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Abstract. In this paper, we study the existence of positive solutions to a semilin-
ear nonlocal elliptic problem with the fractional α-Laplacian on Rn, 0 < α < n. We show
that the problem has infinitely many positive solutions in Cτ (Rn)

⋂
Hα/2

loc (Rn). Moreover,
each of these solutions tends to some positive constant limit at infinity. We can extend our
previous result about sub-elliptic problem to the nonlocal problem on Rn. We also show
for α ∈ (0, 2) that in some cases, by the use of Hardy’s inequality, there is a nontrivial
non-negative Hα/2

loc (Rn) weak solution to the problem

(−�)α/2u(x) = K(x)up in Rn,

where K(x) = K(|x|) is a non-negative non-increasing continuous radial function in Rn and
p > 1.

2000 Mathematics Subject Classification. 35A05, 35A15, 35B50, 35J60, 46Txx,
53C70, 58E50

1. Introduction. In their recent work, Chen et al. [4] further developed the method
of moving planes and proved that the following fractional semilinear elliptic equation:

(−�)α/2u = up, u ≥ 0, in Rn,

where α ∈ (0, 2) only has trivial solution when p ∈ (
1, n+α

n−α

)
and all solutions are radially

symmetric about some points when p = n+α
n−α

. Since there are many articles concerning the
method of moving planes for nonlocal equations, mainly for integral equations, we cannot
mention all but refer the readers to the reference [8] for one case with enjoyable detail. In
this paper, we consider the existence result of positive solutions to the following nonlocal
problem:

(−�)α/2u + k(x)u = K(x)up, u ≥ 0, in Rn, (1.1)

where α ∈ (0, n), (−�)α/2u is defined as usual by Fourier transform, k(x) and K(x)
are given regular functions in Rn, and p > 1 is arbitrary. This equation comes from the
stationary version of fractional space diffusion.

When α = 2 and p = n+2
n−2 in equation (1.1), this problem is the prescribed scalar cur-

vature problem and there is also other deep scientific background. Li and Ni [7] used the
variational method to prove the existence of a positive solution with decay at infinity and
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finite Dirichlet energy to a large class of semilinear elliptic problem in Rn, which includes
the Matukuma equation in R3 from the models of globular clusters of stars, namely,

�U + Up

1 + |x|2 = 0 in R3,

where p > 1 is arbitrary. Note that the power p > 1 can be bigger than the Sobolev critical
exponent. To achieve the existence of a positive solution, they use the symmetric rearrange-
ment process and a calculus lemma derived from the integration by part. Their method
cannot be directly used in our problem (1.1).

We remark that in our previous work [10], we have considered the following general
uniformly elliptic semilinear equation:

�H U − k(x)U + K(x)Up = 0 in Rn,

where �H is the sub-elliptic Hormander–Laplacian operator defined by a group of vector
fields {Xj}m

j=1 in Rn with n ≥ 3, p > 1, k(x), and K(x) as measurable functions. Under differ-
ent assumptions about k(x) and K(x), we can obtain an existence result of positive solutions
by the Perron method (also called the monotone method) and a non-existence result of
positive solutions by the maximal norm growth argument. When �H U = �U with the
Laplacian operator �, k(x) = 0, and K(x) = K(|x|) is a radial function with suitable decay
assumption, the equation also includes the scalar curvature problem in Rn. These results
extend some results of Gidas and Spruck [6] in the case when 1 < p < n+2

n−2 and Gidas et al.

[5] when p = n+2
n−2 . See also reference [3] for a beautiful proof of the latter result.

We prove the following result:

THEOREM 1.1. Assume 0 < α < n and p > 1. Let ω : R+ → R+ be the monotone non-
increasing function such that ω(r/2) ≤ Cω(r) for any r > 1 and for some uniform constant
C > 0 and it holds that ∫ ∞

1

ω(r)

r
dr = A < ∞. (1.2)

Then there are positive constants β ∈ (0, 1) and θ such that for smooth functions k(x)
and K(x) with |K(x)| ≤ θω(|x|)(1 + |x|)−τ and 0 ≤ k(x) ≤ θω(|x|)(1 + |x|)−τ on Rn for
some τ > α and τ �= n, the problem (1.1) has infinitely many positive solutions in
Cβ(Rn)

⋂
Hα/2

loc (Rn). Moreover, each of these solutions tends to some positive constant
limit at infinity.

The novelty of the result above is α ∈ (0, n) about the range of the power α and the
precise condition about the function ω(·). In the previous study, the condition that ω(r/2) ≤
Cω(r) for any r > 1 is not mentioned. We prove the above result by using the classical
Perron method argument and the Perron method is based on the comparison principle.
Similar argument had been carried out in reference [10] for nonlinear sub-elliptic equations
on Rn.

Let α ∈ (0, 2), and we use the variational method to consider the existence of non-
negative Hα/2 weak solutions to the following nonlinear nonlocal superlinear elliptic
problem:

(−�)α/2u(x) = K(x)up in Rn, (1.3)

where K(x) = K(|x|) is a non-negative non-increasing continuous radial function in Rn and
p > 1. We have the following result:
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THEOREM 1.2. Assume α ∈ (0, 2) and p > 1. Assume that K(x) = K(|x|) is a non-
negative continuous radial function in Rn such that it is non-increasing in r = |x| and it
satisfies the condition

K(|x|)|x|(α−n)(p+1)/2 ∈ L1(Rn). (1.4)

Then there is a positive radial Hα/2
loc weak solution to (1.3).

We remark that related regularity result has been developed in reference [1] (in case
when α ∈ (0, 2)). We point out that in the case when α = 2, the corresponding result (even
a stronger result than the statement above) has been obtained as in reference [7]. However,
their method cannot be directly used to prove the result here. We use the Hardy inequal-
ity and symmetrization re-arrangement argument to obtain the existence of the ground
state. This idea may be useful for other problems such as the stationary nonlinear nonlocal
Schrodinger systems. Note that solutions to the fractional Ginzburg–Landau model have
different behavior [9].

We denote by C the uniform constants, which may vary in different inequalities or
formulae. We also denote by BR = BR(0) the ball of radius R in Rn.

We present the potential analysis about nonlocal Poisson equation in Section 2 and
also we prove the main results, Theorems 1.1 and 1.2, in Sections 3 and 4, respectively.

2. Preliminary. To prove Theorem 1.1, we need to prepare some lemmata about the
fractional Poisson equation in Rn. As we have used them in reference [9] and they may be
useful to other situations, we present the proofs in great details.

Let ω : Rn → R be a radially symmetric monotone non-increasing function as in
Theorem 1.1. Recall that the function ω = ω(|x|) is a non-increasing non-negative radial
function on Rn such that there is an uniform constant C > 0 such that ω

( |x|
2

) ≤ Cω(|x|) and∫ ∞
1

ω(r)
r dr < ∞. By the latter condition, we know that there exists a sequence (rj), rj → ∞

such that ω(rj) lg rj → 0.
Let f : Rn → R be a locally Holder continuous function with the decay growth as below

|f (x)| ≤ Cω(|x|)(1 + |x|)−τ , (2.1)

where C > 0 and n �= τ > α are uniform constants.
We study the nonlocal Poisson equation:

(−�)
α
2 u(x) = f (x), in Rn, (2.2)

where 0 < α < n.
We consider the Riesz potential of f :

u(x) = cn,α

∫
Rn

f (y)

|x − y|n−α
dy, (2.3)

where cn,α is an universal constant depending only on α and n. Recall that cn,α|x − y|α−n is
the Green function of the α-Laplace operator (−�)

α
2 in Rn. Then u(x) solves the Poisson

equation (2.2) provided f satisfies some decay condition, saying, for example, f ∈ C∞
0 (Rn).

LEMMA 2.1. Assume that τ is a positive number such that n �= τ > α. Let ω : Rn → R
be a radially symmetric monotone non-increasing function as in Theorem 1.1 and let f be
the function used in equation (2.1). Then the function u(x) defined above is well defined
with the following decay estimate at ∞
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|u(x)| ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C|x|α−nω(|x|) if τ > n,

C|x|α−n lg |x|ω(|x|) if τ = n,

C|x|α−τω(|x|) if α < τ < n,

C lg |x|ω(|x|) if α = τ < n.

Proof. We show that u(x) is well defined with the desired decay at infinity. Note that

|u(x)| ≤ C

∫
Rn

1

|x − y|n−α
· ω(y)

(1 + |y|)τ dy.

The later integral can be estimated by dividing the domain into three parts as below.
Assume |x| > 1 and set

D1 =
{

y ∈ Rn; |y − x| ≤ |x|
2

}
,

D2 =
{

y ∈ Rn; |x|
2

≤ |y − x| ≤ 2|x|
}
,

and

D3 = {y ∈ Rn; 2|x| ≤ |y − x|}.
Then, Rn = D1 ∪ D2 ∪ D3.

Let

Ii = C

∫
Di

ω(y)

|x − y|n−α(1 + |y|τ )dy, for i = 1, 2, 3.

Then,

|u(x)| ≤ I1 + I2 + I3.

The term I1 may be bounded as follows. For y ∈ D1, we have |x| − |y| ≤ |x − y| ≤ |x|
2 and

|y| ≥ |x|
2 ≥ |x − y|. Then for τ > α,

I1 ≤ C

∫
|y−x|≤ |x|

2

ω
(

|x|
2

)

|x − y|n−α

[
1 + |x|

2

]τ dy

≤ C
ω

(
|x|
2

)
|x|τ

∫ |x|
2

0

1

rn−α
· rn−1dr

= C
ω

(
|x|
2

)
|x|τ

∫ |x|
2

0
rα−1dr

= C
1

α

ω
(

|x|
2

)
|x|τ

( |x|
2

)α

= C|x|α−τω

( |x|
2

)
.

For τ = α, we have I ≤ Cω
( |x|

2

)
lg |x|.
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The term I3 can be estimated similarly. For y ∈ D3, we have |y − x| ≤ |y| + |x| ≤ |y| +
|y−x|

2 and |x| ≤ |y−x|
2 ≤ |y|. Thus,

I3 ≤ C

∫
D3

ω
( |x−y|

2

)

|x − y|n−α

[
1 +

( |x−y|
2

)]τ dy

≤ C

∫ ∞

2|x|

ω
(

r
2

)
rn−α · rτ

· rn−1dr

≤ C|x|α−τω(|x|/2).

Finally, we estimate the term I2. Note that for y ∈ D2, from |y| − |x| ≤ |y − x| ≤ 2|x| we
have |y| ≤ 3|x|. Thus,

I2 ≤
Cω

(
|x|
2

)
|x|n−α

∫
D2

1

(1 + |y|)τ dy

≤ C|x|α−nω

( |x|
2

) (∫ ∞

|y|≤1

1

(1 + |y|)τ +
∫

1≤|y|≤3|x|
1

(1 + |y|)τ
)

= C|x|α−nω

( |x|
2

) (
1 +

∫ 3|x|

1

1

rτ
· rn−1dr

)
.

Note that the last term (denoted by B) above has the following estimate:

B

⎧⎪⎪⎨
⎪⎪⎩

≤ 1 τ > n,


 lg |x| τ = n,

<∼ |x|n−τ α < τ < n.

In conclusion, we have

|u(x)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C|x|α−nω
(

|x|
2

)
if τ > n,

C|x|α−n lg |x|ω
(

|x|
2

)
if τ = n,

C|x|α−τω
(

|x|
2

)
if α < τ < n,

C lg |x|ω
(

|x|
2

)
if α = τ < n.

This completes the proof.

We now give the lower about the Riesz potential.

LEMMA 2.2. Let ω : Rn → R be a radially symmetric monotone non-increasing func-
tion as in Theorem 1.1. Assume f ≥ 0 in Rn and f (x) ≥ C(1 + |x|)−τω(|x|) for some τ > α

and C > 0. Then the Riesz potential u defined above has the following lower bounds at ∞:

u(x) ≥

⎧⎪⎪⎨
⎪⎪⎩

C|x|α−nω(|x|) if τ > n,

C lg |x|ω(|x|) if τ = n,

C|x|α−τω(|x|) if τ < n.
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Proof. As in the proof of Lemma 2.1 above, we have

u(x) = J1 + J2 + J3 ≥ J2,

where Ji =
∫

D̃i

Cf (y)
|x−y|n−α dy and

D̃2 =
{

y ∈ Rn; |x|
2

≤ |y − x| ≤ |x|
}
.

Note that for y ∈ D̃2, we have |y| ≤ 2|x|.
Take R > 0 large such that f is nontrivial on BR(0). Then for |x| > 1 large,

J2 =
∫

BR(0)

Cf (y)

|x − y|n−α
dy +

∫
D̃2\BR(0)

Cf (y)

|x − y|n−α
dy

≥ C

|x|n−α

(∫
BR(0)

f (y)dy +
∫

D̃2\BR(0)

f (y)dy

)

≥ C

|x|n−α

(
1 +

∫
D̃2\BR(0)

ω(y)

|y|τ dy

)

≥ C

|x|n−α

(
1 +

∫ 2|x|

R

ω(r)

r
rn−τ dr

)
.

This completes the proof.

We then have the following existence result about the nonlocal Poisson equation (2.2).

PROPOSITION 2.3. Assume f is given as above with τ �= n. Then for any a ∈ R, the
equation (2.2) has a unique solution ua ∈ Cβ(Rn) ∩ Hα

loc for some β ∈ (0, 1) for which

lim|x|→∞ ua(x) = a.

Proof. Note that u defined above is bounded in Rn. The Holder continuity comes from
the direct computations (see Theorem 12.1 in the reference [1]). Define

ua(x) = a − u(x) = a − C

∫
Rn

f (y)

|x − y|n−α
dy.

By Lemmata 2.1 and 2.2, we know that

lim|x|→∞ ua(x) = a

and

ua ∈ Cβ(Rn) ∩ Hα
loc.

The solution is unique by applying the maximum principle.

3. Proof of Theorem 1.1. The argument presented below is based on the potential
analysis in Section 2.

We now prove Theorem 1.1. We claim that there is some constants θ1 > 0 such that the
following two assertions are true:

Assertion 1: For any a ∈ (1/3, 1/2) and for any C ∈ (0, θ1), we can define the function
Ua(x) on Rn by adding the constant a to the expression (2.3) and then Ua(x) solves the
nonlocal equation:
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(−�)α/2u = − Cω(x)

(1 + |x|)τ , on Rn

with 0 < Ua(x) ≤ a and Ua(x) → a at infinity.
Assertion 2: For any a ∈ (1/3, 1/2) and for any C ∈ (0, θ1), we can define the function

Ua(x) on Rn via the formula (2.3) such that Ua(x) solves the nonlocal equation:

(−�)α/2u = Cω(x)

(1 + |x|)τ , on Rn

with a ≤ Ua(x) < 1 and Ua(x) → a at infinity.
Choose θ = θ1/3 and C = 2θ in both the above equations. We can verify that Ua is the

lower solution to (1.1) and Ua is the upper solution to (1.1) for any a ∈ (1/3, 1/2). Clearly,
we have 0 < Ua ≤ Ua < 1. Compute

(−�)α/2Ua+k(x)Ua − K(x)(Ua)p

= 2θ1ω(|x|)/3(1 + |x|)τ + k(x)Ua − K(x)(Ua)p

≥ 2θ1ω(|x|)/3(1 + |x|)τ + |K(x)| + |k(x)|
≥ 0 in Rn,

and, similarly, we have

(−�)α/2Ua + k(x)Ua − K(x)(Ua)
p ≤ 0, in Rn.

Then, we can use the Perron method (e.g. [1] or [10]) to get the desired solution u(x) to
(1.1) such that Ua(x) ≤ u(x) ≤ Ua(x) on Rn.

This then completes the proof of Theorem 1.1.

4. Existence of Hα/2
loc weak solutions. Formally, it is clear that equation (1.3) is the

Euler–Lagrange equation of the functional

I(u) = 1

2

∫
Rn

((−�)α/2u(x), u(x)) − 1

p + 1

∫
Rn

K(x)|u(x)|p+1

on the space

H =
{

u ∈ L1
loc(R

n);
∫

Rn

[((−�)α/2u(x), u(x)) + K(x)|u(x)|p+1]dx < ∞
}
.

We denote by

|u|H :=
[∫

Rn

((−�)α/2u(x), u(x))

]1/2

the norm on H . We may look for solutions in the class Lr of non-increasing radially
symmetric functions in Rn. Define Hr = H

⋂
Lr.

Recall the fractional Hardy type inequality (Theorem 1.1 in reference [2]). There is an
uniform constant C = Cn,α > 0 such that for any u ∈ Hr, we have

∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+α

≥ C

∫
Rn

|u|2
|x|α .
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Note that ∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+α

=
∫

Rn

((−�)α/2u(x), u(x)).

For u ∈ Hr, we have

u(r)2rn−α ≤ c

∫
Br(0)

|u(x)2

|x|α ≤ c

∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+α

. (4.1)

With this understanding, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that assumption (1.4) implies that for any u ∈ Hr, we
automatically have

K(|x|)|u(x)|p+1 ≤ cK(|x|)|x|(α−n)(p+1)/2|u|p+1
H ∈ L1(Rn).

This estimate allows us to use the Lebesgue dominated convergence theorem for any
minimizing sequence of the functional I on � defined below.

We use the Nehari functional trick to obtain a solution. Define the functional in H by

N(u) =
∫

Rn

((−�)α/2u(x), u(x)) −
∫

Rn

K(x)|u(x)|p+1

and define the Nehari manifold as

� = {u ∈ H; u �= 0, N(u) = 0}.
For u ∈ �, we have

I(u) =
(

1

2
− 1

p + 1

) ∫
Rn

((−�)α/2u(x), u(x))

and we may take this functional as the new definition of I(u) on �.
Define

d = inf
u∈�

I(u).

We want to take a minimizing sequence (uj) ⊂ � such that I(uj) → d and we want to
replace each uj by a radial function in Hr.

Claim: d > 0.
In fact, for u ∈ �, we let u∗ be the radial arrangement of u. As

I(u) ≥ I(u∗)

and ∫
Rn

K(x)|u(x)|p+1 ≤
∫

Rn

K(x)|u∗(x)|p+1,

we have N(u∗) ≤ 0.
Note that u∗ ∈ Hr. If N(u∗) = 0, we have u∗ ∈ �. From the estimate above, we have∫

Rn

K(x)|u(x)|p+1 ≤ c|u|p+1
H
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and then,

|u|2H ≤ c|u|p+1
H ,

which implies that |u|2H ≥ c > 0 for some uniform constant c > 0. Then, we have

d ≥
(

1

2
− 1

p + 1

)
c > 0.

Otherwise, we have N(u∗) < 0 and we may choose λ ∈ (0, 1) such that û := λu∗, N(û) = 0
and doing the same thing as above we get |û|2H ≥ c > 0. So,

(
1

2
− 1

p + 1

)
c ≤ I(λu∗) = λ2I(u∗) ≤ I(u∗) ≤ I(u) (4.2)

and again we have d ≥ (
1
2 − 1

p+1

)
c.

We now choose a minimizing sequence (uj) ⊂ � such that I(uj) → d. It is clear that uj

is uniformly bounded in H and we may choose an H-weakly convergent subsequence of uj,
still denoted by (uj) and its limit is denoted by u. Using the relation (4.2), we may further
assume that all uj ∈ Hr. Otherwise, we may take ûj as the minimizing sequence. Applying
the Lebesgue dominated convergence theorem to the sequence uj ∈ � with the estimate
(4.1), we know that d = I(u), which implies that u �= 0. By the weakly semi-continuity of
the H norm, we know that N(u) ≤ 0. If u does not in �, i.e., I(u) < 0, then we may find a
real number λ ∈ (0, 1) such that λu ∈ � and then I(λu) ≥ d. However, we have

I(λu) = λ2I(u) = λ2d < d,

which is impossible. Hence, we have u ∈ � and I(u) = d. Therefore, using Lagrange’s
multiplier method, we know that u satisfies (1.3) in H-weak sense.

This completes the proof of Theorem 1.2.
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