∑
n=0

(log(n + 2))νj

(n + 1)nrl−λj

E[Cnm]
nλj (log(n + 2))νj

nrl

�n(rl)

= O(Nλj −rl (log N)νj ).

Thus, again using (2.3), {ZN } becomes L1-bounded.
Step 2: convergence. Now we construct the relevant martingale. Using (3.5), it is easy to

check that

MN = CNl

�N(rl)
−

l−1∑
m=1

N−1∑
n=0

rml

n + 1 + rl

Cnm

�n(rl)
(3.7)

forms a martingale. The corresponding martingale difference is given by

MN+1 − MN = 1

�N+1(rl)

l∑
m=1

(
χ

(N+1),m
− CNm

N + 1

)
rml,
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which leads to, using (3.4) and the L1-boundedness of ZN ,

E[(MN+1 − MN)2] = 1

(�N+1(rl))2 E

[∑l
m=1 CNmr2

ml

N + 1
−

(∑l
m=1 CNmrml

N + 1

)2]

≤ 1

(�N+1(rl))2 E

[∑l
m=1 CNmr2

ml

N + 1

]
(3.8)

= O

(
(log N)νj

N1+2rl−λj

)
. (3.9)

When k = 1, νj > 0, and λj = rl = 0, we can further improve on the order of the
squared moment of the martingale difference given in (3.9). Observe that l being a leading
color and rl = 0 imply that rm = 0 for all m < l, which makes each of the colors indexed
by m ≤ l a leading color of a block of size 1. This implies that j = l. Since the diagonal
elements corresponding to all these colors are 0, we have νm = m − 1 for m ≤ l. Since
νj = j −1 = l −1 > 0, we have l ≥ 2. Thus, (3.4) simplifies to E[Cnm] = O((log n)m−1) for
m < l. Also, rl being 0, the lth term in the sum of (3.8) does not contribute. Hence, we have

E[(MN+1 − MN)2] = O

(
(log N)(νj −1)

N

)
. (3.10)

Case 2: k = 1 and νj > 0. Here we have l = ij and rl = λj . First assume that rl = λj > 0.
Then the right-hand side of (3.9) is summable. Hence, MN is an L2-bounded martingale, which
converges almost surely, as well as in L2. Since νj > 0, we have

1

(log N)νj
MN → 0 almost surely and in L2.

Next assume that rl = λj = 0. Then, using (3.10), we find that MN/(log N)νj /2 is
L2-bounded. Hence, we have MN/(log N)νj → 0 in L2. We will now show that

YN := 1

(log N)νj
MN converges almost surely.

Since the L2-limit is known to be 0, we will then have YN → 0 almost surely, as well as in L2.
With �N = 1/(log N)νj , we have YN = MN�N , which gives

YN+1 − YN = MN+1(�N+1 − �N) + �N(MN+1 − MN). (3.11)

Thus, it is enough to show that the partial sums of each of the terms on the right-hand side
of (3.11) converges almost surely.

Now, �N is a deterministic sequence and

|�N+1 − �N | = �N+1

[(
log(N + 1)

log N

)νj

− 1

]
∼ νj

N(log N)νj +1 .

We further know that MN/(log N)νj /2 is L2-bounded and, hence, L1-bounded. Thus, recalling
that νj > 0, E[|MN+1(�N+1 −�N)|] is summable and, hence, the first term on the right-hand
side of (3.11) is almost surely absolutely summable.
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Since MN+1 − MN is a martingale difference, so is the second term on the right-hand side
of (3.11). By (3.10) we have

E[�2
N(MN+1 − MN)2] = O

(
1

(log N)2νj

(log N)νj −1

N

)
,

which is summable, as νj > 0. Hence, the second term on the right-hand side of (3.11) is the
difference sequence of a martingale which converges almost surely, as well as in L2. Thus, we
find that YN converges almost surely, as well as in L2, to 0 even when rl = λj = 0. Hence,
under the assumption of case 2, k = 1 and νj > 0,

1

(log N)νj
MN → 0 almost surely and in L2.

Using (3.7), we then have

lim
N→∞

CN,ij

Nλj (log N)νj

= lim
N→∞

�N(λj )

Nλj (log N)νj

ij −1∑
m=1

N−1∑
n=0

rm,ij

(log n)νj −1

n + 1 + λj

nλj

�n(λj )

Cnm

nλj (log n)νj −1 ,

where the limit is in the almost-sure as well as the L2 sense. Since νj > 0, we have λj = λj−1
and νj − 1 = νj−1. Thus, from (2.3) and (3.2), we have

C
(j)
N1

Nλj (log N)νj
= CNij

Nλj (log N)νj

→ 1

νj

ij −i(j−1)∑
m=1

π
(j−1)
m ρ

(j−1)
m Vj−1

= 1

νj

π (j−1)ρ(j−1)Vj−1 almost surely and in L2. (3.12)

We obtain the formula for Vj in terms of Vj−1 from (3.12). Since, by normalization, π
(j)
1 = 1,

we have proved the induction step for case 2.
Case 3: k > 1. Here rl < λj holds and, hence, λj > 0. If rl > λj/2, using (3.9), MN is an

L2-bounded martingale and, hence, converges almost surely, as well as in L2. Thus,

MN

Nλj −rl (log N)νj
→ 0 almost surely and in L2.

The analysis is a bit more elaborate when rl ≤ λj/2. If rl = λj/2 then, using (3.9),
MN/(log N)(νj +1)/2 is L2-bounded. On the other hand, if rl < λj/2, again using (3.9),
MN/(Nλj /2−rl (log N)νj /2) is L2-bounded. Hence, for rl ≤ λj/2,

MN

Nλj −rl (log N)νj
→ 0 in L2.

We will now show that YN := MN/{Nλj −rl (log N)νj } converges almost surely (to 0) even
when rl ≤ λj/2. With �N = 1/{Nλj −rl (log N)νj }, we have YN = MN�N , which gives

YN+1 − YN = MN+1(�N+1 − �N) + �N(MN+1 − MN).
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As before, it is enough to show that the partial sums of each of the terms on the right-hand side
converge almost surely, which can be proved in a similar manner using

|�N+1 − �N | = �N+1

[(
1 + 1

N

)λj −rl
(

log(N + 1)

log N

)νj

− 1

]
∼ λj − rl

N1+λj −rl (log N)νj
.

We leave the details to the reader.
Using (3.7), we have

lim
N→∞

CNl

Nλj (log N)νj

= lim
N→∞

�N(rl)

Nλj (log N)νj

l−1∑
m=1

N−1∑
n=0

rml

(log n)νj

(n + 1 + rl)n
rl−λj

nrl

�n(rl)

Cnm

nλj (log n)νj
,

where the limit is in the almost-sure as well as the L2 sense. Thus, from (3.3), using the fact
that π (j) is the left eigenvector of R(j) for the eigenvalue λj , we have

C
(j)
Nk

Nλj (log N)νj
= CNl

Nλj (log N)νj

→ 1

λj − rl

k−1∑
m=1

π
(j)
m r

(j)
mk Vj

= π
(j)
k Vj almost surely and in L2.

This completes the proof of the induction step and the proof of the theorem.

4. Three-color urns

We now specialize to three-color urns. The replacement matrix is then

R =
⎛
⎝r11 r12 r13

0 r22 r23
0 0 1

⎞
⎠ . (4.1)

We assume that the entries are nonnegative, that each row sum is equal to 1, and that (2.2) holds.
The latter is equivalent to assuming that r11 < 1, r22 < 1, and r12 > 0, whenever r11 = r22.

This three-color urn model has already been considered in Flajolet et al. (2006), who further
assumed that r11 > 0, r12 > 0, and r22 > 0. Under these assumptions, they established the weak
convergence of appropriately scaled Cn and obtained the limit distributions (cf. Propositions 25
and 26 of Flajolet et al. (2006)).

In contrast, we have established the almost-sure convergence of scaled Cn. We restate our
result in a form that is applicable to the three-color urn.

Corollary 4.1. Suppose that we have a three-color urn model with triangular replacement
matrix R given by (4.1) with nonnegative entries and each row sum equal to 1. Assume that
r11 < 1, r22 < 1, and r12 > 0, whenever r11 = r22. Then there exist nondegenerate random
variables V1, V2, and V3 such that the following assertions hold.

(i) Cn3/n → 1.
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(ii) If r11 = 0 then Cn1 stays unchanged at C01. If r11 > 0 then Cn1/nr11 → V1.

(iii) If r22 > r11 then Cn2/nr22 → V2.

(iv) If r22 = r11 and r12 > 0, then Cn2/(n
r22 log n) → r12V1.

(v) If r22 < r11 and r12 > 0, then Cn2/nr11 → r12V1/(r11 − r22). If 0 < r22 < r11 and
r12 = 0, then Cn2/nr22 → V3.

(vi) If r12 = r22 = 0 then Cn2 stays unchanged at C02.

The convergence of all the above random variables is almost sure as well as in L2.

Three-color urn models with reducible and block triangular balanced replacement matrices
were considered in Bose et al. (2009). They established the almost-sure convergence of
appropriately scaled individual color counts as well as weak/strong limits of linear combinations
Cnζ for suitable vectors ζ obtained from the Jordan decomposition of R.

Armed with the strong laws obtained from Corollary 4.1, we can now extend the results of
Bose et al. (2009) to the case of three-color urn models with triangular replacement matrices.
Observe that ξ1 = (1, 0, 0)	 and ξ3 = (1, 1, 1)	 are always right eigenvectors of R with
respect to the eigenvalues r11 and r33, respectively. Clearly, Cnξ3/(n + 1) = 1 for all n. Also,
since Cnξ1 = Cn1, its limiting behavior is given in Corollary 4.1(ii).

Now observe that if r11 
= r22 then R has a right eigenvector ξ2 with respect to the eigenvalue
r22, given by ξ2 = (r12, r22 − r11, 0)	. If r22 > r11 then, from Corollary 4.1(ii) and (iii), we
have

Cnξ2

nr22
→ (r22 − r11)V2 almost surely and in L2,

since the contribution of Cn1 is of smaller order.
If r22 < r11 and r12 = 0, then observe that Cnξ2 = (r22 − r11)Cn2. If we further have

r22 > 0 then from Corollary 4.1(v) we obtain

Cnξ2

nr22
→ (r22 − r11)V3 almost surely and in L2.

But, if we have r12 = r22 = 0 then Cnξ2 remains constant at C0ξ2.
If 0 = r22 < r11 and r12 > 0, then observe that, ξ2 being an eigenvector of R with respect

to the eigenvalue r22 = 0, Rξ2 becomes a null vector. Also, if, for j = 1, 2, 3, the j th color
appears in the nth draw, Cnξ2 increases by an amount which is the j th coordinate of Rξ2,
namely, 0. Thus, Cnξ2 remains constant at C0ξ2.

The situation becomes interesting when 0 < r22 < r11 and r12 > 0. Note that in this case
we find, from Corollary 4.1(ii) and (v), that Cnξ2/nr11 → 0 almost surely, as well as in L2. We
summarize the asymptotic behavior of Cnξ2 in this case in the following proposition.

Proposition 4.1. Suppose that we have a three-color urn model with triangular replacement
matrix R given by (4.1) with nonnegative entries and each row sum equal to 1. Assume
that 0 < r22 < r11 and r12 > 0. Let V1 be the almost-sure limit of Cn1/nr11 obtained in
Corollary 4.1(ii). Then the following assertions hold.

(i) If r22 < r11/2 then

Cnξ2√
nr11

w−→ N

(
0,

r12r
2
22(r12 + r11 − r22)

r11 − 2r22
V1

)
.
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(ii) If r22 = r11/2 then

Cnξ2√
nr11 log n

w−→ N(0, r12r
2
22(r12 + r11 − r22)V1).

(iii) If r22 > r11/2 then Cnξ2/nr22 converges almost surely and in L2 to a nondegenerate
random variable.

Note that here V1 is a random variable and the above limits are to be interpreted as variance
mixtures of normal distributions.

Proof of Proposition 4.1. Observe that only the first two components of the eigenvector ξ2
corresponding to the eigenvalue r22 are nonzero in this case. Hence, the evolution equation

Cn+1ξ2 = Cnξ2 + r22χn+1ξ2

can be written in terms of the first two colors only as

Sn+1ξ = Snξ + λsχn+1ξ ,

where s = r11, λ = r22/r11, and Sn, ξ , and χn are the restrictions of Cn, ξ2, and χn to the
first two colors only, with some abuse of notation. From Corollary 4.1(ii) and (v), we have
Sn/ns → πV1 with probability 1, where π = (1, r12/(r11 − r22)). Now the analysis of the
proof of Theorem 3.1(v)–(vii) of Bose et al. (2009) can be repeated verbatim, with obvious
changes for the almost-sure limits of Sn/ns for the calculation of the limiting variances, which
is outlined below.

The limiting variance in (i) above will be r2
22V1πξ2/(r11 − 2r22), where ξ2 is a column

vector with coordinates which are the squares of those of ξ . The limiting variance in (ii) above
will be r2

22V1πξ2. A simplification in either case gives the result.

Finally, if r12 > 0 and r11 = r22, then, for this repeated eigenvalue, it can be checked that,
for any α, ξ2 = (α, 1/r12, 0)	 is a Jordan vector satisfying Rξ2 = ξ1 + r11ξ2. Hence, from
Corollary 4.1(ii) and (iv), we have

Cnξ2

nr22 log n
→ V1 almost surely and in L2,

where V1 is the almost-sure limit of Cn1/nr11 obtained in Corollary 4.1(ii).
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