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Immiscible two-phase flows in geological fractures are relevant to various industrial
applications, including subsurface fluid storage and hydrocarbon exploitation. Direct
numerical simulations (DNS) of first-principle equations, which resolve three-dimensional
(3-D) fluid–fluid interfaces, can address all types of flow regimes but are computationally
intensive. To retain most of their advantages while reducing the computational cost, we
propose a novel two-dimensional (2-D) model based on integrating the 3-D first-principle
equations over the local fracture aperture, assuming the lubrication approximation and
a parabolic out-of-plane velocity profile, and relying on the volume-of-fluid method for
fluid–fluid interface capturing. Such existing models have, so far, been restricted to single-
phase permanent flow in rough fractures and two-phase flow in 2-D porous media. Wall
friction and out-of-plane capillary pressure are incorporated as additional terms in the
2-D momentum equation. The model then relies on a geometric description reduced to
the fracture’s aperture field and mean topography field. Implemented in OpenFOAM, it is
validated against 3-D DNS results for viscous fingering in a Hele-Shaw cell, and applied to
a realistic synthetic rough fracture geometry over a wide range of capillary numbers (Ca).
We then analyse to which extent, under which conditions and why this depth-integrated
2-D model, with a tenfold reduction in computational cost, provides convincing results
compared with 3-D DNS predictions. We find that it performs surprisingly well over nearly
the entire range of Ca for which 3-D DNS models are relevant, in particular because it
properly accounts for the out-of-plane capillary forces and wall friction.
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1. Introduction
Understanding the immiscible fluid flows in fractured rock formations is critical for various
geotechnical applications, including water resources management (De Dios et al. 2017;
Ren et al. 2017), environmental protection (Bikkina et al. 2016; Zhang et al. 2017) and
energy storage (Kim et al. 2011; Meng, Liu & Wang 2017). These processes frequently
involve the displacement of a wetting fluid by a non-wetting fluid, also referred to
as drainage, within fractured media. Prominent examples include the displacement of
brine by supercritical CO2 during carbon capture and storage (Miocic et al. 2016) and
the migration of pressurised gases through water-saturated materials in nuclear waste
repositories (Muller et al. 2019). To support effective planning and risk assessment,
accurate models of these flow processes are necessary, which are capable of predicting
flow velocities and spatial fluid distributions. While two-phase flows in porous media have
been extensively studied over the past two decades, fewer studies have focused specifically
on this dynamics within geological fractures.

Immiscible displacements in open rough-walled fractures can be subject to different
types of flow instabilities, driven by density or viscosity contrasts between the two fluids,
and capillary forces also play an important role in allowing fluid-fluid interfaces to
more easily invade large (respectively, small) aperture areas when the wetting fluid is
the displaced (respectively, displacing) fluid (Glass et al. 1998, 2003; Detwiler, Rajaram
& Glass 2009). The relative magnitudes of gravity, viscous and capillary forces are
typically estimated in terms of the capillary number Ca (typical ratio of the viscous forces
to the capillary forces), the Bond number Bo (typical ratio of the gravitational force to
the capillary forces), and the ratio of the two fluids’ viscosities, M . To properly capture
the effect of all these forces in a model is challenging. Additionally, molecular-scale
phenomena, including thin wetting films and moving contact lines, are challenging to
model accurately (Meakin & Tartakovsky 2009; Krishna, Méheust & Neuweiler 2024).

In applications, flow processes need to be considered over large length scales in the
range of tens to hundreds of metres. Yet, when flow instabilities are present, large-scale
flow patterns may be impacted by small-scale properties or processes, in particular the
properties of the fractures’ aperture fields. Fracture surfaces, either artificial, or in natural
environments such as the subsurface, exhibit self-affine scaling behaviour, with Hurst
exponents typically ranging between 0.5 and 0.8 (Bouchaud, Lapasset & Planès 1990;
Schmittbuhl, Schmitt & Scholz 1995; Boffa, Allain & Hulin 1998), and matching of the
wall topographies with each other over a characteristic correlation scale (Brown 1995).
The span of relevant length scales is thus very large.

To model the drainage process using direct numerical simulation (DNS), the Navier–
Stokes equations, coupled with an interface capturing or tracking technique, are solved
numerically. Although large viscosity and density ratios (Meakin & Tartakovsky 2009),
as well as a large range of capillary numbers (Chen et al. 2018; Krishna et al. 2024), can
be captured, the computational cost of DNS of immiscible two-phase flow, in particular
if wetting films need to be resolved, can become very large, as discussed in Krishna
et al. (2024) for fracture geometries, or Horgue et al. (2012) for porous media. Particle
methods such as lattice Boltzmann methods (Dou, Zhou & Sleep 2013; Guiltinan et al.
2021), and Lagrangian mesh-free methods such as smoothed particle hydrodynamics
(Tartakovsky & Meakin 2005), which also provide hydrodynamic-scale resolution and
respect conservation principles (Lee & Lin 2005), are also potentially capable of handling
a wide range of Ca, Bo and M values. However, these methods encounter challenges in
relating the model parameters and the underlying physics of the modelled fluid flow (Porter
et al. 2012).
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The computational demand for models accounting for the entire range of physical
phenomena at play can be very large. Simplified models have been derived for flow in
fractures, in particular for restricted flow regimes. Invasion percolation schemes, able to
describe quasi-static fluid–fluid interface displacement controlled entirely by capillary
forces, have been adapted from porous media to fracture geometries to address regimes
of very slow displacements (i.e. very small Ca) (Glass, Nicholl & Yarrington 1998;
Neuweiler, Sorensen & Kinzelbach 2004; Yang et al. 2012, 2016). A few attempts have also
been made to simulate two-phase flow in single fracture using pore network models; they
have proven to be computationally efficient (Hughes & Blunt 2001; Ferer et al. 2011), but
it is difficult with this approach to properly model the in-plane component of the capillary
pressure at fluid-fluid interfaces. More recently, a very efficient model was proposed
to describe flow conditions for which viscous forces are the dominant displacement
driver (Yang et al. 2019), with a single fluid–fluid interface. Another approach to flows
over large scales is to consider volume-averaged upscaled models. This approach is
used extensively to simulate large-scale two-phase flow in porous media (e.g. reservoir
simulations), however, such models are non-local and provide convincing predictions only
for restricted flow regimes (see e.g. Picchi & Battiato 2018), with no interface instabilities,
and are not well-suited to address media with multiscale properties, such as fracture
geometries.

Another approach to improve the efficiency of numerical models while considering the
whole variety of physical processes at play, is to reduce the dimensionality of the model.
In fracture geometries this can be done by depth integration, i.e. integrating the flow
equations over the direction perpendicular to the mean fracture plane. Physical effects
that may no longer be accounted for explicitly, as the third dimension is not explicitly
resolved, are then captured by effective terms or parameters that are derived in the course
of the depth integration. For instance, the Reynolds equation has been widely used to
simulate stationary single-phase flow in rough fractures (Brown, Stockman & Reeves
1995; Zimmerman & Yeo 2000; Méheust & Schmittbuhl 2001; He et al. 2021). It combines
the conservation of the fluid mass and the local cubic law, which states that the relation
between the local flux (i.e. velocity integrated over the fracture aperture) and the pressure
gradient is identical to that relating the global flow rate per transverse unit length to the
macroscopic pressure gradient in a parallel plate (i.e. planar) fracture. The local cubic
law can be rigorously derived from the stationary Stokes equation under the lubrication
approximation, which assumes that the gradient of the fracture’s aperture field is much
smaller than 1 everywhere (see, e.g. Zimmerman & Yeo 2000). More general depth
integrations of the Navier–Stokes equations over flow domains with a uniform aperture
have been proposed for (i) single-phase flow in Hele-Shaw cell geometries, coupled to heat
transport (Letelier, Mujica & Ortega 2019), miscible fluid mixing (Letelier et al. 2023) and
solute-actuated natural convection (De Paoli et al. 2020; De et al. 2021), (ii) single-phase
flow in two-dimensional (2-D) (microfluidic) porous media (Izumoto et al. 2022) and
(iii) two-phase flow in similar 2-D porous media (Horgue et al. 2013; Ferrari et al. 2015).
The latter type of studies is the closest to what interests us here. Horgue et al. (2013)
studied the spreading of a liquid jet across in-line arrays of cylinders positioned within a
Hele-Shaw cell, experimentally and numerically. They found that the depth-integrated 2-D
model could reproduce most of the experimental observations with some differences in
time and space scales due to the difficulty in incorporating all 3-D effects in the 2-D model.
Ferrari et al. (2015) applied the same approach to reproduce primary drainage experiments
in a 2-D random porous medium consisting of cylindrical grains within a Hele-Shaw cell.
Their investigation also showed excellent agreement between the 2-D integrated model
and the experimental results. However, in all these works, the confining length (aperture)
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in the direction transverse to the plane of interest was (or assumed to be) uniform. A recent
example of a 2-D depth-integrated model in a rough fracture geometry is the generalised
lubrication theory derived for coupled electrohydrodynamic transport in rough fractures
by Dewangan et al. (2022), but it addresses single-phase flow. Hence, to our knowledge,
the depth integration of the Navier–Stokes equation has so far not been used to model
immiscible two-phase flow in geometries with space-varying apertures. In this study, we
propose such a 2-D depth-integrated model of immiscible two-phase flow in fractures
with varying apertures, and investigate to which extent, and under which conditions, such
a model can successfully predict the displacement patterns.

In the model, the third dimension effects that need to be accounted for in the 2-D
equations are the following: (i) the drag force exerted by the two rough fracture walls
on account of the no-slip wall boundary conditions (same as for the monophasic flow, see
Ferrari et al. 2015; De et al. 2021; Izumoto et al. 2022) and (ii) the out-of-plane component
of the capillary pressure interface curvature. Furthermore, in the 2-D model, the fracture
aperture field is expected to dictate the storage capacity available at a particular location in
the fracture plane, and the displacement of fluid-fluid interfaces must depend on this local
storage capacity. In the following, to derive the 2-D model equations, we incorporate those
specific aspects by rigorously depth integrating the 3-D Navier–Stokes equations over the
local fracture aperture, and adding the out-of-plane capillary pressure component to the
resulting 2-D momentum equation.

To track the fluid–fluid interface positions within the mean fracture plane, one must
use a method pertaining to one of two broad categories: (a) interface tracking methods,
where either marker particles or height functions are used to mark or track the interface
(Fukai et al. 1995; Tryggvason et al. 2001); and (b) interface-capturing methods, where an
indicator function is used to denote the location of the interface, which is then advected by
the velocity field to model the interface motion. Interface tracking methods (a) maintain a
sharp interface, allowing for more accurate calculations of curvature and surface tension.
However, since they involve solving a moving boundary problem, these methods are
less suitable for flows with large interface deformations, such as breakup or coalescence
(Gopala & van Wachem 2008). In contrast, the Eulerian framework-based interface-
capturing methods (b) are more suitable for complex interface motion. Depending on
the choice of the indicator function, interface-capturing methods are sub-classified as
level-set (Sethian 1996; Osher & Fedkiw 2005), phase-field (Sun & Beckermann 2007,
2008) and volume of fluid (VOF) (Hirt & Nichols 1981; Ubbink & Issa 1999; Rusche
2003) methods. We chose the VOF method, which has been successfully demonstrated
to model immiscible flow through porous media with sub-pore resolution, and describe
characteristic phenomena such as viscous deformation of the meniscus, snap-off and
coalescence, jumps and abrupt reconfiguration of the interface (Ferrari & Lunati 2013).
It was also the method of choice for the aforementioned study of primary drainage in 2-D
two-phase flows by Ferrari et al. (2015).

In this study, we thus formulate a 2-D depth-integrated flow model for immiscible
two-phase flow in open, rough-walled fractures, accounting for all physical forces that
may act on the fluid phases and the interfaces between them. We capture the fluid-fluid
interface using the VOF method, and assume the lubrication approximation, that is, the
aperture field’s gradient is sufficiently small everywhere, and, consequently, also assume
that the local velocity profile along the direction perpendicular to the mean fracture plane
is parabolic. The latter assumption is only required to write the depth-integrated nonlinear
convective derivative of momentum as a function of the depth-integrated velocity field,
as well as to express the term accounting for the friction imposed onto the fluid by the
fracture walls (see point (i)) above). The model is implemented numerically using the
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open-source computational fluid dynamics (CFD) code OpenFOAM (2012), and validated
by comparison with full 3-D VOF-based simulations (see Krishna et al. 2024) in the
classical configuration of the growth of a single viscous finger in a Hele-Shaw geometry
(Saffman & Taylor 1958). It is then applied to primary drainage in a realistic rough fracture
geometry under various capillary numbers, comprehensively comparing the predictions of
our 2-D model with those obtained from the 3-D numerical simulations, based on various
hydrodynamic-scale and macroscopic observables. We thus analyse the depth-integrated
model’s output to test to which extent, and under which conditions, the flow physics in such
unstable immiscible two-phase flow conditions can be well predicted by such a reduced-
dimension model. We obtain good agreements with the predictions of corresponding
3-D simulations for almost all flow conditions, in particular thanks to the convincing
accounting of capillary forces, which requires an explicit term accounting for the out-
of-plane curvature’s contribution. Furthermore, we show that the model can provide
convincing predictions in realistic geometries for which the lubrication approximation is
only loosely verified. We also discuss the computational efficiency of the depth-integrated
model.

The paper is organised as follows. In § 2, we describe the first-principle governing
equations within the VOF framework. Section 3 is dedicated to the derivation of both
the single- and two-phase 2-D depth-integrated models. The two-phase flow 2-D model
validation in the Saffman–Taylor configuration and the study of primary drainage in
a rough fracture are presented in § 4. Section 5 presents a summary of the study, its
conclusions and discusses future prospects. Appendix A is dedicated to showing how
the model reduces to the well-known Reynolds equation for monophasic steady-state
Stokes flow. Appendix B and Appendix C present analyses respectively supporting the
choice made for the effective wetting angle and testing the model’s sensitivity to contact
angle. Appendix D justifies the chosen aperture field discretisation, while single-phase
2-D model results in a rough fracture geometry are presented in Appendix E.

2. Theoretical background
To describe the isothermal flow of two immiscible, incompressible, Newtonian fluids, we
employ a whole domain formulation (Scardovelli & Zaleski 1999): the two phases are
treated as one single fluid with spatially varying physical properties, namely the density
ρ and dynamic viscosity μ. The boundary conditions (velocity continuity and stress
balance) arising at the fluid–fluid interfaces are replaced by a force defined mathematically
in the entire domain but whose magnitude is significant only in the interface region
(Ferrari & Lunati 2013). This approach eliminates the need to solve a challenging and
computationally expensive moving boundary problem. In the following subsections, we
briefly describe the governing equations and the chosen whole domain formulation, which
is the VOF method. For a more detailed presentation on this topic, the readers are
encouraged to see Berberović et al. (2009), Rusche (2003) and Deshpande et al. (2012a).

2.1. First-principle equations
The whole domain formulation results in a single set of Navier–Stokes equations
describing the flow of two immiscible, Newtonian fluids

∇ · u = 0, (2.1)

for the conservation of mass, and
∂ (ρu)

∂t
+ [u · (ρ∇)] u = −∇ p + ρg + ∇ · (2μE) + σκnδΓ , (2.2)
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for the conservation of momentum. In the above equations, u = (u, v, w) is the velocity
field, p is the pressure field, g is the gravitational acceleration and E = (∇u + ∇uT )/2
is the rate-of-strain tensor. The term representing the viscous forces in the momentum
equation (2.2) can thus be expressed as

∇ · (2μE) = ∇ · (μ∇u) + (∇u) · ∇μ , (2.3)

where ∇u denotes the element-wise product of the vectorial operator ∇ and the velocity
vector. The last term in (2.2) accounts for the capillary forces acting on fluid–fluid
interfaces, σ being the surface tension coefficient, κ the interface curvature, n a unit vector
normal to the interface and δΓ a Dirac function which is non-zero only at the interface.

2.2. The volume of fluid method
In the VOF method pioneered by Hirt & Nichols (1981), the interface is not explicitly
defined or tracked; instead, it is reconstructed based on a fluid indicator function γ .
A grid cell occupied by fluid 1 is indicated by γ = 1, while γ = 0 indicates the presence of
the other phase, fluid 2. Intermediate values of γ between zero and one only occur in the
fluid–fluid interface region. The physical properties of the single, effective fluid in (2.2)
are then defined as

ρ(x) = ρ1γ (x) + ρ2(1 − γ (x)), and μ(x) = μ1γ (x) + μ2(1 − γ (x)), (2.4)

where x(x, y, z) is the position vector and ρ1, ρ2, μ1 and μ2 are the bulk-fluid properties
(densities and viscosities) of the individual fluid phases. The effective fluid velocity is
analogously defined as a weighted average of the velocities of individual phases

u(x) = γ (x)u1(x) + (1 − γ (x))u2(x). (2.5)

The capillary force in (2.2) is evaluated using the continuum surface force (CSF) model
of Brackbill, Kothe & Zemach (1992), which replaces the surface force at the interface by
the corresponding volumetric force

fσ = σκ∇γ, (2.6)

which is non-negligible only within the interface region, defined as the region where
0 < γ < 1. The curvature of the fluid–fluid interface, κ , is the sum of the two principal
components: one defined in the mean plane of the fracture, xy, and thus denoted as the
in-plane curvature κxy , and the other defined in a plane perpendicular to the latter and
denoted as out-of-plane curvature κz

κ = κxy + κz = −∇ · n = −∇ ·
( ∇γ

‖∇γ ‖
)

. (2.7)

Note that the partition of the curvature into its two principal components has no purpose
for the full 3-D modelling of the two-phase flow (see our recent paper on the topic (Krishna
et al. 2024)), but it will come handy for the depth-averaged model presented in § 3.

To model the behaviour of the triple line at which fluid–fluid interfaces meet solid walls,
properly accounting for the wetting of these walls by the two fluids, the VOF method uses
the classical Young’s law, σ cos θ = σnw − σw, where θ is the static equilibrium contact
angle and σnw (respectively, σw) is the surface tension coefficients of the non-wetting
(respectively, wetting) fluid–solid interface. For a detailed discussion on contact angles
and wettability, see Lunati (2007) and Ferrari & Lunati (2013). In the context of the VOF
method, Young’s law is enforced within the CSF model, as first suggested by Brackbill
et al. (1992), by imposing the following constraint on the unit vector normal to the interface
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at the wall, nw:

∇γ

‖∇γ ‖
∣∣∣∣
x∈wall

≡ nw = ns cos θ + nt sin θ , (2.8)

where ns is the unit vector normal to the wall pointing into the solid and nt is a unit vector
tangent to the solid and pointing into the wetting phase.

The velocity field resulting from the solution of (2.1) and (2.2) then provides the
changes in the fluid–fluid interfaces’ position by solving a simple advection equation for
the indicator function γ . In the VOF model as implemented in OpenFOAM (2012), this
advection equation reads as

∂γ

∂t
+ ∇ · (uγ ) + ∇ · [urγ (1 − γ )

] = 0, (2.9)

where an additional ‘compression term’, active only at the interface (0 < γ < 1), has been
added to limit interface smearing due to numerical diffusion (Klostermann, Schaake &
Schwarze 2013). In this compression term, ur is a suitable ‘compression velocity’, which
is evaluated according to (Berberović et al. 2009)

ur = min [Cγ ‖u‖, max (‖u‖)] n. (2.10)

Note that this formulation ensures that the compression velocity operates exclusively
in the direction perpendicular to the interface. To limit the value of ur , the maximum
velocity in the flow domain is chosen as the worst case value (Berberović et al. 2009). The
compression coefficient Cγ regulates the degree of interface compression; we use Cγ = 1,
which corresponds to a balance between interface compression and unwanted parasitic
velocities (Deshpande et al. 2012a; Hoang et al. 2013); for details, please see Rusche
(2003) and Berberović et al. (2009).

2.2.1. Modified pressure formulation
The numerical implementation of the boundary conditions for pressure is simplified
if the so-called dynamic pressure formulation, pd , is used (Berberović et al. 2009;
Rusche 2003)

pd = p − ρg · x. (2.11)

The resulting body force density is the negative gradient of the dynamic pressure

− ∇ pd = −∇ p + ρg + (g · x) ∇ρ, (2.12)

consisting of the body force density due to pressure, the opposite of the gravitational body
force, and an additional contribution arising from the density gradient. With this change
of working variable, and including the strain-rate tensor simplification (2.3) together with
the expression of the capillary force (2.6), the final form of the momentum equation is

∂ (ρu)

∂t
+ [u · (ρ∇)] u = −∇ pd − (g · x) ∇ρ + ∇ · (μ(∇u)) + (∇u) · ∇μ + σκ ∇γ.

(2.13)

3. Depth-integrated 2-D model
In this section we present the derivation of the 2-D, depth-integrated model for flow in
open rough-walled fractures. As a preliminary, we first derive depth-integrated equations
for single-phase flow, and then extend the model to two-phase flow using the VOF
approach. The flow domain lies in the x, y, z Cartesian coordinates, xy being the

1011 A43-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

40
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.404


R. Krishna, Y. Méheust and I. Neuweiler

z
y

x

Bottom wall

Top wall

g
z

x

x

z
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z = z2 (x, y)

Fluid 1

(non-wetting)

Fluid 2

(wetting)

(a) (b)

(c)

Figure 1. (a) Three-dimensional (3-D) illustration of immiscible two-phase flow in a rough fracture of mean
horizontal plane (xy). (b) Vertical (xz) cross-sectional view of the 3-D displacement: the non-wetting fluid
1 (darker region) displaces the wetting fluid 2, leading to the formation of a wetting film adhering to the top
and bottom walls. (c) The 2-D depth-integrated formulation reduces the description to two dimensions in the
xy plane, and can thus not account for the presence of such a wetting film; this is equivalent to assuming a
fluid–fluid interface that does not depend on the vertical coordinate z in three dimensions. The thickness in the
vertical direction is only shown for illustration, as it has no physical meaning in the 2-D formulation.

horizontal vectorial plane and z being the vertical coordinate. The aperture field of the
fracture is defined as a = z2 − z1, where z2(x, y) (respectively, z1(x, y)) is a function of
x and y that represents the vertical position of the top (respectively, bottom) wall of the
fracture at horizontal position (x, y).

3.1. Assumptions and definitions
We make the following two assumptions:
A: the gradients of the aperture field are small: ‖∇a(x, y)‖ � 1. This is the classical

lubrication approximation, from which it follows that (i) the vertical momentum exchange
is negligible, and the vertical component of the velocity field is a lot smaller than
the horizontal components (w � u, v) (see Méheust & Schmittbuhl 2001), and (ii) the
dynamic pressure pd can be considered to not vary in the z direction.
B: in the case of two-phase flow, the presence of a wetting film which adheres to the

fracture’s walls is neglected, i.e. the phase fraction γ is assumed to be independent of the
z coordinate. Hence, the gradients of phase fraction, density and viscosity are all contained
in the xy plane (and non-negligible only in the interface region). This assumption, which
is depicted in figure 1, is reasonable if the thickness of the film is very small compared
with the aperture, which is the case at sufficiently small capillary numbers, with a range
of suitable Ca values extending at least up to 10−3 (Krishna et al. 2024). Note that the
validity of these assumptions will be tested and discussed in § 4.

We define the 2-D depth-averaged velocity field U = (U, V ) as

U (x, y) = 1
a(x, y)

∫ z2(x,y)

z1(x,y)

u dz and V (x, y) = 1
a(x, y)

∫ z2(x,y)

z1(x,y)

v dz. (3.1)

In the framework of the VOF formulation of two-phase flow, the definition of the bulk
phase velocity also applies to the 2-D velocity field, i.e.

U = γ U1 + (1 − γ )U2. (3.2)
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3.2. Depth-integrated formalism for single-phase flow
For single-phase, incompressible flow, where a single fluid occupies the entire flow
domain, the governing flow equations are the continuity and momentum conservation,
which read respectively as

∇ · u = 0, (3.3)

and
∂ (ρu)

∂t
+ [u · (ρ∇)] u = −∇ pd + ∇ · [μ∇u] . (3.4)

Below, we integrate these governing 3-D equations over the z coordinate, and the
resulting integrals are then simplified using the Leibniz theorem and the fundamental
theorem of calculus, along with the no-slip boundary condition for the velocity at the
walls, to obtain the 2-D equations for the equivalent depth-integrated model.

3.2.1. Depth-integrated continuity equation
Integrating the continuity equation, (3.3), over z, yields∫ z2

z1

∇ · udz = ∂(aU )

∂x
+ ∂(aV )

∂y
= ∇ · (aU) = 0, (3.5)

where we have used the definitions of the 2-D velocity field from (3.1). The above equation
indicates that, unlike in the 3-D model where the velocity field u is divergence free, in the
2-D depth-integrated model the divergence-free constraint applies to the quantity

Q = aU, (3.6)

which has been previously termed local flux in the literature (Méheust & Schmittbuhl
2001).

3.2.2. Depth-integrated momentum equation
Next, we perform the depth-integration of the momentum equation (3.4), and develop the
terms one by one as follows.
Temporal derivative of the momentum density∫ z2

z1

∂ρu
∂t

dz = ∂ (ρaU)

∂t
= ∂ (ρ Q)

∂t
. (3.7)

Convective derivative of the momentum density: Depth integration of the inertial term, when
written in component form, e.g. for the x direction, and considering the no-slip conditions
on the top and bottom walls, reads as∫ z2

z1

∂(ρuu)

∂x
dz +

∫ z2

z1

∂(ρuv)

∂y
dz = ∂

∂x

∫ z2

z1

ρ(uu) dz + ∂

∂y

∫ z2

z1

ρ(uv) dz. (3.8)

The integration of the y component can be treated in the same way. We notice in the
above equation the appearance of the nonlinear terms,

∫ z2
z1

ρui u j dz, where i, j ∈ 1, 2 are
the indices denoting the u, v velocity components. There is no general integrated form
for these integrals, as they depend on the vertical velocity profile. They can be expressed
by using a momentum correction factor β which accounts for the z-dependence of the
velocity field (Chanson 2004)∫ z2

z1

ρ(ui u j ) dz = β ρ (UiU j ) a . (3.9)
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The depth-integrated inertial term in vectorial form can thus be written as∫ z2

z1

[u · (ρ∇)] u dz = β [U · (ρ∇)] Ua. (3.10)

The approximation made above is reasonable on account of our lubrication assumption
A(i), which implies a parabolic vertical velocity profile. Consequently, we use β = 1.2
in this study, corresponding to a parabolic vertical velocity profile throughout the
fracture plane (similar to that observed in plane Poiseuille flow (Gerhart, Hochstein &
Gerhart 2020)).
Dynamic pressure force: Using assumption A(ii) of constant pressure in the z direction,
depth integrating the pressure term results in the following:∫ z2

z1

−∇ pd dz = −a∇ pd . (3.11)

Viscous force: Depth integrating the last term of the momentum equation (3.4), which
accounts for the viscous dissipation, we obtain, for the component form in x∫ z2

z1

μ

{
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

}
dz. (3.12)

Applying the Leibniz rule twice to ∂2(
∫ z2

z1
udz)/∂x2, considering the no-flow boundary

conditions at the walls and using the depth-averaged field definition (3.1), leads to∫ z2

z1

∂2u

∂x2 dz = ∂2(aU )

∂x2 − ∂u

∂x

∣∣∣∣
z=z2

∂z2

∂x
+ ∂u

∂x

∣∣∣∣
z=z1

∂z1

∂x
. (3.13)

In the case of a flat surface (e.g. Hele-Shaw cell), the last two terms on the right-hand
side of the above equation vanish. For surfaces with spatially varying apertures, they are
not expected to entirely vanish, but, based on the lubrication approximation A(i), they
can be neglected. A similar simplification can be made for the second integral of (3.12),
leaving the last term, which results in∫ z2

z1

μ
∂2u

∂z2 dz = μ
∂u

∂z

∣∣∣∣
z=z2

− μ
∂u

∂z

∣∣∣∣
z=z1

. (3.14)

This is the x component τw,x of the wall shear stress resulting from the no-slip boundary
conditions at the fracture walls. Hence, (3.12) can be written as

μ

{
∂2(aU )

∂x2 + ∂2(aU )

∂y2

}
+ τw,x . (3.15)

The procedure outlined above can then be repeated for the y component of the viscous
term, where the component of the wall shear stress becomes τw,y . In vectorial notation,
the depth-integrated viscous term can finally be written as∫ z2

z1

∇ · (μ∇u) dz = ∇ · [μ∇(aU)] + τw = ∇ · (μ∇ Q) + τw, (3.16)

where, τw is the wall shear stress vector accounting for the drag by the fracture walls. There
is no general theoretical expression for this drag term as it depends on the z-dependence
of the velocity. However, as mentioned above, with the assumption of a parabolic vertical
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velocity profile, the drag term can then be calculated to be the following Darcian term:

τw = − μ
12U

a
= −μ Q

k
, (3.17)

where k = a2/12 is the local parallel plate permeability of the fracture.

3.2.3. Complete depth-integrated model for monophasic flow
Putting together the integrals of the individual terms discussed above, the 2-D depth-
integrated single-phase flow equations can now be expressed as a function of the local
flux Q (defined in (3.6)) as follows:

∇ · Q = 0, (3.18)

∂(ρ Q)

∂t
+ β

[
Q
a

· (ρ∇)

]
Q = −a∇ pd + ∇ · (μ∇ Q) − 12μ

a2 Q. (3.19)

Note that the conserved quantity in this 2-D model is the local flux Q. The 2-D depth-
averaged velocity U = Q/a is obtained as a post-processed quantity. The particular case
of steady-state Stokes flow yields the well-known Reynolds equation (Brown 1987), as
discussed in Appendix A.

3.3. Depth-integrated formalism for two-phase flow
We now combine the VOF formulation for two-phase flow, as outlined in § 2, and the
depth-integrated approach presented in § 3.2, based on the same assumptions.

3.3.1. Depth-integrated continuity equation
As for the monophasic case, depth-integrating the two-phase continuity equation (2.1)
leads to ∫ z2

z1

∇ · u dz = ∇ · Q = 0. (3.20)

3.3.2. Depth-integrated phase-fraction advection equation
Using the assumption B made in § 3.1, i.e. neglecting the presence of displaced fluid films
on the fracture walls, amounts to assuming that the indicator function γ does not depend
on z. Hence, depth integrating the phase-fraction advection equation (2.9), first without
taking into account the ‘compression term’, yields

a
∂γ

∂t
+ Q · ∇γ = 0. (3.21)

To reduce numerical diffusion, we then introduce an additional compression term
∇ · [ Qrγ (1 − γ )], analogous to the compression term introduced in (2.9). In this 2-D
formulation of the compression term, the compression local flux Qr is analogous to the
compression velocity ur in (2.10), and is similarly defined, as

Qr = min [Cγ ‖ Q‖, max (‖ Q‖)] n. (3.22)

The complete depth-integrated phase-fraction equation is thus given by

a
∂γ

∂t
+ Q · ∇γ + ∇ · [ Qrγ (1 − γ )

] = 0. (3.23)

Note that, in the above equation, the aperture field a(x, y) modifies the temporal
derivative of the phase-fraction γ , and thus accounts for the storage capacity available at
any location.

1011 A43-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

40
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.404


R. Krishna, Y. Méheust and I. Neuweiler

3.3.3. Depth-integrated momentum equation
We now perform the depth-integration of the two-phase momentum equation in its final
form (2.13). The integrals for the temporal and the convective derivatives of the momentum
density, as well as the dynamic pressure force, read identically to the corresponding
monophasic integrals (see § 3.2.2, (3.7), (3.10) and (3.11) respectively). The remaining
integrals are presented as follows.

Viscous force Compared with the single-phase case, the viscous dissipation term(s) in
the two-phase momentum equation (2.13) has an additional contribution arising from the
viscosity gradient, which is non-negligible in the interface region. The depth integration
of these two terms reads as∫ z2

z1

∇ · (μ∇u) dz +
∫ z2

z1

∇u · ∇μ dz. (3.24)

Using assumption B (§ 3.1), the derivative of the viscosity with respect to z can be
neglected. Hence, integrating the first term leads to the same formulation as for the single-
phase viscous term integral (3.16). When written in component form, the integral of the x
component of the second term can be written as∫ z2

z1

{
∂u

∂x

∂μ

∂x
+ ∂u

∂y

∂μ

∂y
+ ∂u

∂z

∂μ

∂z

}
dz , (3.25)

where the last term can be neglected (∂μ/∂z � 0). Again, as a consequence of the
lubrication approximation, we can assume that the in-plane gradient of viscosity is
independent of z; using the 2-D averaged velocity definition (3.1), the integrals can then
be simplified to ∫ z2

z1

{
∂u

∂x

∂μ

∂x
+ ∂u

∂y

∂μ

∂y

}
dz = ∂μ

∂x

∂(aU )

∂x
+ ∂μ

∂y

∂(aU )

∂y
. (3.26)

A similar argument can be used to simplify the y component of the integral of ∇u · ∇μ,
and finally, we obtain the following expression for the depth-integrated viscous force:∫ z2

z1

∇ · (μ∇u) dz +
∫ z2

z1

∇u · ∇μ dz = ∇ · (μ∇ Q) + ∇ Q · ∇μ − 12μ

a2 Q . (3.27)

Density gradient term The depth integration of the term containing gravity and the density
gradient (which is significant only at the interface) results in∫ z2

z1

(g · x) ∇ρ dz = ∇ρ

∫ z2

z1

(
gx x + gy y + gzz

)
dz =

(
a g‖ · x + agz

(z1 + z2)

2

)
∇ρ,

(3.28)
where g‖ = (gx , gy) is the projection of the gravity acceleration onto the mean fracture
plane, and gz is its component in the direction normal to that plane (z direction). The
above integral shows that for the 2-D integrated model, to fully describe the gravitational
effects, an additional geometric field, namely the mean vertical positions of the fracture,
is needed. It must be noted that in the right-hand side of the above equation, the position
vector x is restricted to two dimensions x and y.

Surface tension force The curvature κ , which is defined by (2.7), is the sum of the
in-plane curvature κxy and the out-of-plane curvature κz . For the 2-D depth-integrated
model, where no out-of-plane curvature can be described by the model, the corresponding
capillary force contribution must be taken into account explicitly by adding to κ a term
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that accounts for the out-of-plane curvature

κ = −∇ ·
( ∇γ

‖∇γ ‖
)

− 2
a

cos θe , (3.29)

where θe is an effective contact angle at fluid–fluid–solid contact lines. This angle is
not necessarily the real equilibrium contact angle; its value is discussed at the beginning
of § 4.

Here, we have used our assumption A of small gradients for the aperture field
and assumed for the out-of-plane term that the vertical velocity profiles are parabolic
everywhere in the fracture plane (which is also classically assumed to derive the
local cubic law for stationary monophasic flow) (Park & Homsy 1984). The above
approximation of the out-of-plane curvature term may be oversimplifying in cases where
deviations from a symmetric interface are to be expected, such as surfaces with different
wetting properties on opposite sides, such as may occur in configurations of heterogeneous
wetting properties of the fracture walls. With this assumption, the depth-integrated surface
tension is then evaluated as ∫ z2

z1

σκ ∇γ dz = a σκ ∇γ. (3.30)

3.3.4. Complete theoretical description for two-phase flow
Finally, we can now write the two-phase 2-D depth-integrated governing equations as

∇ · Q = 0, (3.31)

a
∂γ

∂t
+ Q · ∇γ + ∇ · [ Qrγ (1 − γ )

] = 0, (3.32)

∂(ρ Q)

∂t
+ β

[
Q
a

· (ρ∇)

]
Q = −a∇ pd −

[
a g‖ · x + agz

(z1 + z2)

2

]
∇ρ

+ ∇ · (μ∇ Q) + ∇ Q · ∇μ − 12μ

a2 Q

+ aσ

[
∇ ·

( ∇γ

‖∇γ ‖
)

+ 2
a

cos θ

]
∇γ .

(3.33)

3.4. Solution procedure with OpenFOAM
All numerical simulations have been implemented using the open-source CFD code
OpenFOAM (2012), which employs a cell-centre-based finite volume approach for spatial
discretisation with second-order accuracy. For time integration, the implicit Euler scheme
is used, which results in first-order accuracy in time. The computational mesh for both
the 3-D and 2-D models was generated using the blockMesh utility of OpenFOAM,
which results in structured hexahedral elements. Although all our simulations use
structured hexahedral mesh elements, the 2-D depth-integrated model implementation is
not restricted to such mesh elements, and can easily be applied to other mesh alternatives,
e.g. unstructured tetrahedral cells.

The monophasic 3-D governing equations ((3.3) and (3.4)) are solved using pisoFoam,
which is a transient, single-phase, Navier–Stokes solver provided in OpenFOAM. We
employ the interFoam solver of OpenFOAM to solve the two-phase governing equations
for the 3-D VOF model ((2.1), (2.9) and (2.13)). The numerical implementation
of the 2-D depth-integrated models, both single phase ((3.18) and (3.19)) and two

1011 A43-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

40
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.404


R. Krishna, Y. Méheust and I. Neuweiler

phase ((3.31), (3.32) and (3.33)), is performed by modifying the two aforementioned
solvers in OpenFOAM. While the overall solution algorithm remains largely the same,
our changes to the solvers account for the change of variable from the 3-D velocity
field u to the 2-D local flux Q, and for the additional terms appearing in the governing
equations, e.g. the Darcian drag term in the momentum equation. For details on the
finite volume discretisation methods and the solution procedures of the two Navier–
Stokes solvers namely, pisoFoam and interFoam, the reader is encouraged to see Jasak
(1996), Weller et al. (1998), Rusche (2003), Berberović et al. (2009) and Deshpande et al.
(2012a). In all simulations, we initialise the time step with a very low value (∼10−8 s)
and employ a run-time adjustable time-step scheme, which ensures numerical stability by
automatically adjusting the time steps according to the Courant–Friedrichs–Lewy (CFL)
criterion (Rusche 2003). The maximum allowed CFL number for all cases is set to 0.5.

4. Results and discussions
In this section, we begin by validating the two-phase, 2-D depth-integrated model through
comparison with results from corresponding 3-D direct numerical simulations for the
classic Hele-Shaw viscous fingering case, following the study by Saffman & Taylor (1958).
It must be noted, that the validation of the 3-D model has been discussed in detail in our
previous work (Krishna et al. 2024), thus interested readers may refer to it. Subsequently,
we apply the 2-D model to a synthetic rough fracture geometry, comparing its performance
against the 3-D model results. As an initial step in validating the 2-D model, we have also
compared the single-phase 2-D results with those from the full 3-D model for the fracture
geometry. These comparisons are detailed in Appendix E.

4.1. Choice of the effective contact angle in the depth-integrated model
The theoretical description of the out-of-plane curvature contribution presented above
in § 3.2.2, (3.29) assumes the absence of a wetting film. However, as a wetting film
is expected and was also found in all 3-D film-resolved simulations, using the static
equilibrium contact angle as effective contact angle in (3.29) of the 2-D depth-integrated
model is not consistent with the physics at play. This effect is also illustrated in figure 20
in Appendix B for the idealised case of the flow between two smooth parallel plates (Hele-
Shaw cell configuration). The presence of a thin wetting film of the defending fluid on
the top and bottom walls increases the curvature of the interface at the finger tip, as
compared with a scenario where no wetting film would be present. Assuming the tip to
be circular (which is reasonable since local apertures are small and much smaller than
the in-plane radius of curvature of the interface), and depending on the film thickness,
the effective meniscus, estimated as the circle tangent to the finger at its tip, may either
not meet the cell walls (in most cases, in which case the best estimate for the effective
contact angle is θe = 180◦) or meet them at an angle different from that of the equilibrium
contact angle θ . By considering the angle at which the circle meets the walls as an effective
contact angle, the out-of-plane curvature estimate (3.29) could be improved by accounting
for the film thickness (Park & Homsy 1984) and its dependence on the capillary number
(see Appendix C). As this approach would imply using a local capillary number (Anjos
et al. 2021) and as the derivations are based on flat surfaces, so the validity for rough
surfaces is a priori unclear. This effect is not accounted for in the model.

In this work, to ensure consistency between the 2-D and 3-D models, we adopt an
effective contact angle value of θe = 180◦ for approximating the out-of-plane curvature and
the resulting capillary pressure component. Supporting analysis of the finger tip curvature
and the effective contact angle in the resolved-film Hele-Shaw configuration is presented
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Figure 2. Schematic of the Hele-Shaw cell used for validating the 2-D depth-integrated two-phase flow model
against the 3-D model. The cell dimensions are: length Lx = 100 mm (x ∈ [0, Lx ]), width L y = 12.5 mm
(y ∈ [−L y/2, L y/2]) and constant vertical aperture b = 0.4 mm (z ∈ [0, b]). The width-to-thickness ratio is
L y/b = 31.25. The initial fluid–fluid interface (at t = 0) has Gaussian profile in the horizontal (xy) plane.
The darker region represents the invading fluid and the lighter region the defending fluid.

in Appendix B. Furthermore, the sensitivity of our 2-D model to variations in contact
angle is discussed in Appendix C.

4.2. Validation of the two-phase 2-D depth-integrated model
We validate our two-phase 2-D depth-integrated model by examining viscous fingering in
a conventional Hele-Shaw cell, which consists of two parallel planar walls separated by a
fixed aperture a(x, y) = b that is much smaller than the wall’s extension along their plane
(figure 2). This set-up replicates the classic experiment by Saffman & Taylor (1958), where
a less viscous fluid displaces a more viscous one, leading to the formation of a stable finger
with a width-to-channel width ratio (λ) of 0.5, except at very slow driving velocities, for
which λ approaches 1.0.

4.2.1. Numerical set-up and flow conditions
The numerical set-up for validation (shown in figure 2) is adapted from the original
configuration by Saffman & Taylor (1958), with slight modifications to enhance
computational efficiency. To promote a single dominant finger growth without extending
the channel length excessively, we apply an initial perturbation to the fluid interface
(figure 2). Fluid 1 represents the invading, less viscous, non-wetting phase, while fluid 2 is
the defending, more viscous, wetting phase, with material properties listed in table 1. The
viscosity ratio μ2/μ1 = 30 matches that of the original experiments. Flow conditions were
defined by injection velocities u(x = 0, y, z) = (uin, 0, 0), where uin is the injection speed
in the longitudinal x direction. The resulting Reynolds (Re = ρ1uinb/μ1) and capillary
(Ca = μ1uin/σ ) numbers are provided in table 1. In the 2-D integrated model, where the
primary variable is the local flux Q = (Qx , Qy), the inlet flux is set to Qin = uin b.

The 3-D computational mesh (figure 3a) uses 40 cells in the z direction, with finer
grading near the walls to resolve the thin film. The 2-D mesh (figure 3b) has a single cell
in the z direction, without boundary conditions on the top and bottom faces. The boundary
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Non-wetting contact angle (θ◦) 135
Surface tension σ (N m–1) 0.015
Fluid densities ρ1, ρ2 (kg m−3) 100, 87.5
Fluid viscosities μ1, μ2 (Pa s) 0.005, 0.15
Inlet injection speed uin(mm s−1) 1, 1.5, 2, 3.5, 5, 6, 7.5, 10, 12.5
Reynolds numbers Re/10−3 8, 12, 16, 28, 40, 48, 60, 80, 100
Capillary numbers − log(Ca) 3.48, 3.3, 3.18, 2.93, 2.78, 2.7, 2.6, 2.48, 2.38

Table 1. Fluid properties and flow parameters used for the Hele-Shaw channel simulations.

(a) (b)

Figure 3. Computational mesh for the Hele-Shaw domain, featuring a horizontal discretisation of �x = b/8,
where �x = �y is the characteristic uniform horizontal grid resolution in the xy plane. For the 3-D simulation
(a), the cells near the top and bottom walls (z = 0, z = b) have a vertical resolution of 0.3 µm, while cells near
the mid-plane (z = b/2) have a resolution of 30 µm. The cell-to-cell expansion ratio is 1.2, resulting in a total
of 2.0 × 107 cells (250 × 2000 × 40). For the 2-D simulation (b), the vertical grid consists of one constant-size
cell, with the total number of grid cells being 5.0 × 105 (250 × 2000 × 1).

3-D 2-D
Boundary u(x, y, z) p(x, y, z) γ (x, y, z) Q(x, y) p(x, y) γ (x, y)

Inlet (uin, 0, 0) nb · ∇ p = 0 γ = 1 (Qin, 0) nb · ∇ p = 0 γ = 1
Outlet nb · ∇u = 0 p = 0 nb · ∇γ = 0 nb · ∇ Q = 0 p = 0 nb · ∇γ = 0
Front & back walls (0, 0, 0) ns · ∇ p = 0 θ = 135◦ (0, 0) ns · ∇ p = 0 θ = 135◦
Top & bottom walls (0, 0, 0) ns · ∇ p = 0 θ = 135◦ − − −

Table 2. Boundary conditions for the two-phase 3-D and 2-D depth-integrated numerical simulations.
nb denotes the normal to the boundaries other than the solid walls, namely the inlet and outlet.

conditions imposed on different domain boundaries for both the 2-D and the 3-D models
are listed in table 2.

4.2.2. Validation and comparison with 3-D model results
We now compare the results obtained with the 2-D simulations based on the depth-
averaged model with those obtained with the 3-D simulations.

Width and tip shape of the viscous finger: the evolution of the fluid–fluid interface for
a representative case (Re = 0.016, log(Ca) = −3.18) is depicted in figure 4. Both the 3-D
(figure 4a) and 2-D (figure 4b) simulations successfully reproduce the development of a
single finger of the invading fluid, in line with the findings of Saffman & Taylor (1958).
At x ≈ 0.02 m, in the neck region of the finger, its width in the 3-D case is notably larger
than that observed in the 2-D simulation. This trend holds true across different injection
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Figure 4. Evolution of the invading fluid finger for (a) 3-D and (b) 2-D simulations, with uin = 2.0 × 10−3

m s−1, Re = 0.016 and log(Ca) = −3.18. Each location within the flow domain that is reached by the finger
at some time is coloured according to that time, as indicated by the colour scale. (c) Vertical profiles of the
fluid–fluid interface in the longitudinal vertical mid-plane of the flow cell, comparing early stages of 3-D (solid
curves) and 2-D (dashed lines) simulations. The initial interface position (t0 = 0 s) is shown by the vertical
black line. Coloured lines represent interface positions at t1 = 0.04 s, t2 = 0.08 s and t3 = 0.12 s.

velocities. Figure 4(c) shows the fluid–fluid interface in the longitudinal vertical mid-plane
for the 3-D simulation at three different times. For the 2-D simulation, the interface is
shown as the vertical line corresponding to the longitudinal mid-line at the same times.
Note that, in agreement with previous studies (Bretherton 1961; Horgue et al. 2012), our
3-D simulations confirm that the thickness of the defending fluid film decreases as Ca
decreases (see Krishna et al. (2024) for further details).

Next, we analyse how the ratio of the finger width to the flow cell width, λ, varies with
the capillary number Ca (figure 5). The 2-D simulations underpredict the finger width
compared with their 3-D counterparts all the more as Ca is smaller, with the discrepancy
being obvious for Ca � 2.0 × 10−3. This is primarily due to the 2-D model’s limitations in
capturing capillary forces, particularly in regions of the interface with complex geometries,
such as the neck (near the inlet) or the regions where the lateral finger boundaries meet
the top and bottom plates (for details see figure 5 of our recent work (Krishna et al.
2024)). In the Hele-Shaw geometry, local discrepancies in capillary forces between the 3-D
model and the depth-integrated model impact the fluid distribution in the whole medium.
Notably, closely spaced data points at the same Ca represent simulations performed with
different grid resolutions: b/�x = 4, 8 and 16, where �x = �y is the uniform cell size
in the xy plane. As a secondary criterion for grid convergence, pressure drops across
the channel were also examined. Since the difference in results between b/�x = 8 and
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Figure 5. Relationship between the finger width normalised by the channel width, λ, and the capillary number
(Ca), for the 3-D simulations (red circles) and 2-D simulations (blue triangles). When several symbols are
visible at a given Ca, they represent simulations with different mesh resolutions. Filled symbols indicate
simulations where grid convergence was achieved, while empty symbols correspond to intermediate grid
refinement stages. The dotted curves joining the data points represents a curve of best fit.

16 was under 2 % − 4 %, we chose a horizontal discretisation level of b/�x = 8 for all
simulations.

Under the assumption of a 2-D flow and neglecting surface tension effects, Saffman &
Taylor (1958) derived a parametric equation for the shape of a single finger in the
horizontal plane

x̄ = 1 − λ
π

ln
1
2

(
1 + cos

π ȳ

λ

)
. (4.1)

Here, x̄ and ȳ are dimensionless coordinates normalised by the channel width L y , and
λ is a free parameter corresponding to the width of the finger normalised by L y ; it is not
prescribed by the theoretical derivation. In figure 6, we compare such analytical profiles
to numerical simulations, with λ fitted to the width of the numerically predicted finger, for
two extreme flow cases: log(Ca) = −2.48, Re = 0.08 (figure 6a), and log(Ca) = −3.48
and Re = 0.008 (figure 6b). While at higher Ca, both the 3-D and 2-D analytical finger
profiles show excellent match to the numerical data, at lower Ca, when surface tension
effects are 10 times more important, significant discrepancies between the 3-D numerical
and analytical solutions become apparent.

Breakthrough times: the breakthrough time, t∗, refers to the time taken for the invading
fluid to reach the outlet. Figure 7 presents the relative differences in breakthrough times
between the 3-D and 2-D simulations across the full range of Ca values. The 3-D
simulations consistently predict lower breakthrough times than the 2-D simulations. The
presence of a wetting film in the 3-D configuration reduces the effective aperture available
for the invading fluid finger, and, in addition, ensures slip velocity conditions at the top and
bottom boundaries of the injected fluid domain, rather than no-flow boundaries; hence,
the finger’s motion is expected to be faster than for the 2-D simulation. Notably, as Ca
decreases and the film thickness diminishes, the relative difference in breakthrough times
reduces, approaching approximately 1 % for the lowest investigated Ca values.

Macroscopic pressure drop: we now evaluate the 2-D model’s ability to predict pressure
drops across the inlet–outlet boundaries in comparison with the 3-D model’s results. With
the outlet pressure set to 0 Pa, the area-weighted average pressure drop �Pio across the
channel is defined as (Ferrari & Lunati 2013; Chen et al. 2018; Krishna et al. 2024)

�Pio = 1
Ain

∫∫
Γin

p dA, (4.2)
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Figure 6. Comparison of the horizontal profile of the finger front (for the 3-D model, in the horizontal mid-
plane, (z = b/2), of the flow cell) obtained from numerical simulations (solid curves) with the analytical
solution of Saffman & Taylor (1958) (markers) with finger width fitted either to the 2-D (‘Analytical 2-D’)
or to the 3-D (‘Analytical 3-D’) numerical data. The flow conditions for (a) are: U = 1.0 × 10−2 ms–1,
log(Ca) = −2.48 and Re = 0.08, and for the (b) they are: U = 1.0 × 10−3 ms–1, log(Ca) = −3.48 and
Re = 0.008.
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Figure 7. Dependence of the relative differences in breakthrough times between the 3-D and 2-D simulations,
�t∗/t∗3D = t∗2D/t∗3D − 1, plotted against log(Ca).

where Ain and Γin represent the inlet area and inlet boundary, respectively. For the four
representative flow conditions listed in table 1, figure 8(a) shows the dependence of �Pio
as a function of the global saturation S1, which is the fraction of the total domain volume
occupied by fluid 1

S1 = 1
V

∫
V

γ dV . (4.3)

In effect, since the volumetric flow rate is constant over time, S1 is linearly related to
the ratio of time to breakthrough time. In figure 8(a), a linear drop in pressure is observed
as the less viscous fluid gradually displaces the more viscous one. Figure 8(b) shows the
longitudinal pressure drop along the longitudinal mid-line of the channel (y = 0) when the
invading fluid has reached 60 % of the channel length. At high Ca, the pressure drop near
the inlet, and in the region occupied by fluid 1, is nonlinear due to the narrow finger and
the effects of capillary forces. However, farther from the inlet, the pressure drop becomes
linear; this is expected as the displacing fluid, of constant viscosity, is displaced with
a uniform and stationary velocity along that line. In the more viscous displaced fluid,
for the same reason, a linear pressure drop is observed, but with a stronger absolute
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Figure 8. Comparison of pressure drops: (a) the area-weighted average pressure drop �Pio along the Hele-
Shaw channel, plotted against the global saturation S1 of the invading fluid 1; (b) the longitudinal pressure
profile �P along the longitudinal centreline from the inlet (x = 0, : y = 0, : z = b/2) to the outlet (x = Lx , :
y = 0, : z = b/2), when the invading finger covers 60 % of the channel length. These results are shown for four
different capillary numbers. The solid and the dashed curves represent respectively the 3-D and 2-D results,
while the corresponding log(Ca) values are indicated with coloured text in panel (b).

pressure gradient due to the higher fluid viscosity. A close-to-vertical drop corresponding
to the capillary pressure across the fluid–fluid interface separates these two linear regimes.
Both the time evolution of the macroscopic pressure drop (figure 8a) and the longitudinal
pressure profiles obtained with the 2-D model (figure 8b) closely align with the 3-D results,
with a degree of alignment that is all the higher as Ca is smaller.

Vertical velocity profiles: lastly, to test the validity of our assumption of a vertical
parabolic velocity profile, employed to model the wall shear stress term τw in our 2-D
model (3.17), we examine the x component of the velocity at two specific x positions
along the longitudinal mid-plane of the flow cell, one on each side of the interface,
positioned sufficiently away from the fingertip. In figure 9 such profiles are shown for
two distinct flow rates, corresponding respectively to log(Ca) = −3.48 and Re = 0.008
(slow), and log(Ca) = −2.48 and Re = 0.08 (fast), and for a time at which the fingertip
has reached approximately half of the channel length. Note that: (i) the same profiles would
be obtained at any different time provided the profiles are chosen at the same distance
from the fingertip, (ii) the velocity whose x-component is plotted has no y component,
due to the symmetry of the finger. In both cases, the velocities within the defending fluid
2 region align perfectly with the dashed parabolic curve (figure 9b). Within the region
occupied by the invading fluid 1, it is observed that at the walls where a film of fluid 2
exists, the velocity magnitudes are smaller. Moving away from the walls, higher gradients
in velocity are encountered, reaching a maximum value at the centre (figure 9a). When
disregarding the near-wall points with low-velocity gradients, the slower case exhibits a
parabolic velocity profile. However, for the faster case, deviation from the parabolic profile
is noticeable towards the centre. At higher inflow speeds, due to the increased wetting-film
thickness, a departure from the parabolic distribution is evident in the observed velocity
profiles.

Conclusion on the model validation: in this section, we have carried out a comparison of
our derived two-phase 2-D depth-integrated model’s predictions with the full 3-D model
results as well as to analytical solutions, in order to validate the approach and identify
limitations. The 2-D model could accurately predict all relevant key macroscopic flow
quantities, such as the finger pattern and pressure drops. As the flow Re increases, our
assumption of a parabolic velocity profile becomes less accurate, leading to discrepancies
in the representation of wall shear stress and thus of the pressure drops. The discrepancies
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Figure 9. Vertical profiles of 3-D velocity component (x component) plotted at two distinct positions along
the longitudinal mid-plane of the Hele-Shaw cell: (a) (0.045, 0.0) m and (b) (0.08, 0.0) m, occupied by fluid
1 and fluid 2 respectively, and located sufficiently away from the interface at a time when the interface tip has
approximately reached half the length of the flow channel. The flow conditions for these profiles are: uin = 1
mm/s, log(Ca) = −3.48, Re = 0.008 at t = 12 s denoted by black circles, and uin = 10 mm s–1, log(Ca) =
−2.48, Re = 0.08 at t = 2 s denoted by red triangles. The dotted curves represent the corresponding best-fit
parabolic profiles.

in pressure are, however, very small. On the other hand, as Ca gets below 10−4, where
surface tension effects become more important, the 2-D model’s interface representation
falls short of fully capturing the localised 3-D effects, leading to deviations of the finger
shapes in such a way that the finger width is slightly underpredicted.

4.3. Results for numerical experiments in rough fractures
In this section, we investigate the predictions of the two-phase 2-D model on a fracture
geometry, where complex spatial variations in the fracture’s local apertures come into
play.

4.3.1. Fracture geometry
Figure 10(a) depicts the schematics of the numerically generated rough fracture used to
carry out our drainage simulations. It consists of a top and bottom wall with parallel
horizontal mean planes, separated by a mean aperture distance of ā (the walls do not
come into contact). The fracture features self-affine isotropic topographies for the top and
bottom walls, exhibiting long-range correlations characterised by the Hurst exponent H
(here H = 0.8) (Plouraboué et al. 1995; Bouchaud 1997). The two walls share identical
large-scale variations above a characteristic length Lc, denoted as the correlation length.
In addition to parameters (i) ā, (ii) H and (iii) Lc, the aperture field of the fracture is
primarily defined by (iv) its standard deviation σa and (v) the horizontal dimensions Lx
and L y of the fracture (Méheust & Schmittbuhl 2003; Dewangan et al. 2022). For further
insights into the geometrical properties of such geological fractures, see Lenci et al. (2022)
and Dewangan et al. (2022). The topographies of the fracture walls were generated using
the spectral method described by Méheust & Schmittbuhl (2003). The resulting aperture
field is shown as a contour plot in figure 10(b), while a similar representation of the average
surface (at equal distance from the two walls) of the fracture is shown in figure 10(d).

The generated top and bottom wall topographies consisted of 512 × 512 points each,
resulting in a horizontal xy resolution of 97 µm. Note that:
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Figure 10. (a) Schematic of the synthetic rough fracture with self-affine top and bottom walls characterised
by a Hurst exponent of H = 0.8. The horizontal dimensions are Lx = L y = 0.05 m, where (x ∈ [0, Lx ]) and
(y ∈ [0, L y]). The fracture has a correlation length of Lc = Lx/4 = 0.0125 m, with a mean aperture ā = 3.3 ×
10−4 m, a standard deviation σa = 90 µm and a mean inlet aperture āin = 3.2 × 10−4 m. (b) Aperture field
a(x, y) of the fracture. (c) Probability density function (PDF) of the aperture field gradient, ‖∇a(x, y)‖ (black
symbols and line), with that from a replica of natural fracture (Zhang et al. 2023); the corresponding mean
aperture gradient values are also shown for both PDFs, as well as the 0.1 threshold corresponding to the strict
lubrication approximation. (d) Map of the mean fracture topography, (z1 + z2)/2.

(i) The probability density function (PDF) of the aperture gradient, shown as black line
and symbols in figure 10(c), is significantly wider than what the strict lubrication
approximation requires (blue vertical line), in particular the mean aperture gradient
magnitude is 0.17 ± 0.01, hence a satisfying agreement between the depth-integrated
model’s predictions and those from corresponding 3-D simulations will show that
the depth-integrated model can even be applied to geometries that do not strictly
adhere to the lubrication approximation. In fact, the PDF shown in red, computed
from the replica of a natural fracture (Zhang et al. 2023) is narrower than that of our
synthetic geological fracture, with a mean gradient magnitude of 0.12 ± 0.01; thus,
the depth-integrated model is likely able to properly address real fracture geometries.

(ii) Due to the self-affinity of the wall roughness at scales smaller than Lc, the resolution
of the aperture field may influence the flow dynamics as insufficient resolution leads
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Non-wetting contact angle (θ◦) 135
Surface tension σ (N m–1) 1.0
Fluid densities ρ1, ρ2 (kg m–3) 100, 90
Fluid viscosities μ1, μ2 (Pa s) 0.01, 1.0
Capillary numbers − log(Ca) 3.0, 3.5, 4.0, 4.5, 5.0
Inlet injection speeds uin (mm s–1) 100, 31.6, 10, 3.16, 1.0
Reynolds numbers Re/10−3 324, 102, 32.4, 10.2, 3.24

Table 3. Fluid properties and flow parameters used for the drainage simulations in the rough fracture geometry.

to not accounting for smaller-scale roughness in the numerical geometry, affecting
the small-scale complexity of the simulated flow; see e.g. Wang et al. (2022) for
an illustration of this effect in single-phase flow and its impact on the estimated
permeability. To ensure accuracy, we analysed the effect of aperture field resolution
on invasion patterns and flow metrics for both the 3-D and 2-D models. This analysis,
detailed in Appendix D, confirmed that the 97 µm resolution used in this study
captures the geometry at sufficiently small scales (i.e. at scales that are sufficiently
smaller than Lc) for the essential flow physics to be accounted for, with negligible
differences to predictions obtained at even finer resolutions.

4.3.2. Numerical set-up and flow conditions
For the drainage simulations within the rough fracture geometry, we use a set-up
similar to that described in Appendix 4.2, where a less viscous fluid 1 displaces a
more viscous fluid 2. To accurately capture the onset of instability of the fluid–fluid
interface, the interface is initialised a small distance of 0.0025 m (= Lx/20) from the
inlet, meaning that at t = 0, fluid 1 occupies a small portion of the fracture domain.
The nomenclature for the different domain boundaries (as shown in figure 10a) follows
that of the Hele-Shaw channel, and the boundary conditions for the simulations remain
consistent with those in table 2. We examine five different cases of Ca, covering
three orders of magnitude: log10 Ca = −3.0, −3.5, −4.0, −4.5, −5.0. Table 3 lists the
corresponding inlet injection speeds uin = σCa/μ1 for these cases, along with the
resulting Re = ρ1uināin/μ1, where the inlet mean aperture āin is used to compute
Re. In the case of the 2-D model, where the primary variable is the local flux
Q = (Qx , Qy), the flux at the inlet boundary is defined as Qin = uin × a(0, y), resulting
in a spatially varying inlet boundary condition. As in sub§ 4.2, we employ a mesh
refinement near the top and bottom walls to capture the thin defending fluid film (see
figure 11). Based on the Hele-Shaw validation (§ 4.2) and additional tests on smaller
fracture domains, we determined that a horizontal discretisation of �x = 50 µm is
sufficient for a converged solution. The 2-D mesh, similar to figure 3(b), has only one cell
in the z direction, with no boundary conditions imposed at the top and bottom boundaries
of the flow domain.

4.3.3. Comparison of results of the 2-D depth-integrated model with those from the
3-D model

Invasion patterns: in the context of immiscible flow in fractured media, the fluid–fluid
displacement pattern (or invasion morphology) is a crucial quantity of interest. It is
governed by the competition between viscous and capillary forces, as well as the local
aperture field. If the interface is viscously unstable (μ2/μ1 > 1), this interplay of forces
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x

Figure 11. The 3-D computational mesh for the rough fracture geometry, with a grid size = 3.2 × 107

(= 1000 × 1000 × 32). The horizontal discretisation corresponds to a cell size of �x = 50 µm, while the
vertical discretisation with 32 uniformly graded cells (1.33 cell-to-cell expansion ratio) results in a mean
cell thicknesses of 0.39 µm. In the case of the 2-D computational mesh, the grid size is given as 1.0 × 106

(1000 × 1000 × 1).

gives rise to the emergence of finger-like patterns dominated by capillary fingering at
low Ca and viscous fingering at higher Ca, as originally defined in 2-D porous media,
and more recently observed in rough fractures (Chen et al. 2017). These two regimes
of invasion patterns are distinguished by the presence of more irregular fingers with
multi-directional growth in the case of capillary fingering, compared with more flow-
aligned finger patterns in the case of viscous fingering. Figure 12 shows displacement
morphologies in the mean fracture plane across different Ca values. The images overlay
invasion patterns, using distinct colours to indicate agreement (yellow) or discrepancy
(blue and red) between patterns obtained from the 2-D and 3-D simulations. As seen for
the Hele-Shaw configuration (§ 4.2.2), finger advancement times vary between the two
models. Hence, for comparison, the snapshots for the patterns predicted by the 2-D and
3-D models are captured at different time steps, such that the advancing fingertips are
approximately at the same distance from the outlet in the simulations.

The rough fracture, whose geometry has been chosen so that its statistical properties
are relevant to those of natural (in particular, subsurface) fractures, exhibits invasion
patterns similar to those observed in such natural fractures (Chen et al. 2017, 2018).
At smaller Ca for which capillary forces become dominant, finger growth occurs in
the transverse direction as well as the longitudinal direction, leading to broader fingers.
This broadening reduces the number of fingers effectively advancing toward the outlet
in comparison with higher Ca cases. Notably, this behaviour is well predicted by the
2-D model. At larger capillary numbers (log(Ca) > −4.0), discrepancies between the
invasion patterns predicted by the two models primarily manifest in the extended blue
regions (corresponding to predictions by the 3-D model) that align with the flow direction.
As the invasion process advances, particularly in the later stages (e.g. figure 12a′′),
these discrepancies become more pronounced, which is expected in processes driven by
interface instabilities. The 2-D model cannot account for the presence of a wetting film,
which is all the thicker as the capillary number is larger (a feature that is well predicted
by the 3-D model). A relatively thick wetting film reduces the effective aperture space.
Additionally, the wetting film alters the vertical position of the slip velocity boundary
conditions at the top and bottom boundaries of the invading fluid domain. These factors
jointly explain the differences between, the fingering patterns observed with the two
models. In particular, at larger capillary numbers, the fingers predicted by the 3-D model
tend to occupy more longitudinal space at any given time in comparison with their 2-D
model counterparts. However, although there are small-scale features that are in these
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Figure 12. Invasion morphologies obtained in the synthetic geological fracture geometry from the 3-D and
the 2-D model simulations. The three columns correspond to invasion patterns recorded at three different time
steps at which the invading tip is located at around the same distance from the outlet boundary for the two
models.
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Figure 13. Plot of the relative differences between the breakthrough times �t∗ = t∗2-D − t∗3-D of the 2-D and
3-D simulations against log(Ca).

cases not reproduced by the 2-D model, the number of fingers and their larger-scale shape
and location are well matched between the 3-D and 2-D models.

At smaller Ca values, and thus, smaller wetting-film thicknesses, the agreement between
the 2-D and 3-D patterns is better. However, we notice that the 2-D patterns differ from the
3-D ones at small scales. This is likely due to higher aperture gradients encountered locally
within the flow domain (as seen in figure 10c). Consequently, the out-of-plane curvature
of the interface plays a significant role in determining pore occupancy – a factor that the
2-D model accounts for less accurately. Nevertheless, despite the inherent assumptions and
simplifications, the 2-D model consistently captures the invasion morphology over larger
length scales, in close agreement with the results obtained from the full 3-D model. In the
following, we examine the 2-D model’s predictive capabilities for other hydrodynamic-
scale and macroscopic flow observables.

Breakthrough times: the differences in the breakthrough times (t∗) predicted by the 2-D
and 3-D simulations are shown in figure 13. Consistently with our observations of the
Saffman–Taylor finger growth (§ 4.2.2), the 2-D model overestimates t∗ in comparison
with the 3-D model predictions. However, this difference is substantially smaller at
lower Ca values (log(Ca)�−4.0), again due to the reduced film thicknesses in the 3-D
simulations.

Pressure drop across the fracture: in figure 14, we analyse the area-weighted average
pressure drop, �Pio, between the inlet and outlet (as defined by (4.2)) over time, starting
from the injection to the breakthrough. Figure 14(a) shows the absolute pressure drop
values plotted as a function of time normalised by the breakthrough time (t∗). At larger
Ca, due to the dominance of viscous pressure gradients, a larger and close-to-linearly
decreasing pressure drop is observed, resulting from the replacement of more viscous
fluid by a less viscous one at a constant flow rate. Conversely, as capillary forces dominate
at lower Ca the pressure drop is smaller, decreases more slowly in time and exhibits
considerable time fluctuations, due to its viscous component being smaller and less
dominant with respect to capillary pressure drops across fluid–fluid interfaces. These
fluctuations qualitatively mark the transition from a viscous-dominated flow to a more
capillary-driven invasion process. This transition is captured well by the 2-D model. To
further examine these pressure fluctuations, we show in figure 14(b) the pressure drop
�Pio normalised with respect to its initial value at the onset of injection, �P∗. The
figure clearly demonstrates that the relative magnitudes of the pressure fluctuations are all
the larger as Ca is smaller. This trend is well captured by our 2-D model across the entire
range of Ca values investigated. However, at lower Ca values (log(Ca)�−4.5), both the
overall decrease in �P∗ and its fluctuations, as predicted by the 2-D model, are smaller
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Figure 14. (a) Average pressure drop �Pio between the inlet and outlet of the fracture, as a function of
time (normalised by the breakthrough time), for different Ca values. (b) Normalised average pressure drop,
�P∗ (= �Pio/�Pio(t = 0)) as a function of time. The solid and dashed lines correspond to the 3-D and 2-D
simulation results, respectively.
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Figure 15. Evolution of the interface length l with time (normalised by t∗) for three representative Ca values.
The solid and dashed curves represent the 3-D and 2-D results, respectively.

than those from the 3-D model due to the approximated out-of-plane curvature of the
fluid–fluid interface.

Fluid–fluid interface length: figure 15 presents the fluid–fluid interface lengths (l) within
the mean aperture plane (xy) of the fracture as a function of the normalised time (t/t∗), for
three representative capillary numbers. Across all Ca values, l increases monotonically,
and the growth is approximately linear with time. At higher Ca, more pronounced viscous
fingering results in larger interface lengths. Conversely, at lower Ca, the fingers become
more compact, leading to shorter interface lengths. These trends are consistent with
previous findings, both in rough fractures (Chen et al. 2018) and in 2-D porous media
(Ferrari et al. 2015). The 2-D and 3-D results for l show good agreement at lower Ca,
where the influence of the wetting film is minimal. However, at larger Ca discrepancies are
more noticeable, due to more sustained secondary fingering in the 3-D simulations than in
the 2-D model (figure 15a′′, 15b′′). Furthermore, in large Ca flows, break-up events, which
occur significantly during the invasion process, further contribute to a steeper increase of l
in time (Pak et al. 2015; Chen et al. 2018), a phenomenon that is captured by the 2-D model,
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Figure 16. (a) Plot of velocity off the most advanced fluid–fluid interface tip, normalised by its mean value,
U∗

ti p = Utip/U tip with time (normalised by t∗) for three representative Ca values. The solid and dashed curves
represent the 3-D and 2-D results, respectively. The standard deviations of U∗

ti p values are plotted in (b) for all
the investigated Ca values. Inset: plot of U tip as a function of Ca values. The dashed line represents a reference
with a slope of 1, indicating a linear scaling between U tip and Ca.

although to a lesser extent. For further illustration of this behaviour, see the supplementary
movies 1 (for three dimensions) and 2 (for two dimensions).

Velocity of the most advanced finger’s tip: figure 16(a) shows the velocity of the tip,
Utip, normalised by its mean value and denoted as U∗

ti p, as a function of the normalised
time (t/t∗). Utip is defined as the velocity at the point farthest from the inlet reached
by the fluid–fluid interfaces. For clarity we have only shown the U∗

ti p values for three
representative Ca cases. The tip velocities fluctuate in time around their mean values,
which increase linearly with Ca; see inset of figure 16(b). At low Ca values (log(Ca) =
−4.5, −5.0), due to the magnitude of capillary forces with respect to viscous forces, the tip
velocities show strong fluctuations. Their standard deviations are plotted as a function of
Ca in figure 16(b). While these fluctuations are well captured by the 2-D model at higher
Ca (log(Ca)�−4.0), they are relatively dampened for the two lowest Ca cases.

Longitudinal saturation profiles: we now examine the longitudinal saturation profile of
the invading fluid, averaged in the transverse (y) direction (Ferrari et al. 2015). This profile
is closely linked to the conventional macroscopic description of flow through permeable
media, which relies on volume averaging (see, e.g. Bear 2013). Figure 17 presents the
mean saturation profile as a function of the normalised longitudinal coordinate x/Lx , for
three representative Ca values. Overall, there is good agreement between the saturation
profiles predicted by the 2-D and 3-D models at all capillary numbers. The discrepancies
are small but appear larger at both ends of the Ca range. At larger Ca, the differences arise
primarily because the wetting fluid film is not accounted for, as discussed above for other
observables. At lower Ca, although the wetting film is thinner, small-scale variations in
the invasion patterns lead to slightly larger mismatches in the profiles than at intermediate
capillary numbers without a systematic pattern.

4.3.4. Discussion on the validity of the 2-D model’s assumptions
The derivation of the 2-D depth-integrated two-phase flow model relies on two key
approximations: (i) the out-of-plane curvature approximation (3.29), and (ii) the estimate
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Figure 17. Average longitudinal saturation profile for three different, representative Ca values. The solid and
the dashed lines correspond to the 3-D and 2-D profiles respectively.

of the wall shear stress based on the assumption of a parabolic vertical velocity profile
(3.17). Here, we assess the validity of these approximations.

Out-of-plane curvature approximation: to assess the accuracy of the out-of-plane
curvature approximation in (3.29), we analyse the curvature of a 3-D interface obtained
from the 3-D simulation results. The interface curvature κ in the 3-D model can be
decomposed in two components: the in-plane curvature κxy and the out-of-plane curvature
κz; this decomposition is used in the 2D-model, but in the 3-D model the total curvature
κ is obtained directly from the divergence of the normalised gradient of the 3-D phase
indicator function γ (2.7). On the one hand, we extract the κ values along the line defined
as the intersection of the horizontal mid-plane of the fracture and the 3-D fluid–fluid
interface. On the other hand, we compute, along the same line, the in-plane curvature κxy ,
based on the divergence of the normalised gradient of the 2-D phase indicator function.
Adding to this κxy our analytical approximation for the out-of-plane contribution, given by
2/a cos θ , we thus reconstruct an estimate of the curvature of the 3-D fluid–fluid interface
as κxy + (2/a) cos θ (a being the local fracture aperture), which is exactly the curvature
estimated by the 2-D depth-integrated model. For all voxels along the aforementioned
fluid–fluid line in the fracture mid-plane, we then compare those two estimates of the 3-D
interface’s curvature: the one calculated as the 3-D model would, and the one estimated
as the 2-D model would. The results are shown in figure 18(d–f ) for three representative
capillary numbers: log(Ca) = −3.0, −4.0 and −5.0; we use an occupancy density plot
rather than a scatter plot, which would not show the spatial repartition of the points in
the plane of the figure as well. The mid-plane fluid–fluid lines corresponding to each of
these plots are shown in figure 18(a−c). Figure 18(d–f ) very clearly indicate that while the
curvature inferred by the 2-D depth-integrated model slightly underpredicts that computed
by the 3-D model, the agreement between the two values varies from good to excellent
over the investigated range of capillary numbers, the best agreement being obtained at the
largest capillary number (log(Ca) = −3.0). The larger discrepancies observed at lower
capillary numbers are likely due to stronger curvatures at localised positions along the
fluid–fluid line, which cause increased variations in the out-of-plane curvature component.
Nevertheless, the overall agreement between the two estimates supports the validity of
the assumptions made to ‘reconstruct’ the full capillary force in the 2-D model without
explicitly describing the third dimension, over the full range of investigated capillary
numbers.

Vertical velocity profiles: similarly to our analysis performed in the Hele-Shaw cell
geometry (§ 4.2.2), we have tested the validity of our assumption of parabolic vertical
velocity profile (3.17) by plotting in figure 19 the z coordinatex at four given locations
within the fracture plane, as a function of the x-component of the 3-D velocity, for
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Figure 18. (a−c) Interface morphologies obtained as intersections between the horizontal mid-plane of the
fracture and fluid–fluid interfaces obtained with the 3-D model, for three representative capillary numbers:
log(Ca) = −3.0, −4.0 and −5.0. (d−f ) Comparison between the curvature κ calculated from the 3-D interface
geometry through (2.7) and that estimated by the 2-D model from the sole knowledge of the corresponding
2-D pattern shown above, as κxy + 2/a cos θ , where κxy is measured from the 2-D pattern; the comparison is
performed through occupation density maps. The dashed diagonal line represents the ideal agreement.

the two extreme Ca values (log(Ca) = −3.0 and −5.0). The horizontal coordinates of
these locations are such that they lie sufficiently away from the fluid-fluid interface, in
areas occupied by either of the two fluids, 1 and 2. It can be observed that, for both Ca
cases, the profiles are perfectly parabolic at the locations occupied by the defending fluid
only, (figures 19b and 19d). For the locations occupied by the invading fluid, the velocity
profile fits a parabolic representation (in the vertical range corresponding to the invading
fluid, that is, excluding the film of defending fluid at the walls) only at low Ca (low Re
case; figure 19c). At the highest Ca (Re = 0.324), a relatively thicker film and possibly
also increased inertial effects (though moderate), influence the velocity profile, which
considerably deviates from being parabolic, as seen in figure 19(a). However, one can
infer from these plots that as long as Stokes flow (Re � 1) is maintained, one can expect
local vertical velocity profiles in both fluids to be very close to parabolic.

4.3.5. Remarks on the computational efficiency of the 2-D integrated model
The analysis in the previous sections demonstrates that the 2-D depth-averaged model with
effective terms capturing the effects of the third dimension captures the essential physics
of immiscible flow in rough fractures, at least for drainage for which no wall film flow
of the displacing fluid is to be expected, and accurately predicts both hydrodynamic-scale
and mesoscopic to macroscopic flow observables. To assess its computational efficiency
for the numerical simulations across different geometries, the computational requirements
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Figure 19. Vertical profiles of the longitudinal component (x component) of the 3-D velocity, plotted at
locations occupied by fluid 1 (a,c) and fluid 2 (b,d) and located sufficiently away from the interface.
Panels (a,b) correspond to a snapshot at t = 0.055 (t/t∗ = 0.44), obtained for the following flow conditions:
uin = 100 mm s−1, log(Ca) = −3.0, Re = 0.324, while panels (c,d) correspond to a snapshot obtained at
t = 6.72 s (t/t∗ = 0.43) for the following flow conditions: uin = 1 mm s–1, log(Ca) = −5.0, Re = 0.00324.
The simulated profiles are shown by black circles, while the black dotted curves represent the corresponding
best-fit parabolic profiles.

of the 3-D and the 2-D models are presented in table 4. The 2-D model achieves a
substantial reduction in the total cell count, typically by at least one order of magnitude,
compared with the 3-D grid. Furthermore, constrained by the CFL stability criterion,
the computational effort is also influenced by the number of time steps and the time-
step size. The 3-D model, with its finer grid resolution, necessitates smaller time steps
due to the CFL criterion, contributing to increased computational effort. Our simulations
consistently indicate that the time steps in the 2-D model are approximately one order of
magnitude larger than those required by the 3-D model. The advantage of coarser grid
resolution and higher time-step size is reflected in the total CPU hours required by the 2-D
model simulations, as highlighted in table 4. On average, 2-D model simulations utilise
5−10 times less CPU time than their 3-D counterparts.

When it comes to the investigated range of capillary numbers [10−5; 10−3], it is relevant
for such VOF-based DNS of two-phase flow (see, e.g. Krishna et al. 2024). Indeed, such
VOF direct numerical simulations (even in three dimensions) are difficult to run at very
low capillary numbers due to the numerical errors known as spurious currents (parasitic
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Geometry log(Ca) Total cell count (nx × ny × nz) CPU-hours Ratio CPU-hours
3-D 2-D 3-D 2-D 3-D: 2-D

Hele-Shaw −2.38 250 × 2000 × 40 250 × 2000 × 1 998.26 108.48 9.2
−3.48 2721.6 436.46 6.2

Rough fracture −3.0 1000 × 1000 × 32 1000 × 1000 × 1 748.4 166.22 4.5
−5.0 14461.04 1199.55 12.1

Table 4. Grid sizes and total CPU hours required by the 3-D and the 2-D model computations, for the Hele-
Shaw cell and the rough fracture geometry. The grid cell counts are shown as nx × ny × nz , where nx , ny
and nz are the number of cells in the x , y and z directions, respectively. The presented values correspond to
the extreme investigated Ca flow cases for the two considered geometries. All simulations were conducted in
parallel on the cluster system at the Leibniz University of Hannover, Germany.

velocities) (Lafaurie et al. 1994; Deshpande et al. 2012b; Popinet 2018). At very low
capillary numbers, an invasion percolation scheme is sufficient and runs very fast (Yang
et al. 2016), while at very large capillary numbers direct numerical simulations run very
inefficiently (see an alternative, much more efficient numerical approach in Yang et al.
(2019)). In addition, many practical subsurface applications, such as CO2 sequestration
(Krevor et al. 2015), often operate in this intermediate-to-high Ca range.

5. Summary and conclusions
In this paper, we have proposed a novel two-dimensional depth-integrated model
describing immiscible two-phase flows in open rough-walled fractures. Such models of
reduced dimensionality can be beneficial if predictions of two-phase flow in fractures need
to be made over larger length scales. The 2-D model was derived using a DNS approach
employing the VOF method to resolve the fluid–fluid interface. By assuming a sufficiently
small aperture gradients (i.e. the lubrication approximation) and a parabolic transverse
velocity profile, the governing equations were integrated over the direction perpendicular
to the fracture’s mean plane, resulting in a 2-D representation of the flow field in terms of
depth-averaged quantities. The primary variables in the model are the local flux (i.e. depth-
integrated fluid velocity) and fluid pressure, while the fracture’s geometric description can
be reduced to its aperture field and mean topography field (i.e. the average between the
rough topographies of the two fracture walls). If the two fluids have the same density,
the sole aperture field controls the displacement process. The wall friction and out-of-
plane curvature component of the fluid–fluid interface are accounted for by corresponding
terms and parameters in the 2-D model equations that were derived in the averaging
procedure. Additionally, the transport equation of the fluid indicator function of the 2-D
model contains a storage prefactor in its non-stationary term.

We tested the 2-D model using the classical viscous finger growth in a Hele-Shaw
geometry. The finger width and pressure drops could well be reproduced for larger
capillary numbers, while the width was slightly underpredicted at lower capillary numbers,
where local 3-D configurations of the fluid–fluid interface impact the overall finger shape.
Subsequently, the model was applied to viscously unstable drainage in a synthetic rough
fracture whose wall topographies and aperture field resemble those of a naturally occurring
geological fracture, and whose distribution of aperture gradients is actually typical of
what could be measured on real geological fractures, and significantly wider than strictly
required by the lubrication approximation. The wall roughness and the resulting spatial
heterogeneity of the aperture field bring an additional physical feature to the two-phase
flow process, as fluid patterns are not entirely controlled by the viscous instability, but
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also strongly impacted by the geometry of the aperture field. The drainage simulations
covered a broad range of capillary numbers (10−5 � Ca � 10−3), for which the use of such
VOF-based DNS is relevant, and compared the 2-D depth-integrated model’s predictions
with the 3-D numerical model results. Our comparison demonstrated that the 2-D model
effectively captures the relevant flow physics of the drainage process. This means that the
fluid displacement morphology and macroscopic observables (e.g. macroscopic pressure
drop and longitudinal saturation profiles) as well as the transition from viscous-dominated
to capillary-dominated displacement regimes, as characterised by the pressure signals,
was well reproduced. Effects where films are relevant, such as rupturing or bursts, which
at few places occurred at high capillary numbers, as well as some small-scale details at
low capillary numbers, were less markedly captured. The displacement patterns from the
fracture scale and down to Lc/10, as well as macroscopic observables, however, were
captured well over the entire capillary number range. Discrepancies arise at larger Ca
values since wetting films, which are resolved by the 3-D model but not in the 2-D model,
have a larger thickness that grows with the capillary number. The 2-D model at higher
Ca values thus features slower finger velocities, and slightly different fingering patterns
at large scales, as the presence of the film reduces the effective mean aperture in the 3-D
model and modifies the related boundary conditions for the injected fluid, from no flow to
slip velocity. In contrast, at lower Ca values, the discrepancies in the patterns are primarily
of smaller scales due to the strong local aperture variations, where the assumption of mild
aperture gradients no longer applies, and the sensitivity of the fingering process to local
aperture fluctuations due to the dominant role by capillary effects. The best agreements
between the 2-D and the 3-D model results are seen in the intermediate Ca range, where
both the film effects and the capillary forces are not too large.

While our analysis has been primarily focused on drainage simulations, it is anticipated
that our 2-D depth-integrated model will perform well under imbibition conditions in the
regimes for which film flow does not substantially influence the invasion patterns. With its
capacity to offer a tenfold reduction in computational requirements in comparison with the
3-D numerical simulation, and reasonably accurate predictions over several decades in Ca,
we believe that this model will allow simulating a sufficiently large statistics of realisations
of fracture with the same given set of geometrical parameters to tackle stochastic studies of
two-phase flows in rough fractures. Note, however, that care has to be taken when studying
phenomena for which deterministic small-scale details of the interface morphology matter.
For instance, the interfacial area is crucial when studying effective rates of chemical
reactions between the two fluids or the dissolution of components from one fluid into the
other one. Phenomena that depend on the 3-D interface configuration, such as snap-off,
are also expected to not be necessarily well captured by the 2-D model.

Investigation of such effects could warrant future studies. Other potential future
prospects for this 2-D depth-integrated model include the characterisation of flow regimes
over a wide range of capillary numbers and viscosity ratios, using a combination of 2-
D simulations (when they are sufficiently accurate) and 3-D simulations (when they are
necessary).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.404.
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Appendix A. Particular case of a steady-state Stokes flow
In the case of a permanent flow at low Reynolds numbers, both momentum derivatives can
be considered null, and thus the single-phase depth-integrated momentum conservation
equation (3.19) reduces to

12μ

a2 Q = −a∇ pd + ∇ · (μ∇ Q) . (A1)

On account of the lubrication approximation (B § 3.1), the derivative of any velocity
component with respect to z is much larger than the derivative with respect to x and y,
and thus, the viscous force (Laplacian) term is expected to be much smaller than the
wall friction (Darcian) term in the depth-integrated equation. Neglecting the former with
respect to the latter, we obtain

Q = −a3

12
1
μ

∇ pd , (A2)

at any position in the mean fracture plane. This Darcy law is classically denoted as the
local cubic law, since it states that the relationship between the depth-integrated specific
flow and the dynamic pressure gradient in a parallel plate fracture also holds locally inside
a fracture of spatially varying aperture (provided that ‖∇a � 1‖) (Zimmerman & Yeo
2000), by considering the local fracture transmissivity a3/12. Together with the continuity
equation (3.18), it yields the Reynolds equation

∇ ·
(

a3∇ pd

)
= 0, (A3)

which can easily be solved to obtain the dynamic pressure field, and infer from it the Q and
U fields. This method has been used to characterise flow channelling in rough geological
fractures (Brown 1987; Brown et al. 1995; Méheust & Schmittbuhl 2001).

Appendix B. Effective contact angle and curvature analysis in 3-D Hele-Shaw
configuration
As discussed in § 4.1, the out-of-plane curvature of the invading fluid–fluid interface
increases in the presence of wetting films, which means that the effective contact angle θe
to be used in the equation differs from the equilibrium contact angle θ . In this appendix,
we extend this discussion by analysing the curvature of the meniscus in the simplified case
of a Hele-Shaw cell, based on film-resolved 3-D simulations.
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Figure 20. Direct 3-D numerical simulation of two-phase flow in a Hele-Shaw cell configuration, with proper
resolution of the wall films in the vicinity of z/b = ±0 and 1: vertical cross-sections of the fluid–fluid interface
in the longitudinal mid-plane for three different capillary numbers Ca (− log(Ca) = 2.38, 2.78 and 3.48),
showing the variation of the meniscus curvature with Ca. The dashed circles are tangent to the interface at the
displacement finger’s tip, so their normalised radii (r/b) correspond to the out-of-plane curvature radii of the
interface at the corresponding finger tip. The measured film thicknesses at the centreline y = 0 are 42, 31 and
15 µm, respectively, for the aforementioned Ca values.

Figure 20 presents vertical cross-sections of the fluid–fluid interface in the longitudinal
mid-plane of the flow cell (solid curves) for three capillary numbers, − log(Ca) = 2.38,
2.78 and 3.48 (ranging from high to low), as obtained from the 3-D simulations. Away
from the finger tip and near the walls, the interface remains flat and parallel to the
walls, leading to a uniform wetting-film thickness that decreases with decreasing Ca. To
determine the effective contact angle at the finger tip (the point of the interface farthest
from the inlet), we first calculate the local out-of-plane interface curvature at that point.
A circle (dotted) is then fitted to the tip with a radius r corresponding to the calculated
curvature. These idealised circular meniscus radii, normalised by the cell aperture, are
shown for the three Ca cases in figure 20. Notably, even at the lowest Ca, where the
wetting film is thinnest, the fitted circle does not intersect the cell walls, leading to an
effective contact angle of θe = 180◦. While performing a similar analysis for simulations
in the 3-D rough fracture geometries is challenging due to the geometric and dynamical
complexities, the results from the Hele-Shaw cell provide a compelling argument for
using an effective contact angle of 180◦ in the 2-D model across the capillary numbers
investigated in this work. However, it is important to note that at extremely low capillary
numbers, for which the wetting films become ultra-thin, the equilibrium contact angle
values may suffice for the presented 2-D model.

Appendix C. Sensitivity of 2-D model predictions to the choice of the effective
contact angle
In § 4.1 we discussed that, under drainage conditions, the presence of a uniform thin
wetting film in the 3-D simulations, led us to choose an effective contact angle θa = 180◦
in the depth-integrated 2-D model (3.29). However, the reader might wonder how much
this choice impacts the predicted displacement patterns. In this appendix, we thus test how
changing the value of the effective contact angle impacts the 2-D model’s predictions as
compared with our baseline case with θa = 180◦.

For a capillary number such that log(Ca) = −4.0, the resulting invasion patterns
are shown in figure 21 for two different effective contact angles, namely θa = 90◦
(figure 21(a − a′′)) and θa = 135◦ (figure 21(b − b′′)). The resulting displacement patterns
are shown superimposed with our baseline case of θ = 180◦. In the case of θ = 90◦,
the out-of-plane curvature contribution in (3.29), and hence the resulting capillary
pressure component, vanish entirely. This effect is clearly observed in the resulting
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Time

(a) (a′) (a′′)

Defending f luid

Invading f luid, 2-D with θe = 90°

Invading f luid, 2-D with θe = 180°

Invading f luid, 2-D, both with θe = 90° and 180°

Defending f luid

Invading f luid, 2-D with θe = 135°

Invading f luid, 2-D with θe = 180°

Invading f luid, 2-D, both with θe = 135° and 180°

(b) (b′) (b′′)

Figure 21. Comparison of invasion morphologies obtained using the 2-D model for two distinct effective
contact angles, namely (a − a′′) θe = 90◦, and (b − b′′) θe = 135◦, with that obtained for θ = 180◦ (baseline)
used to carry out the 2-D numerical simulations presented above. The three columns depict the invasion patterns
recorded at three different time steps. The capillary number is intermediate: log(Ca) = −4.0.

invasion patterns in figure 21(a − a′′), where smaller-scale details are comparatively
smoothed out. To a lesser extent, this smoothing can also be observed in the case of
θ = 135◦ (figure 21(b − b′′)). To evaluate the contact angle’s influence on other flow
quantities, we compared the invading fluid’s global saturation (S1), interface length (l)
and average pressure drop (�Pio) at different instances. Relative to the baseline case of
θ = 180◦, the average relative differences in these observables were 21 %, 22 %, and 8.5 %,
respectively, for the θ = 90◦ case, while for the θ = 135◦ case they were respectively
8 %, 9 % and 5 %. Similar observations are recorded for the Ca cases not shown
here.

Note, however, that experiments (and the 3-D model’s predictions) will only be sensitive
to the contact angle if it prevents the development of a film of the defending wetting fluid
on the fracture walls. This would occur for values of the wetting angle very close to 90◦.
For such cases, in order for the 2-D model to predict the drainage process well, it would
have to be run with an effective contact angle θa = 90◦, while in configurations where a
wall film is present (that is, in most cases), an effective contact angle of θa = 180◦ must be
chosen.

Appendix D. Influence of aperture field discretisation on predicted invasion patterns
and flow quantities
In this appendix we test the sensitivity of the predicted invasion patterns and various flow
observables to a refinement of the aperture field discretisation. In all numerical presented
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Figure 22. (a) Aperture profile (normalised by the mean aperture ā) along the longitudinal direction (x) at the
mid-line y = L y/2, obtained using the original aperture field resolution ξ0 (512 × 512) and a finer resolution ξ1
(1024 × 1024). Panels (b) and (c) illustrate the comparison of the invasion patterns generated by the 3-D and
2-D models, respectively, for the two aperture field resolutions. The results correspond to the intermediate Ca
case with log(Ca) = −4.0.

above, the rough fracture geometry was generated on a 512 × 512 grid, corresponding to
a horizontal resolution of ξ0 = 97 µm, while the computational mesh had a cell size of
50 µm. The 512 × 512 discretisation of the aperture field was obtained from wall surface
topographies that were sampled more finely, allowing us to also obtain a 1024 × 1024
discretisation of the same aperture field, corresponding to a ξ1 = 48 µm resolution. The
same profile of the aperture field, i.e. intersection of that field with a vertical plane
at y = L y/2, is shown in figure 22(a) for the two discretisations. The 3-D and 2-D
numerical simulations were then re-run with the finer discretisation of the aperture field.
Figures 22(b) and 22(c) show a comparison between the displacement patterns obtained
for the aperture field resolutions ξ0 and ξ1, for a representative, intermediate capillary
number case (log(Ca) = −4.0); panel (b) shows the result obtained from 3-D model,
panel (c) those obtained from the 2-D model. The displacement patterns obtained with
the two resolutions are mostly identical to each other, with minimal discrepancies. The
corresponding macroscopic observables confirm this good agreement: the invading fluid
saturation (S1), interface length (l) and average pressure drop (�Pio) exhibit on average
(over different times), relative differences of 0.008 %, 0.05 % and 0.9 %, respectively, for
the 3-D model, while for the 2-D model these relative differences were respectively 0.8 %,
0.5 % and 0.6 %. These findings suggest that the resolution ξ0 is sufficient to capture the
essential physics of the immiscible displacement process, despite the fact the multiscale
nature of the fracture walls’ geometry.
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Fluid density ρ (kg m–3) 100
Fluid viscosity μ (Pa s) 0.01
Inlet injection speeds uin(m s–1) 0.15, 1.5, 3.1
Reynolds numbers (Re) 0.5, 5, 10

Table 5. Single-phase fluid properties and flow parameters used for the 2-D single-phase flow rough fracture
simulations.

Appendix E. Single-phase 2-D depth-integrated model results
In this appendix, we present the results for the single-phase 2-D depth-integrated model,
derived in § 3.2, and compare them with the full 3-D single-phase model results. The
computational domain we choose for this comparison is the same as that used previously
for the two-phase model results, detailed in figure 10. For the reference 3-D results, the
single-phase governing equations (3.3) and (3.4) are solved numerically on a 3-D mesh
(figure 11), while the 2-D depth-integrated single-phase equations (3.18) and (3.19) are
solved on a 2-D mesh (similar to figure 3b). The 3-D computational mesh used for these
single-phase simulations is the same as that employed in the two-phase simulations in
§ 4.3.2, with additional refinement near the top and bottom walls. The 2-D computational
mesh consists of only one cell in the z direction, with no boundary conditions imposed
on its top and bottom faces. The boundary conditions imposed on the different domain
boundaries are the same for the 2-D and 3-D models, as shown in table 2, except for the
phase-fraction γ , as a single fluid now occupies the entire computational domain. The
fluid properties (invading fluid 1 used in the two-phase simulations) and flow conditions
are listed in table 5. Here, we consider configurations of non-Stokes flow, with Re = 0.5,
5.0 and, 10. The resulting inlet velocities and Reynolds numbers are listed in table 5. In the
case of the 2-D depth-integrated model, where the primary variable is the local flux Q =
(Qx , Qy), the flow rate at the inlet boundary is prescribed as Qin = uin a(0, y), resulting
in a spatially varying boundary condition. All simulations are run for a large number of
time steps to obtain a steady-state solution. Note that, when comparing the velocity and
local flux fields between the results from the 2-D and 3-D models, the notations used for
the local flux and depth-averaged velocity fields obtained from the 2-D depth-averaged
model are respectively Q and U , as used in the derivation of the model above, but the
corresponding quantities obtained from integrating along the z direction the 3-D velocity
field u output by the 3-D model, are respectively q = ∫ z2

z1
u dz and u = q/a.

We start our comparison with figure 23, where we consider the largest investigated Re
value (Re = 10.0) and compare the local flux Q (figure 23d) and depth-averaged velocity
U = Q/a (figure 23a) with the equivalent quantities for the full 3-D numerical simulation,
which are respectively q (figure 23e) and u (figure 23b). The probability density functions
of the relative differences between the corresponding outputs of the 2-D vs 3-D models are
shown in figure 23(c) for the velocities and 23(f ) for the fluxes. They can be interpreted
as errors made by using the depth-averaged approach. They are smaller than 10 % almost
everywhere, with a peak slightly above 1 %, the mean value being 1.5 % for the error on
U , and 1.2 % for the error on Q. In fact the errors are all the smaller as the Reynolds
number is smaller, as expected due to the disappearance of inertial effects at very small
Reynolds numbers. For Re = 5.0 the mean value is 1.0 % for U and 0.8 % for Q. Lastly,
for the smallest Re case (Re = 0.5) the mean error values are 0.6 % and 0.3 % for U and
Q, respectively.
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Figure 23. Spatial distribution of the velocity ‖U(x, y)‖ and flux ‖ Q(x, y)‖ fields: (a) and (d) from the 2-D
model, and (b) and (e) for the depth-averaged 2-D equivalent velocity ‖ū(x, y)‖ and flux ‖q(x, y)‖ fields from
the 3-D model. (c, f ) Probability density functions (PDFs) of the logarithm of the relative errors between the
2-D and 3-D models for velocity (c) and local flux ( f ). The velocity and flux values are normalised by the
corresponding maximum values from the depth-averaged 3-D fields. The dot-dashed line is simply a broken
line linking the symbols. The Reynolds number is 10.

Next, we compare the pressure distributions across the domain for the 2-D and 3-D
models. Figure 24 shows the reduced pressure field (dynamic pressure pd ) distributions
obtained from the 2-D (figure 24a) and the 3-D (figure 24b) simulations. The relative
errors PDF are shown in (figure 24c); for this particular case (Re = 10.0) the peak is
around 2.5 % while the mean value is 2.7 %. Overall these plots also show an excellent
agreement between the 2-D depth-integrated pressure field and the reference 3-D pressure
solution.

Lastly, we investigate to which extent our assumption of a vertical parabolic profile
of velocity for the 2-D depth-integrated model is valid, in terms of properly accounting
for the wall shear stresses resulting from the no-slip condition at the fracture walls (see
(3.17)). The wall shear stress for the 2-D model can be obtained directly from the flux
field Q through (3.17). The wall shear stress in the 3-D model, on the other hand, is
computed from the 3-D velocity field u through its definition (3.14). Figure 25 presents
the spatial distributions of the wall shear stresses for the two models at Re = 10, along
with the associated relative errors’ PDF. Our assumption of parabolic velocity does not
hold perfectly, due both to the aperture field gradients (figure 10c) as well as to local
inertia effects which start manifesting for Re > 1. Note, however, that the mean relative
error in this case, is 7 %, which is not too bad. We report similar observations for the shear
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Figure 24. (a,b) Dynamic fluid pressure (pd ) distribution for the 2-D (a) and 3-D models (b), for Re = 10.0.
(c) The PDFs of the logarithm of the relative errors between (a) and (b). The dot-dashed line is simply a broken
line linking the symbols.
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Figure 25. Wall shear stress distribution |τw|, in Pa unit, resulting from the top and bottom wall surfaces of the
fracture, for the 2-D (a) and 3-D (b) models at Re = 10.0. (c) The PDFs of the logarithm of the relative errors
between (a) and (b) are shown in (c). The dot-dashed line is simply a broken line linking the symbols.

stress distributions other at Re = 5.0 and Re = 0.5, which are not shown here for the sake
of brevity.

These observations indicate that despite some limitations, our single-phase 2-D depth-
integrated model can predict single-phase flow (even weakly inertial) with good accuracy,
compared with the full 3-D model results, with the advantage of a much-increased
computational speed.
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