Bull. Aust. Math. Soc. 89 (2014), 60–69 doi:10.1017/S0004972713000543

THE SIMILARITY DEGREE OF SOME C*-ALGEBRAS

DON HADWIN[™] and WEIHUA LI

(Received 23 October 2012; accepted 8 December 2012; first published online 27 June 2013)

Abstract

We define the class of weakly approximately divisible unital C^* -algebras and show that this class is closed under direct sums, direct limits, any tensor product with any C^* -algebra, and quotients. A nuclear C^* algebra is weakly approximately divisible if and only if it has no finite-dimensional representations. We also show that Pisier's similarity degree of a weakly approximately divisible C^* -algebra is at most five.

2010 *Mathematics subject classification*: primary 46L05; secondary 46A22, 46H25, 46M10, 47A20. *Keywords and phrases*: Kadison similarity problem, similarity degree, tracially nuclear, *C*^{*}-algebra.

1. Introduction

One of the most famous and oldest open problems in the theory of C^* -algebras is Kadison's similarity problem [12], which asks whether every bounded unital homomorphism ρ from a C^* -algebra \mathcal{A} into the algebra B(H) of operators on a Hilbert space H must be similar to a *-homomorphism, that is, does there exist an invertible $S \in B(H)$ such that $\pi(A) = S\rho(A)S^{-1}$ defines a *-homomorphism? One measure of the quality of a good problem is the number of interesting equivalent formulations. In this regard Kadison's problem gets high marks.

(1) Inner derivation problem [4, 13]: if $\mathcal{M} \subseteq B(H)$ is a von Neumann algebra and $\delta : \mathcal{M} \to B(H)$ is a derivation, does there exist a $T \in B(H)$ such that, for every $A \in \mathcal{M}$,

$$\delta(A) = AT - TA?$$

(2) Hyperreflexivity problem [4, 13]: if $\mathcal{M} \subseteq B(H)$ is a von Neumann algebra, does there exist a $K, 1 \leq K < \infty$, such that, for every $T \in B(H)$,

$$\operatorname{dist}(T, \mathcal{M}) \le K \sup\{\|PT - TP\| : P \in \mathcal{M}', P = P^* = P^2\}?$$

(3) Dixmier's invariant operator range problem [6] (Foiaş [7], Pisier [21, Theorem 10.5], see also [10]): if $\mathcal{M} \subseteq B(H)$ is a von Neumann algebra, $A \in B(H)$ and $T(A(H)) \subseteq A(H)$ for every $T \in \mathcal{M}$, then does there exist $D \in \mathcal{M}'$ such

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

that A(H) = D(H)? Paulsen [16] proved that an affirmative answer is equivalent to the assertion that the range of $A \oplus A \oplus \cdots$ is invariant for $\mathcal{M} \otimes \mathcal{K}(\ell^2)$.

In [8] Haagerup proved that Kadison's question has an affirmative answer whenever the representation ρ has a cyclic vector, a result that is independent of the structure of the algebra \mathcal{A} . Haagerup [8] also showed that a homomorphism ρ is similar to a *-homomorphism if and only if ρ is completely bounded. (See also [3]; see the union of [9] and [26] for another proof; see [16, 17] for a lovely exposition of these ideas.) In [18] Pisier proved that, for a fixed *C**-algebra \mathcal{A} , every bounded homomorphism of \mathcal{A} is similar to a *-homomorphism if and only if \mathcal{A} satisfies a certain factorisation property. It was shown in [10] that Kadison's similarity property is universally true if and only if there is a Pisier-like factorisation in terms of scalar matrices and noncommutative polynomials that is independent of the *C**-algebra. It was also shown in [10] that if $H = \ell^2 \oplus \ell^2 \oplus \cdots$ and $D = 1 \oplus \frac{1}{2} \oplus \frac{1}{2^2} \oplus \cdots$ and \mathcal{S} is the unital algebra of all operators $T \in B(H)$ with an operator matrix $T = (A_{ij})$ such that $\rho(T) = D^{-1}TD = (2^{j-i}A_{ij})$ is bounded, then Kadison's similarity problem has an affirmative answer if and only if, for every unital *C**-subalgebra \mathcal{A} of \mathcal{S} , the homomorphism $\rho|_{\mathcal{A}}$ is similar to a *-homomorphism.

Our main focus in this paper is another amazing result of Pisier [18] where he shows that, for a unital C^* -algebra \mathcal{A} , Kadison's similarity property holds for \mathcal{A} if and only if there is a positive number d for which there is a positive number K such that

$$\|\rho\|_{cb} \le K \|\rho\|^a$$

for every bounded unital homomorphism ρ on \mathcal{A} . Pisier proved that the smallest such d is an integer which he calls the *similarity degree* $d(\mathcal{A})$ of \mathcal{A} . Here are a few results on the similarity degree.

- (1) \mathcal{A} is nuclear if and only if $d(\mathcal{A}) = 2 [2, 4, 22];$
- (2) if $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then $d(\mathcal{A}) = 3$ [20];
- (3) $d(\mathcal{A} \otimes \mathcal{K}(\mathcal{H})) \leq 3$ for any C^* -algebra \mathcal{A} [8, 19];
- (4) if \mathcal{M} is a factor of type II_1 with property Γ , then $d(\mathcal{M}) = 3$ [5];
- (5) if \mathcal{A} is an approximately divisible C^* -algebra [1], then $d(\mathcal{A}) \leq 5$ [14, 15];
- (6) if A is nuclear and contains unital matrix algebras of any order, then d(A ⊗ B) ≤ 5 for any unital C*-algebra B [23];
- (7) if A is nuclear and contains finite-dimensional C*-subalgebras of arbitrarily large subrank (see the definition below), then d(A ⊗ B) ≤ 5 for any unital C*-algebra B [14];
- (8) if \mathcal{A} is nuclear and contains homomorphic images of certain dimension-drop C^* -algebras $\mathbb{Z}_{p,q}$ for all relatively prime integers p, q (for example, \mathcal{A} contains a copy of the Jiang–Su algebra), then $d(\mathcal{A} \otimes \mathcal{B}) \leq 5$ for any unital C^* -algebra \mathcal{B} [11].

In this paper we define the class of weakly approximately divisible C^* -algebras and show that this class is closed under unital *-homomorphisms, arbitrary tensor products

D. Hadwin and W. Li

and direct limits. We also define the class of tracially nuclear C^* -algebras that properly contains the class of nuclear C^* -algebras, and we show that a tracially nuclear C^* -algebra is weakly approximately divisible if and only if it has no finite-dimensional representations. We prove that if \mathcal{A} is weakly approximately divisible, then $d(\mathcal{A}) \leq 5$. We extend the results (6)–(8) above to the case when \mathcal{A} is tracially nuclear and has no finite-dimensional representations, and the tensor product is with respect to any C^* -crossnorm.

2. Weakly approximately divisible algebras

If τ is a tracial state on \mathcal{M} , we let $\|\cdot\|_{\tau}$ denote the seminorm on \mathcal{M} defined in the Gelfand–Naimark–Segal (GNS) construction by

$$||a||_{\tau}^2 = \tau(a^*a).$$

Let \mathcal{B} be a finite-dimensional unital C^* -subalgebra of a unital C^* -algebra \mathcal{A} . First, we know that \mathcal{B} is *-isomorphic to $\mathcal{M}_{k_1}(\mathbb{C}) \oplus \cdots \oplus \mathcal{M}_{k_m}(\mathbb{C})$ and its *subrank*, subrank(\mathcal{B}), is defined to be $\min(k_1, \ldots, k_m)$. Note that if $\pi : \mathcal{B} \to \mathcal{D}$ is a unital *-homomorphism, then

 $\operatorname{subrank}(\mathcal{B}) \leq \operatorname{subrank}(\pi(\mathcal{B})).$

If $P_1 = 1 \oplus 0 \oplus \cdots \oplus 0$, $P_2 = 0 \oplus 1 \oplus 0 \oplus \cdots \oplus 0$, ..., $P_m = 0 \oplus \cdots \oplus 1$ are the minimal central projections of \mathcal{B} , then, for $1 \le s \le m$, we have $P_s \mathcal{A} P_s$ is isomorphic to $\mathcal{M}_{k_s}(\mathbb{C}) \otimes \mathcal{A}_s = \mathcal{M}_{k_s}(\mathcal{A}_s)$ for some algebra \mathcal{A}_s . The relative commutant of $\mathcal{M}_{k_s}(\mathbb{C})$ in $\mathcal{M}_{k_s}(\mathcal{A}_s)$ is

$$\mathcal{D}_{s} = \left\{ \begin{pmatrix} A & & \\ & A & \\ & & \ddots & \\ & & & A \end{pmatrix} : A \in \mathcal{A}_{s} \right\},$$

and the relative commutant of \mathcal{B} in \mathcal{A} is $\mathcal{D}_1 \oplus \cdots \oplus \mathcal{D}_m$. Suppose that $T \in \mathcal{A}$, and $P_sTP_s = (a_{ijs})_{1 \leq i,j \leq k_s}$. Let $D_s = \text{diag}(c, \ldots, c)$ where $c = (1/k)k_s(a_{11s} + \cdots + a_{k_sk_ss})$. The map $E_{\mathcal{B}} : \mathcal{A} \to \mathcal{B}' \cap \mathcal{A}$ sending T to $D_1 \oplus \cdots \oplus D_m$ is called the conditional expectation from \mathcal{A} to $\mathcal{B}' \cap \mathcal{A}$ and is a completely positive unital idempotent. For $1 \leq s \leq m$, let \mathcal{G}_s be the group of all matrices in $\mathcal{M}_{k_s}(\mathbb{C})$ such that the only nonzero entry in each row and each column is 1 or -1, and let $\mathcal{G} = \mathcal{G}_1 \oplus \cdots \oplus \mathcal{G}_m \subseteq \mathcal{B}$. Then

$$E_{\mathcal{B}}(T) = \frac{1}{\operatorname{Card} \mathcal{G}} \sum_{U \in \mathcal{G}} UTU^*.$$
(*)

Moreover, if $S \in \mathcal{B}' \cap \mathcal{A}$ and $T \in \mathcal{A}$, then

 $E_{\mathcal{B}}(ST) = SE_{\mathcal{B}}(T)$ and $E_{\mathcal{B}}(TS) = E_{\mathcal{B}}(T)S$.

Furthermore, if τ is a tracial state on \mathcal{A} , then, for every $A \in \mathcal{A}$,

$$\|E_{\mathcal{B}}(A)\|_{\tau} \le \|A\|_{\tau}$$

Similarity degree

Suppose that \mathcal{M} is a von Neumann algebra and $\{v_i : i \in I\} \subseteq \mathcal{M}$ is a family satisfying $\sum_{i \in I} v_i^* v_i = 1$ (convergence is in the weak* topology). Then $\varphi(T) = \sum_{i \in I} v_i^* T v_i$ defines a unital completely positive map from \mathcal{M} to \mathcal{M} . Let us call such a map *internally spatial*, and call a unital completely positive map *internal* if it is a convex combination of internally spatial maps on \mathcal{M} .

REMARK 2.1. There are two key properties of internal maps.

(1) They can be pushed forward through normal unital *-homomorphisms between von Neumann algebras. Suppose that \mathcal{M} and \mathcal{N} are von Neumann algebras and $\rho : \mathcal{M} \to \mathcal{N}$ is a unital weak*-weak*-continuous unital *-homomorphism, and suppose that $\{v_i : i \in I\} \subseteq \mathcal{M}$ with $\sum_{i \in I} v_i^* v_i = 1$ and $\varphi(T) = \sum_{i \in I} v_i^* T v_i$. Then $\{\pi(v_i) : i \in I\} \subseteq \mathcal{N}$ and

$$1 = \pi(1) = \pi\left(\sum_{i \in I} v_i^* v_i\right) = \sum_{i \in I} \pi(v_i)^* \pi(v_i).$$

We define $\varphi^{\pi}(S) = \sum_{i \in I} \pi(v_i)^* S \pi(v_i)$, and we have, for every $a \in \mathcal{M}$,

$$\varphi^{\pi}(\pi(a)) = \pi(\varphi(a)).$$

So if $b \in \pi(\mathcal{A})$ and $b = \pi(a)$, then $\varphi^{\pi}(b) = \pi(\varphi(a))$, which is independent of *a*. For a general φ this only makes sense when $\varphi(\ker \pi) \subseteq \ker \pi$. It follows that φ^{π} makes sense when φ is an internal map, and in this case, φ^{π} is an internal map on \mathcal{N} .

(2) If $\varphi(T) = \sum_{i \in I} v_i^* T v_i$ and *T* commutes with each v_i , then, for every *S*,

$$\varphi(ST) = \varphi(S)T.$$

Hence if ψ is a convex combination of spatially internal maps defined in terms of elements commuting with an operator *T*, we have $\psi(ST) = \psi(S)T$.

DEFINITION 2.2. We say that a unital C^* -algebra \mathcal{A} is *weakly approximately divisible* if and only if, for every finite subset \mathcal{F} of \mathcal{A} , there is a net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ where each \mathcal{B}_{λ} is a finite-dimensional unital C^* -subalgebra of $\mathcal{A}^{\#\#}$ and φ_{λ} is an internal completely positive map such that:

- (1) $\lim_{\lambda} \operatorname{subrank}(\mathcal{B}_{\lambda}) = \infty;$
- (2) $\varphi_{\lambda} : \mathcal{A} \to \mathcal{B}'_{\lambda} \cap \mathcal{A}^{\#\#};$
- (3) for every $a \in \mathcal{F}$, $\varphi_{\lambda}(a) \to a$ in the weak* topology on $\mathcal{A}^{\#\#}$.

REMARK 2.3. Suppose that *n* is a positive integer and let \mathcal{V}_n be the set of *n*-tuples (a_1, \ldots, a_n) of elements in \mathcal{A} such that the conditions in Definition 2.2 hold when $\mathcal{F} = \{a_1, \ldots, a_n\}$. Suppose that U_k is a weak* neighbourhood of a_k in $\mathcal{A}^{\#\#}$ for $1 \le k \le n$. Since addition on $\mathcal{A}^{\#\#}$ is weak*-continuous, there is a weak* neighbourhood V_k of a_k and a weak* neighbourhood E of 0 such that

$$V_k + E \subseteq U_k$$

[5]

for $1 \le k \le n$. Suppose that (b_1, \ldots, b_n) is in the norm closure of \mathcal{V}_n and that U_k is a weak* neighbourhood of b_k in $\mathcal{A}^{\#\#}$ for $1 \le k \le n$. Since addition on $\mathcal{A}^{\#\#}$ is weak*-continuous, there is a weak* neighbourhood V_k of b_k and a weak* neighbourhood E of 0 such that

$$V_k + E \subseteq U_k$$

for $1 \le k \le n$. Since $0 \in E$ and E is weak*-open, there is an $\varepsilon > 0$ such that $\{x \in \mathcal{A}^{\#\#} : ||x|| < \varepsilon\} \subseteq E$. Now choose $(a_1, \ldots, a_n) \in \mathcal{V}_n$ so that $a_k \in V_k$ and $||a_k - b_k|| < \varepsilon$ for $1 \le k \le n$. Next suppose that m is a positive integer. It follows from the definition of \mathcal{V}_n that there is a finite-dimensional C^* -subalgebra \mathcal{B} of $\mathcal{A}^{\#\#}$ and a completely positive unital map $\varphi : \mathcal{A} \to \mathcal{B}' \cap \mathcal{A}^{\#\#}$ such that subrank $(\mathcal{B}) \ge m$ and such that $\varphi(a_k) \in V_k$ for $1 \le k \le n$. It follows that $\varphi(b_k) - \varphi(a_k) = \varphi(b_k - a_k) \in E$ for $1 \le k \le n$, so

$$\varphi(b_k) \in V_k + E \subseteq U_k$$

for $1 \le k \le n$. Hence $(b_1, \ldots, b_n) \in \mathcal{V}_n$. Thus \mathcal{V}_n is norm closed. It is also clear that \mathcal{V}_n is a linear space. Hence, to verify that \mathcal{A} is weakly approximately divisible, it is sufficient to show that the conditions of Definition 2.2 hold for all finite subsets \mathcal{F} of a set W whose norm closed linear span $\overline{sp}(W)$ is \mathcal{A} .

Recall [25] that a C^* -algebra \mathcal{A} is *nuclear* if, for every Hilbert space H and every unital *-homomorphism $\pi : \mathcal{A} \to B(H)$, we have that $\pi(\mathcal{A})''$ is a hyperfinite von Neumann algebra. We say that \mathcal{A} is *tracially nuclear* if, for every tracial state τ on \mathcal{A} with GNS representation π_{τ} , we have that $\pi_{\tau}(\mathcal{A})''$ is a hyperfinite von Neumann algebra. As a flip side of the notion of residually finite-dimensional (RFD) C^* -algebras, we say that a unital C^* -algebra \mathcal{A} is *NFD* if \mathcal{A} has no unital finitedimensional representations.

THEOREM 2.4. Suppose that \mathcal{A} and \mathcal{D} are unital C^* -algebras. Then the following statements hold.

- (1) If \mathcal{A} is approximately divisible, then \mathcal{A} is weakly approximately divisible.
- (2) If \mathcal{A} is weakly approximately divisible and $\pi : \mathcal{A} \to \mathcal{D}$ is a surjective unital *-homomorphism, then \mathcal{D} is weakly approximately divisible.
- (3) If A is weakly approximately divisible, then A has no finite-dimensional representations.
- (4) If A is weakly approximately divisible, then A ⊗_{max} D is weakly approximately divisible.
- (5) A finite direct sum $\sum_{1 \le k \le n}^{\oplus} \mathcal{A}_k$ of unital C^* -algebras is weakly approximately divisible if and only if each summand \mathcal{A}_k is weakly approximately divisible.
- (6) If n is a positive integer, then $\mathcal{A} \otimes \mathcal{M}_n(\mathbb{C})$ is weakly approximately divisible if and only if \mathcal{A} is.
- (7) A direct limit of weakly approximately divisible C*-algebras is weakly approximately divisible.
- (8) If \mathcal{A} is an NFD C^{*}-algebra and \mathcal{M} is the type II_1 direct summand of $\mathcal{A}^{\#\#}$ and $\gamma : \mathcal{A} \to \mathcal{M}$ is the inclusion into $\mathcal{A}^{\#\#}$ followed by the projection map, then \mathcal{A} is

weakly approximately divisible if and only if, for every finite subset $\mathcal{F} \subseteq \mathcal{A}$ there is a net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}$ where \mathcal{B}_{λ} is a finite-dimensional C^* -subalgebra of $\mathcal{M}, \varphi_{\lambda}$ is an internal map on \mathcal{M} and

$$\varphi_{\lambda}(\pi(a)) \to \gamma(a)$$

in the weak^{*} *topology for every* $a \in \mathcal{F}$ *.*

- (9) If A is tracially nuclear, then A is weakly approximately divisible if and only if A is NFD.
- (10) If \mathcal{A} is nuclear, then \mathcal{A} is weakly approximately divisible if and only if \mathcal{A} is NFD.

PROOF. (1) This follows immediately from the definitions.

(2) If $\pi : \mathcal{A} \to \mathcal{D}$ is a surjective unital *-homomorphism, then π extends to a weak*-weak*-continuous surjective unital *-homomorphism $\rho : \mathcal{A}^{\#\#} \to \mathcal{D}^{\#\#}$. Given $d_1, \ldots, d_n \in \mathcal{D}$, choose $a_1, \ldots, a_n \in \mathcal{A}$ so that $\pi(a_k) = d_k$ for $1 \le k \le n$. Choose a net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}$ according to Definition 2.2 with $\mathcal{F} = \{a_1, \ldots, a_n\}$. It follows that φ_{λ}^{ρ} is an internal completely positive map on $\mathcal{D}^{\#\#}$ and

$$\varphi_{\lambda}^{\rho}(\mathcal{D}) = \varphi_{\lambda}^{\rho}(\rho(\mathcal{A})) = \rho(\varphi_{\lambda}(\mathcal{A})) \subseteq \rho(\mathcal{B}_{\lambda}' \cap \mathcal{A}^{\#\#}) \subseteq \rho(\mathcal{B}_{\lambda})' \cap \mathcal{D}^{\#\#}.$$

Further, for each d_k ,

$$\mathbf{w}^* - \lim_{\lambda} \varphi_{\lambda}^{\rho}(d_k) = \mathbf{w}^* - \lim_{\lambda} \rho(\varphi_{\lambda}(a_k)) = \rho(a_k) = d_k,$$

since ρ is weak*-weak*-continuous. Since subrank(\mathcal{B}_{λ}) \leq subrank($\rho(\mathcal{B}_{\lambda})$), we conclude that \mathcal{D} is weakly approximately divisible.

(3) This follows from (2) and the obvious fact that no finite-dimensional C^* -algebra is weakly approximately divisible.

(4) Let $\rho: \mathcal{A} \otimes_{\max} \mathcal{D} \to (\mathcal{A} \otimes_{\max} \mathcal{D})^{\#}$ be the natural inclusion map. We can assume $(\mathcal{A} \otimes_{\max} \mathcal{D})^{\#} \subseteq B(H)$ for some Hilbert space H so that, on bounded subsets of $(\mathcal{A} \otimes_{\max} \mathcal{D})^{\#}$, the weak* topology coincides with the weak-operator topology. If $\rho: \mathcal{A} \to \mathcal{A} \otimes 1 \subseteq \mathcal{A} \otimes_{\max} \mathcal{D}$ is the inclusion map, then there is a weak*-weak*-continuous unital *-homomorphism $\sigma: \mathcal{A}^{\#} \to (\mathcal{A} \otimes_{\max} \mathcal{D})^{\#}$ such that the restriction of σ to \mathcal{A} is ρ . Let $W = \{a \otimes b: a \in \mathcal{A}, b \in \mathcal{B}\}$. Clearly, $\overline{sp}W = \mathcal{A} \otimes_{\max} \mathcal{B}$ (where the closure is with respect to $\|\|_{\max}$). Suppose that $a_1 \otimes b_1, \ldots, a_n \otimes b_n \in W$. Since \mathcal{A} is weakly approximately divisible, we can choose a net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}$ as in Definition 2.2. We know that $\{\varphi_{\lambda}^{\sigma}\}$ is a net of internal maps on $(\mathcal{A} \otimes_{\max} \mathcal{D})^{\#}$ and

$$\varphi_{\lambda}^{\sigma}(a_k \otimes 1) = \varphi_{\lambda}^{\sigma}(\sigma(a_k)) = \sigma(\varphi_{\lambda}(a_k)) \to \sigma(a_k) = a_k \otimes 1$$

in the weak* topology for $1 \le k \le n$. On the other hand, each φ_{λ} is a convex combination of spatially internal maps defined by partial isometries in $\mathcal{R}^{\#\#}$, so each $\varphi_{\lambda}^{\sigma}$ is a convex combination of spatially internal maps defined by partial isometries in $\sigma(\mathcal{R}^{\#\#})$ which is contained in $(\mathcal{R} \otimes_{\max} \mathcal{D})^{\#\#} \cap (1 \otimes \mathcal{D})'$. Hence, for every $S \in (\mathcal{R} \otimes_{\max} \mathcal{D})^{\#}$ and every $d \in \mathcal{D}$,

$$\varphi_{\lambda}^{\sigma}(S(1 \otimes d)) = \varphi_{\lambda}^{\sigma}(S)(1 \otimes d).$$

Hence, for $1 \le k \le n$,

$$\varphi_{\lambda}^{\sigma}(a_k \otimes d_k) = \varphi_{\lambda}^{\sigma}((a_k \otimes 1)(1 \otimes d_k)) = \varphi_{\lambda}^{\sigma}(a_k \otimes 1)(1 \otimes d_k).$$

But $\varphi_{\lambda}^{\sigma}(a_k \otimes 1) \rightarrow a_k \otimes 1$ in the weak* topology. Hence

$$\varphi^{\sigma}_{\lambda}(a_k \otimes d_k) \to a_k \otimes d_k$$

in the weak* topology on $(\mathcal{A} \otimes_{\max} \mathcal{B})^{\#}$ for $1 \le k \le n$. Since, for every λ ,

subrank(\mathcal{B}_{λ}) \leq subrank($\sigma(\mathcal{B}_{\lambda})$),

we see that $\mathcal{A} \otimes_{\max} \mathcal{B}$ is weakly approximately divisible.

(5) This easily follows from the fact that $(\sum_{1 \le k \le n}^{\oplus} \mathcal{A}_k)^{\#\#} = \sum_{1 \le k \le n}^{\oplus} \mathcal{A}_k^{\#\#}$. (6) This is clear, since $(\mathcal{A} \otimes \mathcal{M}_n(\mathbb{C}))^{\#\#}$ is isomorphic to $\mathcal{A}^{\#\#} \otimes \mathcal{M}_n(\mathbb{C})$.

(7) Suppose that $\{\mathcal{A}_i : i \in I\}$ is an increasingly directed family of C^* -subalgebras of \mathcal{A} such that $W = \bigcup_{i \in I} \mathcal{A}_i$ is dense in \mathcal{A} . Suppose that $\mathcal{F} \subseteq W$ is finite. Then there is an $i \in I$ such that $\mathcal{F} \subseteq \mathcal{A}_i$. If $\rho : \mathcal{A}_i \to \mathcal{A}$ is the inclusion map, there is a unital weak*-weak*-continuous unital *-homomorphism $\sigma: \mathcal{A}_i^{\#} \to \mathcal{A}^{\#}$ whose restriction to \mathcal{A}_i is ρ . The rest follows as in the proof of (2).

(8) If \mathcal{A} is weakly approximately divisible, then for a finite subset $\mathcal{F} \subseteq \mathcal{A}$ we can find a net { $(\mathcal{B}_{\lambda}, \varphi_{\lambda})$ } as in Definition 2.2 that works in $\mathcal{A}^{\#\#}$, and if we project all of this onto \mathcal{M} , we get the desired net. Now suppose that \mathcal{A} satisfies the condition in (8). We can write $\mathcal{A}^{\#\#} = \mathcal{M} \oplus \mathcal{N}$, and since \mathcal{A} has no finite-dimensional representations, \mathcal{N} is the direct sum of a type I_{∞} algebra, a II_{∞} and a type III algebra. In particular, this means that there is an orthogonal sequence $\{P_n\}$ of pairwise Murray-von Neumann equivalent projections whose sum is 1. Suppose that N is a positive integer, and let $Q_k = \sum_{i=(k-1)N+1}^{kN} P_i$. Then $\{Q_n\}$ is an orthogonal sequence of pairwise equivalent projections whose sum is 1. We can construct a system of matrix units $\{E_{ij}\}_{1 \le i,j < \infty}$ so that $E_{kk} = Q_k$ for all $k \ge 1$. Then every $T \in \mathcal{N}$ has an infinite operator matrix $T = (T_{ij})$. The map

$$\psi_N(T) = \operatorname{diag}(T_{11}, T_{11}, \ldots) = \sum_{j=1}^{\infty} E_{j1}TE_{j1}^*$$

is spatially internal and, for every T,

$$\left(\sum_{k=1}^{N} P_{k}\right)\psi_{N}(T)\left(\sum_{k=1}^{N} P_{k}\right) = \left(\sum_{k=1}^{N} P_{k}\right)T\left(\sum_{k=1}^{N} P_{k}\right) \to T$$

in the weak* topology. Hence $\psi_N(T) \to T$ in the weak* topology. Moreover, $N \cap \psi_N(N)'$ contains full matrix algebras of all orders. Next suppose that $\mathcal{F} \subseteq \mathcal{A}$ is finite. For each $A \in \mathcal{F}$ we write $A = \gamma(A) \oplus T_A$ relative to $\mathcal{R}^{\#} = \mathcal{M} \oplus \mathcal{N}$. Given the net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}$ in \mathcal{M} based on our assumption on \mathcal{A} , we let $N_{\lambda} = \text{subrank}(\mathcal{B}_{\lambda})$ and choose a full $N_{\lambda} \times N_{\lambda}$ matrix algebra C_{λ} in $\mathcal{N} \cap \psi_{\mathcal{N}}(\mathcal{N})'$. Then $\tau_{\lambda}(S \oplus T) = \varphi_{\lambda}(S) \oplus \psi_{N_{\lambda}}(T)$ is an internal map on $\mathcal{A}^{\#}$ whose range is in $(\mathcal{B}_{\lambda} \oplus \mathcal{C}_{\lambda})' \cap \mathcal{A}^{\#}$ such that

$$\tau_{\lambda}(A) \to A$$

Similarity degree

in the weak* topology for every $A \in \mathcal{F}$. Hence \mathcal{A} is weakly approximately divisible.

(9) Let \mathcal{M} and γ be as in (8). Let Λ be the set of all triples $\lambda = (\mathcal{F}_{\lambda}, \mathcal{T}_{\lambda}, k_{\lambda})$ where $\mathcal{F}_{\lambda} \subseteq \mathcal{A}$ is finite, \mathcal{T}_{λ} is a finite set of normal tracial states on \mathcal{M} , and $k_{\lambda} \in \mathbb{N}$. With the ordering $(\subseteq, \subseteq, \leq)$ we see that Λ is a directed set. If τ is a tracial state on \mathcal{M} , we let $\|\cdot\|_{\tau}$ denote the seminorm on \mathcal{M} defined by

$$||A||_{\tau} = \tau (A^*A)^{1/2}$$

Suppose that $\lambda \in \Lambda$. There is a central projection $P \in \mathcal{M}$ so that $\mathcal{M} = \mathcal{M}_a \oplus \mathcal{M}_s$ $(\mathcal{M}_a = P\mathcal{M})$ and so that $\gamma = \gamma_a \oplus \gamma_s$ and such that $\gamma_a \ll \sum_{\tau \in \mathcal{T}_\lambda}^{\oplus} \pi_{\tau}$ and γ_s is disjoint from $\sum_{\tau \in \mathcal{T}_\lambda}^{\oplus} \pi_{\tau}$. Also, by assumption, $(\sum_{\tau \in \mathcal{T}_\lambda}^{\oplus} \pi_{\tau})(\mathcal{A})'' = \mathcal{M}_a$ is hyperfinite. Hence, there is a finite-dimensional unital subalgebra \mathcal{D}_λ of \mathcal{M}_a and a contractive map $\eta : \mathcal{F}_\gamma \to \mathcal{D}_\lambda$ such that

$$\max_{\tau \in \mathcal{T}_{\lambda}, A \in \mathcal{F}_{\lambda}} \| P \gamma(A) - \eta(A) \|_{\tau} < \frac{1}{k}.$$

Note that $||T||_{\tau} = ||PT||_{\tau}$ for every $T \in \mathcal{M}$ and every $\tau \in \mathcal{T}_{\lambda}$. The relative commutant $\mathcal{D}'_{\lambda} \cap \mathcal{M}_a$ is also a H_1 von Neumann algebra, so there are k_{λ} mutually orthogonal unitarily equivalent projections in $\mathcal{D}'_{\lambda} \cap \mathcal{M}_a$ whose sum is 1. Hence $\mathcal{D}'_{\lambda} \cap \mathcal{M}_a$ contains a unital subalgebra \mathcal{E}_{λ} that is isomorphic to $\mathcal{M}_k(\mathbb{C})$. Similarly, \mathcal{M}_s (if it is not 0) is a H_1 von Neumann algebra and contains an isomorphic copy \mathcal{G}_{λ} of $\mathcal{M}_{k_{\lambda}}(\mathbb{C})$. Then $\mathcal{B}_{\lambda} = \mathcal{E}_{\lambda} \oplus \mathcal{G}_{\lambda}$ is finite-dimensional and subrank $(\mathcal{B}_{\lambda}) = k_{\lambda}$. Define $\varphi_{\lambda} = \mathcal{E}_{\mathcal{B}_{\lambda}}$. For every $A \in \mathcal{F}_{\lambda}$ and $\tau \in \mathcal{T}_{\lambda}$,

$$\begin{split} \|A - \varphi_{\lambda}(A)\|_{\tau} &= \|PA - P\varphi_{\lambda}(A)\|_{\tau} \le \|PA - \eta(A)\|_{\tau} + \|\eta(A) - E_{\mathcal{E}_{\lambda}}(PA)\|_{\tau} \\ &= \|PA - \eta(A)\|_{\tau} + \|E_{\mathcal{E}_{\lambda}}(\eta(A)) - E_{\mathcal{E}_{\lambda}}(PA)\|_{\tau} \\ &\le 2\|PA - \eta(A)\|_{\tau} \le \frac{2}{k_{\lambda}}. \end{split}$$

Clearly,

 $\lim_{\lambda} \operatorname{subrank}(\mathcal{B}_{\lambda}) = \infty,$

and, since there are sufficiently many tracial states on \mathcal{M} [24], we have, for every $A \in \mathcal{A}$,

$$\varphi_{\lambda}(a) \to A$$

in the ultrastrong topology on \mathcal{M} . By assumption \mathcal{A} has no finite-dimensional representations, so it follows from (8) that \mathcal{A} is weakly approximately divisible.

(10) This follows immediately from (9) since the nuclearity of \mathcal{A} is equivalent to the hyperfiniteness of $\pi(\mathcal{A})''$ for every representation π of \mathcal{A} .

3. Similarity degree

THEOREM 3.1. If \mathcal{A} is weakly approximately divisible, then the similarity degree of \mathcal{A} is at most five.

D. Hadwin and W. Li

PROOF. Suppose that *H* is a Hilbert space and $\rho : \mathcal{A} \to B(H)$ is a bounded unital homomorphism. Then ρ extends uniquely to a normal homomorphism $\bar{\rho} : \mathcal{A}^{\#\#} \to B(H)$. Suppose that $A = (a_{ij}) \in \mathcal{M}_n(\mathcal{A})$. Since \mathcal{A} is weakly approximately divisible, we can choose a net $\{(\mathcal{B}_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ as in Definition 2.2 corresponding to $\mathcal{F} = \{a_{ij} : 1 \leq i, j \leq n\}$. We know that

$$\bar{\rho}_n(\varphi_\lambda(a_{ij})) = (\bar{\rho}(\varphi_\lambda(a_{ij}))) \to (\bar{\rho}(a_{ij})) = \rho_n(A)$$

where the convergence is in the weak* topology. Moreover, since φ_{λ} is completely contractive,

$$\|(\varphi_{\lambda}(a_{ij}))\| \le \|A\|,$$

so

$$\lim_{\lambda} \|(\varphi_{\lambda}(a_{ij}))\| = \|A\|,$$

and

$$\|\rho_n(A)\| \leq \limsup_{\lambda} \|\bar{\rho}_n(\varphi_\lambda(a_{ij}))\|.$$

However, $\varphi_{\lambda}(a_{ij}) \in \mathcal{B}'_{\lambda}$ for $1 \le i, j \le n$ and $\lim_{\lambda} \operatorname{subrank}(\mathcal{B}_{\lambda}) = \infty$. So the remainder of the proof follows from [14, Lemma 3.1].

In [23] Pop proved that if \mathcal{A} is a nuclear C^* -algebra containing copies of $\mathcal{M}_n(\mathbb{C})$ for arbitrarily large values of n, then the similarity degree of $\mathcal{A} \otimes \mathcal{B}$ is at most five for every unital C^* -algebra \mathcal{B} . In [14] the second author showed that this result remains true if \mathcal{A} is nuclear and contains finite-dimensional algebras with arbitrarily large subrank. It was shown by [11] that if \mathcal{A} is nuclear and contains homomorphic images of certain dimension-drop C^* -algebras $\mathbb{Z}_{p,q}$ for all relatively prime integers p, q (for example, \mathcal{A} contains a copy of the Jiang–Su algebra), then, for every unital C^* -algebra \mathcal{B} , the similarity degree of $\mathcal{A} \otimes \mathcal{B}$ is at most five. The following corollary includes all of these results.

COROLLARY 3.2. If \mathcal{A} is a unital tracially nuclear NFD C^{*}-algebra, then, for every unital C^{*}-algebra \mathcal{B} , the similarity degree of $\mathcal{A} \otimes \mathcal{B}$ is at most five.

References

- B. Blackadar, A. Kumjian and M. Rørdam, 'Approximately central matrix units and the structure of noncommutative tori', *K-Theory* 6 (1992), 267–284.
- [2] J. W. Bunce, 'The similarity problem for representations of *C**-algebras', *Proc. Amer. Math. Soc.* **81** (1981), 409–414.
- [3] E. Christensen, 'On nonselfadjoint representations of *C**-algebras', *Amer. J. Math.* **103** (1981), 817–833.
- [4] E. Christensen, 'Extensions of derivations II', Math. Scand. 50 (1982), 111–122.
- [5] E. Christensen, 'Finite von Neumann algebra factors with property Γ', J. Funct. Anal. 186 (2001), 366–380.
- [6] J. Dixmier, 'Étude sur les variétés et les opérateurs de Julia, avec quelques applications', *Bull. Soc. Math. France* 77 (1949), 11–101.
- [7] C. Foiaş, 'Invariant para-closed subspaces', Indiana Univ. Math. J. 21 (1971/72), 887-906.

Similarity degree

- U. Haagerup, 'Solution of the similarity problem for cyclic representations of C*-algebras', Ann. Math. 118 (1983), 215–240.
- [9] D. Hadwin, 'Dilations and Hahn decompositions for linear maps', *Canad. J. Math.* **33** (1981), 826–839.
- [10] D. Hadwin and V. Paulsen, 'Two reformulations of Kadison's similarity problem', J. Operator Theory 55 (2006), 3–16.
- M. Johanesová and W. Winter, 'The similarity problem for Z-stable C*-algebras', Bull. Lond. Math. Soc. 44(6) (2012), 1215–1220.
- [12] R. Kadison, 'On the orthogonalization of operator representations', Amer. J. Math. 77 (1955), 600–622.
- [13] E. Kirchberg, 'The derivation problem and the similarity problem are equivalent', J. Operator Theory 36(1) (1996), 59–62.
- [14] W. Li, 'The similarity degree of approximately divisible C*-algebras', Preprint, 2012, Oper. Matrices, to appear.
- [15] W. Li and J. Shen, 'A note on approximately divisible C*-algebras', Preprint arXiv 0804.0465.
- [16] V. I. Paulsen, 'Completely bounded maps on C*-algebras and invariant operator ranges', Proc. Amer. Math. Soc. 86 (1982), 91–96.
- [17] V. I. Paulsen, *Completely Bounded Maps and Dilations*, Pitman Research Notes in Mathematics Series, 146 (Longman Scientific & Technical, Harlow, 1986).
- [18] G. Pisier, 'The similarity degree of an operator algebra', Algebra i Analiz 10 (1998), 132–186; translation in St. Petersburg Math. J. 10 (1999), 103–146.
- [19] G. Pisier, 'Remarks on the similarity degree of an operator algebra', Internat. J. Math. 12 (2001), 403–414.
- [20] G. Pisier, 'Similarity problems and length', Taiwanese J. Math. 5 (2001), 1–17.
- [21] G. Pisier, *Similarity Problems and Completely Bounded Maps*, second, expanded edition. Lecture Notes in Mathematics, 1618 (Springer, Berlin, 2001).
- [22] G. Pisier, 'A similarity degree characterization of nuclear C*-algebras', Publ. Res. Inst. Math. Sci. 42(3) (2006), 691–704.
- [23] F. Pop, 'The similarity problem for tensor products of certain C*-algebras', Bull. Aust. Math. Soc. 70 (2004), 385–389.
- [24] M. Takesaki, Theory of Operator Algebras. I (Springer, New York, 1979).
- [25] M. Takesaki, 'Nuclear C*-algebras', in: Theory of Operator Algebras. III, Encyclopaedia of Mathematical Sciences, 127 (Springer, Berlin, 2003), 153–204.
- [26] G. Wittstock, 'Ein operatorwertiger Hahn-Banach Satz', J. Funct. Anal. 40 (1981), 127–150.

DON HADWIN, Department of Mathematics, University of New Hampshire, Durham, NH 03824, USA e-mail: don@unh.edu

WEIHUA LI, Science and Mathematics Department, Columbia College Chicago, Chicago, IL 60605, USA e-mail: wli@colum.edu