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Abstract

A numerical comparison of the Monte Carlo (MC) simulation and the finite-difference
method for pricing European options under a regime-switching framework is presented
in this paper. We consider pricing options on stocks having two to four volatility
regimes. Numerical results show that the MC simulation outperforms the Crank–
Nicolson (CN) finite-difference method in both the low-frequency case and the high-
frequency case. Even though both methods have linear growth, as the number of
regimes increases, the computational time of CN grows much faster than that of MC.
In addition, for the two-state case, we propose a much faster simulation algorithm
whose computational time is almost independent of the switching frequency. We also
investigate the performances of two variance-reduction techniques: antithetic variates
and control variates, to further improve the efficiency of the simulation.

2010 Mathematics subject classification: primary 65C05; secondary 65N06.

Keywords and phrases: option pricing, regime-switching model, finite-difference
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1. Introduction

Following the introduction of the Black–Scholes (BS) model [1] in 1973, analytical
solutions for options pricing became a very popular research topic, since they were
fast to calculate and easy to implement. However, cases with closed-form solutions
are very rare and mostly happen in vanilla European options with path-independent
payoff functions. Options without pricing formulas, including many exotic options
as well as American options, have to be solved numerically. Much research has been
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done on comparing various numerical methods in the BS model for both European and
American options (see, for instance, the books by Brandimarte [3] and Detemple [5]).

It is well known that the conventional BS model with a constant volatility fails to
reflect the stochastic nature of financial markets. As a result, more realistic models
which better reflect random market movements are needed. One of these extended
models is the regime-switching model, in which the volatility term is driven by a hidden
Markov chain and switches between a finite number of states. Since its introduction
by Hamilton [11], growing evidence has suggested that this Markovian switching
model can capture the time-series properties of several important financial variables.
Analytical solutions have been discovered for the model with two states. First Guo [10]
presented a closed-form formula with double integrals for European options under a
two-state regime-switching framework. Fuh et al. [8] found an error in Guo’s formula
and presented a new formula in a very similar form. Later Zhu et al. [17] presented
another closed-form solution which contains only a single integral by finding the
Fourier inversion analytically. However, even though the pricing problem for European
options in a two-state regime-switching model can be solved analytically, closed-form
solutions for the models with more than two states have not been found yet. Numerical
techniques thus continue to play an important role in pricing options with multi-state
regime-switching models.

Research on the numerical methods for regime-switching models has been
discussed in [2, 12–14, 16]. Here we focus on two basic and important methods,
the Monte Carlo (MC) simulation and the finite-difference method, the performances
of which have not yet been compared in the literature. Our paper provides such a
comparison between these two methods, so that future researchers can better choose
the more efficient one for pricing European-style options especially in the multi-
state regime-switching model. We present a modified version of the algorithm of
Lemieux [13], which is referred to as the fundamental MC simulation, and then
investigate two variance-reduction techniques, antithetic variates and control variates.
We also propose a new and much faster algorithm, which simulates the total occupation
time instead of the trajectories for the two-state case. For the finite-difference method,
we adopt the Crank–Nicolson (CN) scheme because of its unconditional stability
and second-order convergence rate. Numerical analysis is given under the regime-
switching framework with the number of regimes being up to four.

The rest of the paper is organized as follows. In Section 2, the model settings
and notations are introduced. The MC simulation for regime-switching models is
discussed in Section 3. The finite-difference method with CN schemes is presented
in Section 4. Numerical results and comparisons are given in Section 5. Some
concluding remarks are given in Section 6 and the Appendix comprises all the
algorithms presented in this paper.

2. Model settings and notations

We first start with the introduction of regime-switching models. Let S t be the
price of an underlying asset in the market at time t. We further let the market have
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a nonconstant drift rate µt and a nonconstant volatility σt. Then in a regime-switching
world where drift rates and volatilities are allowed to shift between different economic
regimes, the fluctuation of an asset is assumed to follow the stochastic differential
equation

dS t = µ(Xt)S t dt + σ(Xt)S t dWt,

where Xt is a continuous-time Markov chain with K states and is independent of the
standard Brownian motion Wt. Both the Markov chain and the standard Brownian
motion are based on the probability triplet {Ω,F ,P}, where Ω is the set of all possible
outcomes, F is the set of events, and P is the physical measure. For each state, the
drift rate and the volatility are assumed to be constant and distinct, denoted by

µ(Xt) =


µ1, Xt = 1,
µ2, Xt = 2,
. . .

µK , Xt = K,

σ(Xt) =


σ1, Xt = 1,
σ2, Xt = 2,
. . .

σK , Xt = K.

The generator of the Markov chain is

Q =


λ11 λ12 . . . λ1K

λ21 λ22 . . . λ2K
...

...
. . .

...
λK1 λK2 . . . λKK


and, for each state, elements of the generator satisfy the equation λ j j +

∑K
i=1 i, j λ ji = 0.

Since another risk source Xt is introduced, the market becomes incomplete. As a
result, there is no unique martingale measure. In this paper, we select the martingale
measure presented by Elliott et al. [6] and assume that the interest rates are the same
for all regimes. Thus, r is used to replace all µ j under the risk-neutral measure for the
rest of the paper. Under the risk-neutral measure, the price of a financial derivative
with initial state j is obtained by

V j = e−r(T−t)E(p(S T )|Ft, Xt = j), (2.1)

where the function p(·) is the payoff function. For European options, substituting its
payoff function into (2.1) and applying Itô’s formula, the governing system of partial
differential equations (PDEs) is given by (see the article by Buffington and Elliott [4])

∂V j

∂t
+

1
2
σ2

jS
2 ∂

2V j

∂S 2 + rS
∂V j

∂S
− rV j =

K∑
i=1 i, j

λ ji(V j − Vi), j = 1, 2, . . . ,K. (2.2)

Since the introduction of the regimes, (2.2) is a PDE system with a total of K equations
which have to be solved simultaneously.
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3. Monte Carlo simulation

The MC simulations for regime-switching models can be found in [12, 13].
Lemieux [13] presented an algorithm to price vanilla European options in a K-state
regime-switching model; however, this algorithm requires the estimation of the total
amount of random numbers at the beginning. Since the number of exponential
random numbers in each path is uncertain, such an estimation will lead to redundant
random numbers, wasting some computational resources. Here we modify Lemieux’s
algorithm to get rid of the estimation. Hieber and Scherer [12] presented an
efficient simulation method which was coupled with a few variance reductions for
pricing barrier options in a two-state regime-switching model. The idea of their
Brownian bridge approach is basically a special case of the simulated trajectories
in Lemieux [13]. In this section, we present the modified version of Lemieux’s
algorithm, which this paper denotes as the fundamental MC, and two variance-
reduction techniques: the antithetic variates and the control variates. In addition, we
also propose a new algorithm to simulate the total occupation time, instead of the
trajectory for the two-state case. The idea is based on the path-independent property
of the vanilla European options, and we name it “simulating total occupation time”.

3.1. Fundamental Monte Carlo simulation The theoretical framework for
simulating trajectories is based on the fact that the holding time is exponentially
distributed. Further, the probability of state j switching into state i can be estimated
by −λ ji/λ j j, given the hypothesis that a switch has taken place. Our modified pricing
of a vanilla European put option under a general K-state regime-switching model is
presented in Algorithm 1. Simulations for European call options can be obtained by a
simple change of payoff function.

Based on the fundamental MC, some variance-reduction techniques can be adopted
to further improve the efficiency of the simulation, such as antithetic variates and
control variates. In the next two subsections, we will introduce the two techniques;
analysis of their numerical performances can be found in Section 5.

3.2. Antithetic variates Since the final stock prices used in the simulations are
obtained using normal random variables, one way to improve the results is to reduce
the variance of the normal random variables. The main idea of the antithetic
variates [9] is that instead of estimating the expectation µ by averaging over N
independent, identically distributed (iid) random variables, averaging over N/2 pairs of
iid random variables which are denoted as Zori, and their negatives which are denoted
as Zant. One natural way is to replace Step 6 in Algorithm 1 with the pair W and −W,
since the standard normal distribution is symmetric around the y-axis. Thus, lines 37 to
40 are replaced by the steps as shown in Algorithm 2. The efficiency of the antithetic
variates strongly depends on the negative correlation between max(E − Zori, 0) and
max(E − Zant, 0).

https://doi.org/10.1017/S1446181117000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000335


[5] A comparative study for the regime-switching model 187

3.3. Control variates The control variates [9] method shares a common feature
with the antithetic variates, which uses correlations to reduce variance. In this method,
we need to find a variable C with a known mean which is related to the simulated
model and is also correlated with the variable Y . In an options pricing problem, the
underlying assets, that is, normally stocks, provide a universal set of control variates.
This is because under the risk-neutral measure, the stock price at time t, is ert times
the stock price today. To describe it in detail, given the risk-neutral measure with
interest rate r (the same risk-neutral measure as we mentioned in Section 1, suppose
that S (t) is an asset price; then e−rtS (t) is a martingale. Suppose that we are pricing a
contingent claim on S with the discounted payoff Y , which is a function of S (t). From
the independent implications of S n, n = 1, 2, . . . ,N, we thus can form the estimator of
control variates

1
N

N∑
n=1

[Yn − b{S i(T ) − erT S (0)}],

where b is the coefficient which minimizes the variance of the estimator. To adopt
the control variates, several steps must be added in between line 39 and line 40 of
Algorithm 1. This is shown in Algorithm 3. The variance of the control variates
estimator is 1 − ρ2

YZ . Stronger correlation between Y and Z means higher efficiency of
the simulation with the control variates technique.

3.4. Simulating total occupation time Due to the Markovian property of the
regime-switching model, the iterations of simulating trajectories can be avoided. This
can be accomplished if we can simulate the total occupation time within each regime.
As a result, a large amount of computational time can be saved. Theoretically, this
can be achieved because the total occupation time is a random variable which has its
own probability density function (pdf). We find that this is directly applicable to the
two-state case since the analytical formula of the pdf of the total occupation time is
available [8] for the two-state case. The pdf is shown in the following theorem.

Theorem 3.1. Assume that Ti| j is the total occupation time that the Markov chain X(t)
spends in state i, given that the initial state is j, where i, j ∈ {1, 2}. Let fi| j be the pdf of
Ti| j. Under the two-state Markov model, we have the following formulae:

f1|1(t,T ) = e−λ12Tδ(T − t) + e−λ21(T−t)−λ12t
[
λ12I0(2(λ12λ21t(T − t))1/2)

+

(
λ12λ21t
T − t

)1/2
I1(2(λ12λ21t(T − t))1/2)

]
,

f2|2(t,T ) = e−λ21Tδ(T − t) + e−λ12(T−t)−λ21t
[
λ21I0(2(λ12λ21t(T − t))1/2)

+

(
λ12λ21t
T − t

)1/2
I1(2(λ12λ21t(T − t))1/2)

]
,

f2|1(t,T ) = f1|1(T − t,T ), f1|2(t,T ) = f2|2(T − t,T ),

https://doi.org/10.1017/S1446181117000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000335


188 X. C. Zeng, I. Guo and S. P. Zhu [6]

where δ is a Dirac delta function and I0, I1 are modified Bessel functions such that

Iα = (z/2)α
∞∑

k=0

(z/2)2k

k!Γ(k + a + 1)!
.

Proof of this theorem can be found in Fuh et al. [8].
Now we have obtained the pdf of the total occupation time and, further, we can solve

for the cumulative probability distribution function (cdf) by numerical integration.
Note that the calculation is quite straightforward everywhere apart from at t = T , which
is a singular point and also contains a Dirac delta function. This can be interpreted
as the total occupation time reaching a point mass at t = T . In other words, the
Markov chain has remained in the same state throughout [0, T ]. The probability of
this occurring is given by P(Ti|i = T ) = e−λi j T , where j = 3 − i, which corresponds to a
discontinuity in the cdf at t = T . In terms of the numerical integration, we first proceed
as usual without the Dirac delta function and then add a jump of size e−λi j T to the cdf
at t = T . A detailed algorithm of how to generate random numbers from the above
pdf’s is given in Algorithm 4.

Once having the simulation of the total occupation time, results for each path can be
obtained by simple substitution, as we have shown in Algorithm 5. Note that since this
is in the two-state case, the generator matrix contains four elements λ11, λ12, λ21, λ22.
When we use λ ji to represent them, a natural relation i = 3 − j holds.

The core of Algorithm 5 is to generate the random variable following the pdf of the
total occupation time. This algorithm is cheaper in computation than the fundamental
MC because only two random numbers are generated in the algorithm, while a total
of n + 1 random numbers must be generated in the fundamental MC, with n being the
number of state changes. This can also explain why the computational time of the
fundamental MC is a monotonically increasing function of the switching intensity and
the time to expiry, while the computational time of this algorithm remains a constant
and depends only on the number of paths.

In summary, the core of Algorithm 5 has two parts: one is to derive the pdf of the
total occupation time and the other is to draw samples from this random variable. In
theory, this algorithm can be extended to a general case with multi-state economy.
Although the analytical formula of the pdf is not available in the multi-state case, a
Fourier cosine expansion [7] can be applied to obtain a numerical distribution function.
Drawing samples from this multi-variate random number can be done by building a
very complex algorithm based on the acceptance–rejection method [9]. However, the
multi-state extension is no longer fast and simple to implement, which was a crucial
advantage of the total occupation time approach. Thus, this case will not be further
explored in this paper.

4. Finite-difference method

Mielkie [14, 15] presented a detailed discussion of the CN finite-difference method
to solve the coupled partial differential equations arising from a two-state regime-
switching model. In contrast to the conventional BS model, the governing pde problem
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of a regime-switching model contains a total of K coupled pde’s, each corresponding
to one of the K different regimes. The coupled pde’s are solved simultaneously. In
this section, we present the CN finite-difference method for a multi-state regime-
switching model and show why the computation time of the finite-difference method
grows linearly as the number of regimes increases.

We first introduce the transformation τ = T − t and x = log(S/E). Then, from (2.2),

∂V j

∂τ
=

1
2
σ2

j
∂2V j

∂x2 +

(
r −

1
2
σ2

j

)∂V j

∂x
− rV j −

K∑
i=1
i, j

λ ji(V j − Vi), j = 1, 2, . . . ,K.

Here we discretize the region [xmin, xmax] × [0, T ] into (M + 1) × (N + 1) grids, with
∆x = (xmax − xmin)/M and ∆τ = T/N. We denote Vn

m, j by V j(xmin + m∆x, ∆τ). By
applying the CN scheme,

α jVn+1
m−1, j + β jVn+1

m, j + γ jVn+1
m+1, j +

K∑
i=1, i, j

λ ji∆τ

2
Vn+1

m,i = f n
m, j, where (4.1)

α j = −

(σ2
j∆τ

4∆x2 −
(r − σ2

j/2)∆τ

4∆x

)
, β j = 1 +

σ2
j∆τ

2∆x2 +
r∆τ

2
−
λ j j∆τ

2
,

γ j = −

(σ2
j∆τ

4∆x2 +
(r − σ2

j/2)∆τ

4∆x

)
,

f n
m, j = −α jVn

m−1, j + (2 − β j)Vn
m, j − γ jVn

m+1, j −

K∑
i=1
i, j

λ ji∆τ

2
Vn

m,i.

Writing (4.1) in matrix form,

P jVn+1
j +

K∑
i=1 i, j

Λ jiVn+1
i = fn

j , where

P j =



β j γ j

α j β j γ j
. . .

. . .
. . .

α j β j γ j

α j β j


, Λ ji =


λ ji∆τ/2

λ ji∆τ/2
. . .

λ ji∆τ/2

 ,

Vn
j =



Vn
1, j

Vn
2, j
...

Vn
N−2, j

Vn
N−1, j


, Vn

i =



Vn
1,i

Vn
2,i
...

Vn
N−2,i

Vn
N−1,i


, fn

j =



f n
1, j − α jVn+1

0, j
f n
2, j
...

f n
N−2, j

f n
N−1, j − γ jVn+1

N, j


.
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Then the whole system at time τ = n∆τ can be written as
P1Vn

1 + Λ12Vn
2 + Λ13Vn

3 + · · · + Λ1KVn
K = fn

1 ,

P2Vn
2 + Λ21Vn

1 + Λ23Vn
3 + · · · + Λ2KVn

K = fn
2 ,

...

PKVn
K + ΛK1Vn

1 + ΛK2Vn
3 + · · · + ΛKK−1Vn

K−1 = fn
K .

(4.2)

The system (4.2) needs to be solved at each time step. To further clarify, we write
this system in matrix form, assuming that

A =


P1 Λ12 . . .Λ1K

Λ21 P2 . . .Λ2K
...

...
. . .

...
ΛK1 ΛK2 . . . PK

 , Vn =


Vn

1
Vn

2
...

Vn
K

 , Fn =


fn
1

fn
2
...

fn
K

 .
Then we need only to solve the problem AVn = Fn at each time step, and the option
price can be obtained by interpolation when finishing the last step. It is worthwhile
pointing out that the block matrix A is a sparse matrix, since P j is a diagonal matrix
and Λi j is an identity matrix. Thus, an iterative method can be adopted to solve the
linear system. In addition, it is obvious that the size of the matrix A increases linearly
as the number of regimes increases. Hence, the whole method grows rapidly according
to the number of regimes, given the fact that the computational complexity of matrix
inversion is at maximum O((MNK)3) in this problem. As a result, the CN tends to
be far more expensive than the MC, when the two methods have a similar level of
computational error in the cases where K ≥ 2. We present the comparison in the next
section.

5. Numerical performances and comparisons

In this section, we compare the MC and the CN methods. In addition, we test
the fundamental MC against the two variance-reduction techniques and simulating the
total occupation time. We present the numerical performances of each method in the
models with two, three, and four regimes. The analytical solution by Zhu et al. [17] is
adopted as the benchmark results for the two-state regime-switching model, while the
trinomial tree method from Yuen and Yang [16] is applied for the multi-state cases.

5.1. MC vs CN We start with the comparison between the fundamental MC and
CN. Since results from the simulations are random numbers instead of fixed values,
we run the same simulations many times to obtain their 95% confidence intervals.
The confidence intervals thus are considered as the accuracies of the simulation
methods.

Our comparisons focus on regime-switching models with two, three, and four states,
respectively. Two scenarios are considered for each model, a low-frequency scenario
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Table 1. MC vs CN in the low-frequency case. The parameters are S 0 = 36, E = 40, T = 1, r = 0.1. The
volatilities are (0.15, 0.25), (0.15, 0.25, 0.35), (0.15, 0.25, 0.35, 0.45) for the two regimes, three regimes,
four regimes, respectively. The jump intensities for all different models are λ ji = 1, j , i.

MC CN Benchmark

V2
1 2.7022 ± 0.0015 2.7037 (0.0014) 2.7023

V2
2 3.3203 ± 0.0017 3.3229 (0.0026) 3.3203

Time (sec) 12.4822 54.6678
V3

1 3.3562 ± 0.0016 3.3588 (0.0022) 3.3566
V3

2 3.7653 ± 0.0018 3.7682 (0.0028) 3.7654
V3

3 4.2508 ± 0.0020 4.2547 (0.0036) 4.2511

Time (sec) 19.0468 426.5641
V4

1 4.1021 ± 0.0023 4.106 (0.0033) 4.1032
V4

2 4.3789 ± 0.0024 4.3834 (0.0037) 4.3797
V4

3 4.7263 ± 0.0025 4.7316 (0.0043) 4.7273
V4

4 5.1248 ± 0.0028 5.1306 (0.0049) 5.1257

Time (sec) 28.4594 938.2955

and a high-frequency scenario, which aim at comparing the two methods with different
parameters of the switching intensity, given the fact that the fundamental MC becomes
more expensive as the switching intensity increases. To make a fair comparison, we
manage to run both methods which give similar levels of error and then compare
their computation times. As shown in Tables 1 and 2, results of MC simulations are
shown with an average (ave) over multiple runs, and the corresponding 95% confidence
intervals (con) are given in the form of ave ± con. The values in the parentheses in the
column of CN are the difference between results from the finite-difference method and
the benchmark. To obtain the benchmark results for the two-state regime-switching
model, we apply the closed-form solution by Zhu et al. [17], while, for the three-state
and four-state models, we use the trinomial tree method from Yuen and Yang [16]
with 100 000 time steps. All the CN cases are run using 100 time steps and 2500 space
steps, while each MC is run with 500 000 paths.

According to the two tables, each confidence interval of the MC is smaller than
the error of the CN (except V2

1 in Table 1, but the two values are rather close), while
the CN spends several more times in computational time than the MC. Hence, the
MC obviously outperforms the CN in both cases. The difference of the computation
time becomes more significant as the number of the states increases. In addition, on
one hand, in the high-frequency case, the computational time of the MC increases
compared to the one in the low-frequency case. This can be explained as follows;
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Table 2. MC vs CN in the high-frequency case. All parameters are identical to the low-frequency case
but the jump intensities now are λ ji = 100, j , i.

MC CN Benchmark

V2
1 3.0577 ± 0.0016 3.0586 (0.0017) 3.0569

V2
2 3.0646 ± 0.0017 3.0656 (0.0017) 3.0639

Time (sec) 12.4371 55.6734
V3

1 3.8696 ± 0.0024 3.8715 (0.0029) 3.8686
V3

2 3.8733 ± 0.0024 3.8751 (0.0029) 3.8722
V3

3 3.8787 ± 0.0024 3.8806 (0.0030) 3.8776

Time (sec) 31.6948 431.6442
V4

1 4.6810 ± 0.0023 4.6867 (0.0042) 4.6825
V4

2 4.6835 ± 0.0023 4.6889 (0.0042) 4.6847
V4

3 4.6902 ± 0.0023 4.6922 (0.0042) 4.6880
V4

4 4.6945 ± 0.0024 4.6967 (0.0042) 4.6925

Time (sec) 109.1688 942.4624

more iterations are involved in the simulating trajectories, as the average switching
times are changed from once per year to 100 times per year. On the other hand,
the computational time of the CN is independent of the jump intensity, because the
computation cost, which is mainly solving linear algebraic systems, remains the same
with the change of λ. Although MC is still much cheaper in the high-frequency case
analysed here, it is worth mentioning that for sufficiently large λ, there will be a subset
of parameter space in which CN will outperform MC. This is because the computation
time of MC is increasing in λ, while the computation time of CN is not. However,
at least with the other parameters selected in this study, the value of λ at which CN
becomes competitive, with MC being too large to be realistic, is, for instance, λ = 300.

5.2. Comparison among simulations Since the simulation is cheaper than the
finite-difference method, we would like to explore the performance of the simulations
coupled with variance-reduction methods, which can be more efficient. For the two-
state case, we also include the “simulating total occupation time” in the comparison.
Before starting, we introduce an indicator to quantify the efficiency of MC from
Lemieux [13] to simplify the comparison.

Definition 5.1. The efficiency of an estimator µ̂ for a quantity µ is measured by the
indicator

Eff(µ̂) = [MSE(µ̂) ×C(µ̂)]−1,
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Table 3. The low-frequency two-state case.

Fundamental MC Antithetic variates Control variates Occupation time

V2
1 2.7023 ± 0.0022 2.7019 ± 0.0013 2.7019 ± 0.0014 2.7032 ± 0.0011

V2
2 3.3196 ± 0.0028 3.3196 ± 0.0016 3.3199 ± 0.0016 3.3197 ± 0.0010

Time (sec) 5.3670 2.9645 4.9100 0.0365
mse 4.2666e−05 1.6323e−04 1.4110e−05 7.9885e−06

Efficiency 4.3670e+03 2.5909e+04 1.4434e+04 3.4330e+06

Table 4. The high-frequency two-state case.

Fundamental MC Antithetic variates Control variates Occupation time

V2
1 3.0569 ± 0.0021 3.0573 ± 0.0015 3.0571 ± 0.0015 3.0574 ± 0.0012

V2
2 3.0637 ± 0.0021 3.0642 ± 0.0015 3.0641 ± 0.0015 3.0636 ± 0.0011

Time (sec) 9.4756 5.0528 9.0112 0.0339
mse 2.7902e−05 6.0305e−05 1.4990e−05 8.1818e−06

Efficiency 3.7823e+03 1.3128e+04 7.4030e+03 3.6071e+06

where MSE(µ̂) = Var(µ̂) + B2(µ̂) is the mean square error of µ̂, B(µ̂) = E(µ̂) − µ is the
bias of µ̂, and C(µ̂) is the expected computation time for µ̂.

As we see from the formula, the efficiency is inversely proportional to both the
mean square error and the computational time. A larger Eff means a better estimator.
We use the same parameters from the low-frequency case and the high-frequency case
as we mentioned in Section 5.1. We start with the two-state case, in which the total
occupation time algorithm is applicable.

According to Tables 3 and 4, each of the three techniques improves the simulation
method in different degrees. The simulating total occupation time algorithm performs
the best with a much higher efficiency. This is because the algorithm is much cheaper,
even though its mean square error (mse) is similar to that of the others. In addition,
the computational time of the algorithm appears to be independent of the number of
regimes, as the computational time in the low-frequency case is 0.0365 seconds against
0.0339 seconds in the high-frequency case. For the two variance-reduction techniques,
the efficiencies of both methods decline from the low case to the high case. This is only
because of more computation being involved, since the mse’s of the two methods are
on the same level during the change of the cases. The antithetic variates estimator

https://doi.org/10.1017/S1446181117000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000335


194 X. C. Zeng, I. Guo and S. P. Zhu [12]

Table 5. The low-frequency multi-state case.

Fundamental MC Antithetic variates Control variates

V3
1 3.3555 ± 0.0022 3.3577 ± 0.0018 3.3568 ± 0.0016

V3
2 3.7643 ± 0.0022 3.7664 ± 0.0019 3.7652 ± 0.0018

V3
3 4.2496 ± 0.0022 4.2528 ± 0.0021 4.2518 ± 0.0019

Time (sec) 8.1438 4.5162 7.4225
mse 3.8896e−05 1.4884e−04 1.3168e−05

Efficiency 3.1570e+03 1.3373e+04 1.0232e+04
V4

1 4.1038 ± 0.0029 4.1035 ± 0.0021 4.1033 ± 0.0021
V4

2 4.3808 ± 0.0031 4.3791 ± 0.0020 4.3800 ± 0.0021
V4

3 4.7287 ± 0.0032 4.7275 ± 0.0020 4.7270 ± 0.0023
V4

4 5.1273 ± 0.0033 5.1262 ± 0.0023 5.1253 ± 0.0025

Time (sec) 11.4680 6.7384 10.2069
mse 3.9272e−05 2.2926e−04 1.6073e−05

Efficiency 1.4712e+03 1.0500e+04 6.0955e+03

outperforms the control variates estimator in efficiency, since it spends only roughly
half of the computation time of the other two methods.

We put the multi-state cases together, including the regime-switching model with
three states and four states. Again the same low case and high case are considered.
Performances of the two variance-reduction methods are shown in Tables 5 and 6.
According to these two tables, the same conclusion holds in the multi-state cases.
Antithetic variates are the better choices for the variance-reduction technique with the
higher efficiency in any situation. In addition, the mse’s of all of the three methods is
independent of the parameter λ and the number of the states.

6. Conclusion

A comparative study of the MC and the CN for pricing European options with
the regime-switching model is presented. Since the number of the PDEs within the
governing system grows according to the number of regimes, solving the governing
system becomes very inefficient as the number of regimes grows very large. Numerical
results show that even for the two-state case, the fundamental MC is already more
efficient than the CN in both the low-frequency case and the high-frequency case.
The difference in efficiency becomes more severe as the number of regimes further
increases. Such a finding suggests that future research on numerical techniques for
regime-switching models should concentrate more on simulation-based methods.
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Table 6. The high-frequency multi-state case.

Fundamental MC Antithetic variates Control variates

V3
1 3.8642 ± 0.0023 3.8688 ± 0.0016 3.8692 ± 0.0016

V3
2 3.8679 ± 0.0023 3.8715 ± 0.0016 3.8728 ± 0.0018

V3
3 3.8733 ± 0.0023 3.8763 ± 0.0016 3.8783 ± 0.0019

Time (sec) 21.5188 11.4812 20.8839
mse 2.9494e−05 1.0159e−04 1.5503e−05

Efficiency 1.5756e+03 7.7168e+03 3.0887e+03
V4

1 4.6813 ± 0.0036 4.6822 ± 0.0023 4.6824 ± 0.0020
V4

2 4.6835 ± 0.0036 4.6844 ± 0.0023 4.6846 ± 0.0020
V4

3 4.6868 ± 0.0037 4.6878 ± 0.0024 4.6880 ± 0.0021
V4

4 4.6913 ± 0.0037 4.6922 ± 0.0023 4.6923 ± 0.0021

Time (sec) 43.7829 23.4794 43.1711
mse 4.3829e−05 2.8356e−04 1.3606e−05

Efficiency 5.2111e+02 2.4035e+03 1.7025e+03

We have also investigated two variance-reduction techniques: the antithetic
variates and the control variates, to improve the efficiency of the simulation.
Numerical performance shows that the antithetic variates are more efficient than the
control variates with regime-switching models. Finally, we propose a much faster
simulation algorithm for European options in the two-state regime-switching model.
Computational time of the algorithm is independent of the switching frequency.
However, such an algorithm is only applicable to the European options in a two-
state regime-switching world. The algorithm for the multi-state cases is left for future
research.
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Appendix

Algorithm 1 Fundamental Monte Carlo
function FMC (S 0, E, r,G,T, σ, j,N);
Require:
1: Initial stock price S 0;
2: Strike price E;
3: Interest rates r;
4: Generator matrix of the Markov chain G = (λmn) ∈ RK×K ;
5: Time to maturity T ;
6: Volatilities vector σ = (σ1, σ2, . . . , σK);
7: Initial regime j ( j = 1, 2, . . . ,K);
8: Numbers of simulation paths N;

Ensure:
9: European put option price with respect to initial regime j;

10: for n = 1 to N do
11: for k = 1 to K do
12: J[k]← 0;
13: end for
14: t← T ; I ← j; Q← 0;
15: while t > 0 do
16: Generate U1,U2 ∼ uniform(0, 1);
17: τ← log(U1)/λII ;
18: pr← 0; m← 1;
19: while U2 > pr do
20: if m , I then
21: pr← pr − λIm/λII ;
22: else
23: m← m + 1;
24: end if
25: end while
26: if τ > t then
27: J[I]← J[I] + t;
28: else
29: J[I]← J[I] + τ;
30: end if
31: t← t − τ; I ← m − 1;
32: end while
33: for k = 1 to K do
34: Q← Q + σ2

k J[k];
35: end for
36: Generate W ∼ normal(0, 1);
37: Z[n]← S 0exp{(rT − Q/2) +

√
QW};

38: Y[n]← e−rT max(E − Z[n], 0);
39: end for
40: V =

1
N

∑N
n=1 Y[n];

41: return V;
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Algorithm 2 Monte Carlo with antithetic variates

1: Zori[n]← S 0exp{(rT − Q/2) +
√

QW}; Zant[n]← S 0exp{(rT − Q/2) −
√

QW}
2: Y[n]← 1

2 e−rT (max(E − Zori[n], 0) + max(E − Zant[n], 0));
3: V = 1

N

∑N
n=1 Y[n];

4: return V;

Algorithm 3 Monte Carlo with control variates

1: Z̄ = 1
N

∑N
n=1 Z[n]; Ȳ = 1

N

∑N
n=1 Y[n];

2: b =

∑N
n=1(Z[n] − Z̄)(Y[n] − Ȳ)∑N

n=1(Z[n] − Z̄)2
;

3: V = 1
N

∑N
n=1(Y[n] − b(Z[n] − erT S 0));

4: return V;

Algorithm 4 Generating random numbers from the f j| j

function GRN (λ ji, λi j,T,M);
Require:
1: Jump intensity λ ji, λi j;
2: Time to maturity T ;
3: Numbers of time partitions M;

Ensure:
4: A random number following the pdf f j| j;
5: t[0]← 0;
6: ∆t = T/M;
7: for m = 1 to M do
8: t[m]← t[m − 1] + ∆t;
9: f j[m − 1]← e−λi j(T−t[m−1])−λ jit[m−1][λ jiI0(2(λ jiλi jt(T − t[m − 1]))1/2)

+

(
λ jiλi jt

T − t[m − 1]

)1/2

I1(2(λ jiλi jt(T − t[m − 1]))1/2)];

10: end for
11: f j[M]← f j[M − 1] + e−λ jiT ;
12: B← 0;
13: for m = 0 to M do
14: B← B + f j[m];
15: c j[m]← BT/M;
16: end for
17: Generate U ∼ uniform(0, 1);
18: n← 0;
19: while U > c j[n] do
20: n← n + 1;
21: end while
22: return t[n];
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Algorithm 5 Simulating total occupation time
function TOT (S 0, E, r,G,T, σ, j,N,M);
Require:
1: Initial stock price S 0;
2: Strike price E;
3: Interest rates r;
4: Generator matrix of the Markov chain G = (λmn) ∈ R2×2;
5: Time to maturity T ;
6: Volatilities vector σ = (σ1, σ2);
7: Initial regime j ( j = 1, 2);
8: Numbers of simulation paths N;
9: Number of time partition for generating random variable from the pdf f j M;

Ensure:
10: European put option price with respect to initial regime j;
11: for n = 1 to N do
12: J ← GRN(λ ji, λi j,T,M);
13: I ← T − J;
14: Q← σ2

j J + σ2
i I;

15: Generate W ∼ normal(0, 1);
16: Z[n] = S 0exp{(rT − U/2) +

√
UW};

17: Y[n] = e−rT max(E − Z[n], 0);
18: end for
19: V = 1

N

∑N
n=1 Y[n];

20: return V;

References

[1] F. Black and M. Scholes, “The pricing of options and corporate liabilities”, J. Polit. Econ. 81
(1973) 637–654; doi:10.1086/260062.

[2] N. P. B. Bollen, “Valuing options in regime-switching models”, J. Deriv. 6 (1998) 38–49;
doi:10.3905/jod.1998.408011.

[3] P. Brandimarte, Numerical methods in finance and economics: a MATLAB-based introduction,
2nd edn (John Wiley, Hoboken, NJ, 2006).

[4] J. Buffington and R. J. Elliott, “Regime switching and European options”, in: Stochastic theory
control, Volume 280 of Lect. Notes in Control and Information Sciences (ed. B. Pasik-Duncan),
(Springer, Berlin–Heidelberg, 2002) 73–82.

[5] J. Detemple, American-style derivatives: valuation and computation (CRC Press, Boca Raton,
FL, 2005).

[6] R. J. Elliott, L. Chan and T. K. Siu, “Option pricing and Esscher transform under regime
switching”, Ann. Finance 1 (2005) 423–432; doi:10.1007/s10436-005-0013-z.

[7] F. Fang and C. W. Oosterlee, “A novel pricing method for European options based on Fourier-
cosine series expansions”, SIAM J. Sci. Comput. 31 (2009) 826–848; doi:10.1137/080718061.

[8] C. D. Fuh, R. H. Wang and J. C. Cheng, “Option pricing in a Black–Scholes model with Markov
switching”, 2002, working paper, https://www.researchgate.net/publication/2880608 Option
Pricing in a Black-Scholes Model with Markov Switching.

[9] P. Glasserman, Monte Carlo methods in financial engineering (Springer, New York, 2004).
[10] X. Guo, “Information and option pricings”, Quant. Finance 1 (2001) 38–44;

doi:10.1080/713665550.

https://doi.org/10.1017/S1446181117000335 Published online by Cambridge University Press

https://doi.org/10.1086/260062
https://doi.org/10.3905/jod.1998.408011
https://doi.org/10.1007/s10436-005-0013-z
https://doi.org/10.1137/080718061
https://www.researchgate.net/publication/2880608{\char "02D9}Option{\char "02D9}Pricing{\char "02D9}in{\char "02D9}a{\char "02D9}Black-Scholes{\char "02D9}Model{\char "02D9}with{\char "02D9}Markov{\char "02D9}Switching
https://www.researchgate.net/publication/2880608_Option_Pricing_in_a_Black-Scholes_Model_with_Markov_Switching
https://doi.org/10.1080/713665550
https://doi.org/10.1017/S1446181117000335


[17] A comparative study for the regime-switching model 199

[11] J. D. Hamilton, “A new approach to the economic analysis of nonstationary time series and the
business cycle”, Econometrica 57 (1989) 357–384; doi:10.2307/1912559.

[12] P. Hieber and M. Scherer, “Efficiently pricing barrier options in a Markov-switching framework”,
J. Comput. Appl. Math. 235 (2010) 679–685; doi:10.1016/j.cam.2010.06.021.

[13] C. Lemieux, Monte Carlo and quasi-Monte Carlo sampling, Springer Ser. Statist. (Springer, New
York, 2009).

[14] M. A. Mielkie, “Options pricing and hedging in a regime-switching volatility model”,
Ph.D. Thesis, The University of Western Ontario, 2014;
http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3581&context=etd.

[15] M. Mielkie and M. Davison, “Investigating the market price of volatility risk for options in a
regime-switching market”, SSRN Electron. J. (2013); doi:10.2139/ssrn.2326534.

[16] F. L. Yuen and H. Yang, “Option pricing with regime switching by trinomial tree method”,
J. Comput. Appl. Math. 233 (2010) 1821–1833; doi:10.1016/j.cam.2009.09.019.

[17] S. P. Zhu, A. Badran and X. Lu, “A new exact solution for pricing European options in a two-state
regime-switching economy”, Comput. Math. Appl. 64 (2012) 2744–2755;
doi:10.1016/j.camwa.2012.08.005.

https://doi.org/10.1017/S1446181117000335 Published online by Cambridge University Press

https://doi.org/10.2307/1912559
https://doi.org/10.1016/j.cam.2010.06.021
http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3581&context=etd
https://doi.org/10.2139/ssrn.2326534
https://doi.org/10.1016/j.cam.2009.09.019
https://doi.org/10.1016/j.camwa.2012.08.005
https://doi.org/10.1017/S1446181117000335

	Introduction
	Model settings and notations
	Monte Carlo simulation
	Fundamental Monte Carlo simulation
	Antithetic variates
	Control variates
	Simulating total occupation time

	Finite-difference method
	Numerical performances and comparisons
	MC vs CN
	Comparison among simulations

	Conclusion
	
	References

