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1 Dataframe Corpora

This Element is about programming for corpus linguistics using dataframes – that

is, storing linguistic data in a table with a small number of columns and many

rows and then using that table to facilitate corpus linguistic analyses. This allows

the analyst to do things like create concordances, find lists of collocates, and

produce per-text frequency counts of linguistic features quickly and efficiently.

In addition, this Element contains a general introduction to the Python

programming language focusing on working with text data, as well as

a basic introduction to writing algorithms. This is not, however, an intro-

duction to corpus linguistics (hereafter, CL) or programming more generally.

This Element is written under the assumption that readers are familiar with

CL concepts such as corpora, collocation, and normalized frequency, and

have some experience writing scripts in Python or another programming

language.

1.1 The Dataframe Approach to CL Programming

A dataframe corpus is a single table that contains the complete text and

metadata of a corpus. Each row corresponds to one token from one text. The

columns hold distinct types of information about those tokens. One column

typically contains the word itself (e.g., and) while others contain metadata.

This may be part-of-speech (POS) tags (e.g., CC for coordinating conjunc-

tion), the ID number of the text the token is drawn from, a speaker or author

ID, and so on.

Using dataframe corpora simplifies the programming involved in CL tasks.

Dataframes provide a set of powerful tools for things like counting values in

a column, grouping rows, and applying mathematical formulae. If an analyst

wants to know the number of times each word in a dataframe corpus appears,

they need only load the corpus from disk and count the values in the token

column. These two tasks can be accomplished with two instructions, typically in

a matter of seconds.

1.1.1 The Pandas Package

While some other programming languages have tools for manipulating and

analyzing data in tables, Python does not. Consequently, it is necessary to install

additional software to work with dataframes effectively. In this Element, we

will use a software package called Pandas for this purpose.

1Programming for Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


1.1.2 A Note on Formatting

Throughout this Element, the names of keywords, methods, functions, proper-

ties, and variables are presented in a monospace font. This is to distinguish

elements of code from the language used to describe them. For example, in the

sentence “import is used to import packages,” the first instance of “import” is

presented in monospace to indicate that it is a Python keyword, while the second

is a verb describing its use. Similarly, when a word like dataframe is presented

as code (e.g., DataFrame), it refers to Pandas DataFrames, and when it is

not, it refers to the concept of a dataframe more generally (i.e., a tabular data

structure).

1.2 Who Is This Element For?

This Element is written for analysts who have some familiarity with program-

ming. Students who have taken a course in a programming language and who

are looking for techniques specifically for corpus linguistic analysis will find

this Element useful, as will established researchers who want to make their

coding more efficient or their approach more systematic.

For beginners, this Element will work best in conjunction with a more fully

fledged Python textbook. Section 2 provides a brief introduction to the Python

language. However, that section is designed to provide just enough Python to

get the reader to Section 3, and some readers may need to consult other sources

to learn more about the Python language.

1.3 Advantages of Using Dataframes

1.3.1 Fewer Things to Learn

Programming with dataframes involves using a small set of processes such as

filtering and counting to perform complex manipulations of the underlying data.

Tasks in CL can be accomplished by combining these processes.

1.3.2 Faster Development

With dataframes, many tasks can be accomplished in just a few lines of code.

Writing less code means shorter development times, fewer opportunities to

make mistakes, and less time spent debugging.

1.3.3 Chainable Output

Processes performed on dataframes often produce other dataframes. This allows

functions and algorithms to be chained together so that one CL task (e.g.,

2 Corpus Linguistics
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creating n-grams) can be chained directly into other tasks (e.g., counting

values).

1.3.4 Memory Efficiency

Dataframes require less memory to hold large amounts of data than do other

data structures. This allows analysts to work with larger corpora.

1.3.5 Execution Speed

Many of Pandas’ DataFrame tools are implemented in a way that makes them

extremely fast in comparison to Python scripts that do not use dataframes.

1.3.6 Vector-Based Operations

Dataframes allow computation on entire vectors (i.e., a sequence or list) at one

time – for example, multiplying each element in a sequence by a number

without cycling through the sequence.

1.3.7 Transfer

A dataframe created in Python can be imported into other languages like R, or

into spreadsheet software like Excel or Google Sheets. Similarly, the principles

of dataframe programming transfer to other programming languages as well.

1.3.8 Interactivity

The combination of these characteristics makes dataframes an ideal datatype for

working with Python’s interpreter interactively (through, e.g., iPython, Jupyter,

or IDLE).

1.4 What Is in This Element?

Section 1 contains an introduction to the Element and the corpus used through-

out. Section 2 reviews some of the basics of programming in Python. Section 3

describes the dataframe approach to CL programming by introducing a core set

of techniques for manipulating Pandas DataFrames. Methods for loading,

examining, and writing dataframes to disk are explained, as are methods for

filtering and locating rows of interest, and for working with larger segments of

the corpus than individual tokens. In the fourth section, algorithms for a range of

common CL tasks are introduced: creating a concordance, identifying lexical

bundles, generating a list of collocates, finding keywords, and performing key

feature analysis. The algorithms in Section 4 are designed to demonstrate

3Programming for Corpus Linguistics
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various approaches to CL analysis that can be extended to a range of other uses.

Finally, in the fifth section, an algorithm for creating dataframe corpora from text

files is explained. This section also covers tokenizing, part-of-speech tagging,

and lemmatizing using the spaCy library for Natural Language Processing.

1.4.1 The Corpus of Online Registers of English (CORE)

The code in this Element makes use of the Corpus of Online Registers of

English (CORE; Biber & Egbert, 2018). The Element employs CORE for

both technical and linguistic reasons. First, CORE has been used in dozens of

peer-reviewed studies in register variation and natural language processing. It is

an established corpus with an active user base. Using CORE in examples and

making the corpus available for download as a dataframe ensure that readers

will have a corpus they may use in their own research. Second, CORE includes

texts from a range of online registers, and these registers can be treated as

subcorpora. Consequently, procedures that typically require multiple corpora

(e.g., keyword analysis) can be demonstrated with a single corpus. Additionally,

this register diversification allows analysts to compare the use of linguistic

features within or across situations of use. Basic descriptive statistics of the

corpus are presented in Table 1.

The corpus has been converted to a Pandas DataFrame for the exercises in

this Element. This dataframe contains seven columns described in Table 2.

The dataframe version of CORE can be downloaded at www.cambridge.org/

Keller or https://sites.google.com/view/programming-for-cl/home.

1.4.2 A Note on Operating Systems

Python is platform independent; Python code can be executed on any computer

with an operating system that has a Python interpreter. This means that while the

code in this Element was written on a computer running Microsoft Windows,

most of the code will work onMacOS as well. However, due to differences in the

file structures of the two operating systems, some adjustment may be necessary.

Table 1 Descriptive statistics for CORE

Statistic Value

Number of tokens (including punctuation) 69,933,607
Number of words (excluding punctuation) 60,929,959
Number of word types 355,836
Number of texts 48,571

4 Corpus Linguistics
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2 Python Basics for Corpus Linguistics

2.1 Installing Python

Installing Python involves two steps:

1. installing a Python interpreter, and

2. adding the directory where the Python interpreter is installed to your system

path.

The second step is not necessary, but many guides will assume you have done

this. In addition to the basic installation, it may be a good idea to download and

install an integrated development environment (IDE) such as PyCharm or

Spyder. For the sake of brevity, this Element will not cover the installation

process. It is documented at www.python.org/downloads/.

2.2 Python Versions

Two major versions of Python are in use at the time of writing: Python 2 and

Python 3. Python 3 is the currently in-development version of the language,

while Python 2 is maintained for backward compatibility. All code demon-

strated in this Element is written for compatibility with Python 3.11. Any

version of the Python interpreter greater than or equal to 3.11 should be able

to execute all code in this Element.

2.3 Using IDLE

The Python interpreter comes bundled with IDLE (Integrated Development and

Learning Environment). As the name suggests, IDLE is an excellent environ-

ment for learning the ins and outs of the Python language. The IDLE interface

Table 2 Columns in the CORE dataframe

Column
name Type of data contained in that column

token The token from the original CORE file
type The fully lowercase form of the token
lemma The base form of the token without inflectional morphemes
tag The Penn Treebank POS tag
pos TheUniversal Dependency Project POS tag (Nivre et al., 2017)
text The CORE ID number of the text the token is from
register The CORE register category of the text

5Programming for Corpus Linguistics
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allows you to type commands directly into the interpreter and see the results

immediately. The code in the following sections can be executed in IDLE.

2.4 Data and Operations

Programming often involves manipulating data. In CL, our data are samples of

language, and our operations are things like counting word types, calculating

association strength, measuring dispersion, and so on. To accomplish these

things, we need to be able to hold and reference data in a computer’s memory,

often in discrete chunks. We do this with variables. To perform operations on

these variables, we write instructions (code) that the Python interpreter under-

stands how to carry out. We can group sets of instructions and save them to be

reused later. These are called functions. Often, we will use functions written by

other people to save time and guarantee replicability.

2.5 Variables

If we want to work with data (and we do), we need a name for that data. By

assigning data to a variable and giving it a name, we tell the Python interpreter

that this chunk of information is something wewant to keep and reuse and that we

want to call it by the name we have given it. Variable names in Python can be any

sequence of characters that starts with a letter (or the underscore character _) and

that does not include any of Python’s reserved words. Variable names in Python

are typically descriptive of the type of information they hold. There are conven-

tions for naming variables, but so long as you are writing code for yourself and do

not expect others to maintain or extend it, the conventions are not critically

important.

We create variables and assign data to them in a single step by using the =

operator.

greeting = 'hello world'

creates a variable called greeting and assigns the value hello world to

it. If we are working with the interpreter directly (for example, if you are

using IDLE) and if we want to see the value of a variable, we can just

type its name (if you are using a different application [e.g., PyCharm or

Spyder], you may need to save the preceding code in a .py file and

execute it to see the results).

greeting

'hello world'

6 Corpus Linguistics
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In the code we have just executed, we enclosed the greeting message in

quotation marks.

greeting = 'hello world'

We did this to tell Python that the variable contains a type of data called a string.

Strings are a datatype. There are many types of data and corresponding Python

datatypes. Understanding the differences is very important.

2.6 Datatypes

Imagine sitting down to lunch. You have prepared a grilled cheese sandwich,

tomato soup, and coffee. You likely have three pieces of dinnerware in front

of you, a plate for the sandwich, a bowl for the soup, and a mug for the coffee.

This arrangement is fairly fixed. You could put the sandwich in the bowl, but

putting the soup on the plate is a bad idea. You might put the soup in the cup,

but putting coffee in the bowl would make drinking it a frustrating

experience.

Just as there are types of dinnerware for types of food, there are types of

variables for types of data. In Python, int variables hold integers (whole, real

numbers, positive or negative); float variables hold numbers with values

other than 0 to the right of a decimal point; char variables hold single

characters (e.g., a, 5, ?); str (string) variables hold sequences of characters

(e.g., 'hello world'); lists hold multiple other variables in a fixed order

(e.g., a list of strings); dicts (dictionaries) hold key/value pairs, where

looking up the key returns the value just as you might look up a word in

a dictionary to get its definition. You can find out what datatype a variable is

with the type() function. To check the datatype of greeting in the code

we executed earlier, we use

type(greeting)

str

and we see the datatype of greeting is str.

Variable datatypes are important because they define what you can do with

data. You can add two integers.

a = 4

b = 5

a + b

7Programming for Corpus Linguistics
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9

But, if you add two strings ‘hello’ and ‘world’,

a = 'hello'

b = 'world'

a + b

'helloworld'

you get a single concatenated string ‘helloworld.’ There is no space between

hello and world because we did not add it. We could.

a + ' ' + b

'hello world'

The same holds for numbers that are stored as strings. If you add the strings ‘4’

and ‘5’, you get ‘45,’ not ‘9.’ If you add two lists, the second list is appended to

the end of the first. If you add two dictionaries, or a string and an integer, you get

an error.

Variables can be converted from one datatype to another with the name of the

datatype followed by the variable to convert in parentheses. For example,
str(a)

converts the variable a to a string. Some variables cannot be converted directly

between types. The string ‘35’ can be converted to the integer 35, but “thirty-

five” cannot.

2.7 Methods and Properties

Python datatypes have code for handling common tasks built right in. For

example, strings have a way to count the number of times another string appears

in them. If you type

greeting.count('world')

1

Python returns 1 because the string ‘world’ appears one time in ‘hello world’

(the value of greeting). This is called a string method because it can be

invoked on any string. We can also access the methods of most datatypes

through literal examples of that type. For example, instead of assigning ‘hello

world’ to a variable, we could just type

'hello world'.count('world')

8 Corpus Linguistics
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1

Here, ‘hello world’ is called a string literal. We will see list literals and dict

literals later.

The count()method is of the str (string) datatype, but datatypes also have

properties, or metadata, associated with them. Variables of the int datatype,

for example, have a property called denominator. When this property is

invoked, Python returns the denominator of the value of the variable.

A variable’s methods and properties together are called its attributes.

2.8 Accessing Attributes with the Dot Operator

To access the properties and methods of a datatype, you type a . after either the

name of the datatype, or a variable of that datatype’s name. The . here is called the

dot operator. After the., you can type the name of themethod or property to access

it. We previously used the dot operator to access the count()method of the str

datatype. We can also use it to access the denominator property of the int type.

num = 5

num.denominator

1

Python returns 1 because the denominator of any integer is one.

2.9 Invoking Methods

Methods differ from properties in that when they are accessed, a set of instruc-

tions is executed. Sometimes, these methods require additional information to

work. We can give the method the information it needs in parentheses after the

name of the method. Earlier, we used the string method count().

First, we assigned the value ‘hello world’ to the variable greeting using the

= operator. Next, we counted the occurrences of 'world' in greeting and

got 1. The count() method requires additional information to work – what to

count. We tell count() what to count in parentheses after the name of the

method. This is called “passing a variable into the method.” The value that we

pass into the method is called an argument. We can describe what happens in

the second line by saying we invoked the count()method of the string variable

greeting and passed the string 'world' into the method for its argument.

Note that when we refer to the count() method, we include parentheses.

This indicates that we are referring to a method (or function – more on functions

in a moment). Names without trailing parentheses refer to variables, properties, or

keywords, while names with trailing parentheses refer to methods or functions.

9Programming for Corpus Linguistics
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2.10 Calling Functions

Functions are called just like methods, by typing their names and passing any

information needed into the function as arguments. Unlike methods, however,

functions do not need to be invoked on a variable or datatype. Consequently,

methods tend to work in ways that are idiosyncratic for the datatype for which

they are an attribute. Functions, on the other hand, are more general.

We have used one function already, type().

type(greeting)

is syntax for calling the type() function on the variable greeting.

2.11 Defining Functions

Programmers often need to write sets of instructions that they can apply repeat-

edly to different variables; that is, they need to write their own functions. In

Python, we do this by using thedef keyword. Keywords have special meaning in

Python (they may start a loop or block of code or tell Python to execute one set of

instructions under one condition and another set under a different condition). The

def keyword creates a function that can be called later in the program. It is

always followed by a name for the function, a set of parentheses, and a colon. The

names of variables the function will need to access should be included in

the parentheses. If no variables are needed, the parentheses should remain

empty. The instructions come after the def statement and are indented one level.

def count_vowels(text):

text = text.lower()

num = text.count('a')

num = num + text.count('e')

num = num + text.count('i')

num = num + text.count('o')

num = num + text.count('u')

return num

result = count_vowels('I think pugs are lazy animals.')

result

9

In the preceding code, we define a function called count_vowels() and tell

the function to expect a variable called text. In the function, we invoke another

string method, lower(), on the variable text. This method takes the value of

the variable and converts it to lowercase. In the same line, we assign the output of

the lower() method to the original variable text. This replaces the value we
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passed in, but without this assignment, we would lose the new lowercase values

into the void. We then use the count() string method to count five vowel types,

each time adding the number to the current value of num. Finally, we send the

value of num back out of the function using the return keyword. The result is

the number of times the five vowels occur in text.

2.12 Return Values, Return Types, and None

Every function in Python returns something after it is called. In the preceding

example, the function count_vowels() returns an integer. As noted earlier,

we can take that return value and assign it to a variable of our choosing by using

the assignment operator =. The value returned by count_vowels() is stored

in a new variable result.

The count() and count_vowels() methods return int variables. The

lower() method and its opposite upper() return str variables. They have

different return types. Some functions and methods appear not to return anything,

however. In these cases, they return a special Python datatype called None. No

data is associated with None, but Python still recognizes None as a value. You

can assignNone to a variable using=, and if you print the variable name, youwill

see nothing. If you check its type, Python will tell you NoneType.

2.13 Chaining Methods

If you know the type of data that a method returns, you can access the methods

and properties of the return type by typing a . after the method invocation. We

know, for example, that lower() returns a string. So, we can chain the output

from lower() into another strmethod like count() without assigning the

output of lower() to a variable first. You can also invoke methods on

variables as you pass them into a method or function. Both techniques tell

Python to do A and then do B with the result of A.

'THIS IS A SENTENCE.'.lower().count('is')

2

Since what we care about is the count, not the intermediate variables (the

lowercased string), this gets to what we care about without the extraneous

variables. Chaining in this way can also make code more readable since

readers will not need to keep track of the values of unimportant variables. It

can also make code less readable; however, if the chaining becomes too

extensive or if the return values of the intermediate methods are difficult to

discern. We will use chaining, but we will keep the number of functions

chained to around three.
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2.14 More on Lists and Dictionaries

Lists and dictionaries hold instances of other values or variables. Dictionaries

hold pairs of values (called items) where the first is the key and the second is

the value. If you know the key, you can look up the value. Lists are useful,

but working with them can be resource-intensive and slow. Dictionaries are

faster and often easier to work with when data can be stored as key/value

pairs.

2.14.1 Working with Lists

Consider the following code.

beginning = 'It was a dark and stormy night'

words = beginning.split()

words

['It', 'was', 'a', 'dark', 'and', 'stormy', 'night']

In this example, we first assign the value 'It was a dark and stormy

night.' to a variable we have named beginning. In the next line, we

invoke the split() string method on beginning and assign the return

value to a new variable, words. split() is a string method that takes the

value of the string and splits it at every occurrence of one or more characters.

By default, strings are split on whitespace characters (the characters created

by pressing the space bar, return/enter, or tab). However, you may change this

behavior by passing different characters into the method (by including them in

the parentheses).

The return value of split() is a list containing all the substrings that

resulted from the split. Since we had a space between each word, the resulting

list contains all the words in beginning.

In Python, list variables are denoted using square brackets []. The

elements in the list are separated from each other with commas. Further, in

the preceding example, we can see that each element in the list is a str variable

because they are enclosed in quotation marks. We can create a list literal

using this same notation.

ending = ['and', 'they', 'all', 'lived', 'happily',

'ever', 'after']

type(ending)

list
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2.14.2 Joining Elements in Lists

Just as there is a str method that converts a str to a list, there is

a complementary method that joins a list of str variables into a single

string, join().

' '.join(ending)

'and they all lived happily ever after'

Since this is a str method, we invoke it on the string. Whatever string we use

here is interspersed among the elements of the list.

'^_^ '.join(ending)

'and ^_^ they ^_^ all ^_^ lived ^_^ happily ^_^ ever ^_^ after'

2.14.3 Accessing Elements in Lists

We can access an element of a list with its index using square brackets.

words[4]

'and'

Note that and is the fifth word in beginning, not the fourth. In Python, lists

are 0-based (or 0-indexed). This means Python starts counting the elements in

the list at 0, rather than 1. The elements of words with their indices are shown

in Table 3.

If you ask Python howmany elements are in the list though, it will provide the

expected answer.

len(words)

7

The len() function returns an integer for the number of elements in a list or

dict, or the number of characters in a string.

2.14.4 List Slicing

You can access a sublist (or slice) of a list using square brackets with

a : separating the index of the first element and the index of the last

element in the desired sublist + 1. This is called list slicing. The return

type is also a list.

words[2:4]
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['a', 'dark']

Note that the sublist contains only elements 2 and 3 of words, not 4. This

is because Python is a 0-based language. Since we start counting at 0, we

stop counting one number below the second index. Thus, the length of the

returned list (2) is equal to the second index (4) minus the first (2). When

the desired slice starts at the beginning of the list, the first element can be

dropped.

words[:4]

['It', 'was', 'a', 'dark']

When the desired slice ends at the end of the list, you can drop the second index.

words[2:]

['a', 'dark', 'and', 'stormy', 'night']

It is possible to access the last element in a list with -1. This is an effective

way to get the last n elements in a list when you are not sure how long the list is.

words[-1]

'night'

words[-4:]

['dark', 'and', 'stormy', 'night']

Table 3 Indexed
elements of words

Index Element

0 It
1 Was
2 A
3 Dark
4 And
5 Stormy
6 Night
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2.14.5 Appending to, Removing from, Copying, and Extending Lists

We can add elements to a list using the append() method.

words.append('.')

words

['It', 'was', 'a', 'dark', 'and', 'stormy', 'night', '.']

The append()method does not return a new list with the appended value.

Rather, it modifies the original list and returns None.

new_list = words.append('.')

type(new_list)

NoneType

It is also worth noting that we have appended a period, a punctuation mark, and

now the name of our list is a bit misleading as it contains both words and

punctuation. It is important to keep in mind that the name of a list has no bearing

on what it contains. Let us rename the list from words to tokens.

tokens = words.copy()

tokens

['It', 'was', 'a', 'dark', 'and', 'stormy', 'night', '.', '.']

Whoops! We have added two periods to the end of words (once with words.

append('.') and once with new_list = words.append('.'). We need

to get rid of one of those periods. We will use the remove() built-in method of

list variables.remove() looks for thefirst instance of an element in alist and

removes it.

words.remove('.')

words

['It', 'was', 'a', 'dark', 'and', 'stormy', 'night', '.']

Now, wewill copywords again and store the new copy in the variabletokens.

While we are at it, we will use the extend function to add all the words from

ending to the same list. The extend() function is a built-in method of

list variables that takes alist as an argument and concatenates it to the end of

the first list. All the values of the second list (the one passed into the

method) are appended to the end of the list that extend() is invoked on.

tokens = words.copy()

tokens.extend(ending)

tokens
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['It',

'was',

'a',

'dark',

'and',

'stormy',

'night',

'.',

'and',

'they',

'all',

'lived',

'happily',

'ever',

'after']

It is also possible to simply add the two lists together using the + operator.

tokens = words + ending

tokens

['It',

'was',

'a',

'dark',

'and',

'stormy',

'night',

'.',

'and',

'they',

'all',

'lived',

'happily',

'ever',

'after']

Youmaywonderwhether it is possible to copy a list using the assignment operator =.

While it is possible just to set tokens to equal words this way, doing so will link

tokens towords so that any changesmade to either will be reflected in the other.

Essentially, we will have two names for the same data. If we want to copy a list as

a new, separate entity, wemust use the copy() list method invoked on the original

list. Lists and dictionaries behave thisway, but strings and integers do not. Again,

there are good reasons for this related to memory management (described in the
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following subsection), but it can cause a lot of confusion. Variables that hold other

variables often behave thisway,while variables that hold only rawdata often do not.

The technical way to describe this behavior is to say that list and dict variables

are mutable (their values can be manipulated in memory), while str and int

variables are immutable (their values cannot be changed after they have been

created).

2.14.6 Memory Management with Mutable and Immutable Types

Since str variables are immutable, you might wonder what is happening in

a line of code such as this:

greeting = 'hello' + ' ' + 'world'

greeting

'hello world'

Here, three strings are created in memory and then concatenated together. The

concatenation is performed in a number of steps equal to the number of strings

that are being concatenated minus 1 (2 in this case). First, 'hello' and ' ' are

concatenated. Since strings are immutable, Python cannot change the value of either

of the original strings and instead creates a third – 'hello'. Then, a new string is

created from the concatenation of 'hello' and 'world' and assigned to the

variablegreeting. This process ends up generating six strings, only one ofwhich

is retained (greeting). The others stick around in memory until Python disposes

of them.

Doing the same thing with a list is more memory efficient.

greeting = ' '.join(['hello', 'world'])

greeting

'hello world'

Here, three strings are created ('hello', 'world', and ' '), as well as

the list to hold them. Then, they are joined and assigned to greeting; in

total, five variables are created instead of six. With small examples like this,

the distinction might not seem very important, but as the length of the

greeting grows, the number of variables used in the list approach increases

linearly while the number used in the string concatenation increases exponen-

tially. With a four-word phrase, the number of variables generated by the list

approach is six – one str for each word (4); one for the separator character

' ', one for the list; and one for greeting. The number generated by

the str concatenation approach is 14 – one str for each word (4); one for

each separating space (3); one for each step in the concatenation procedure
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(6); and one for greeting. Mutable types like lists and dicts thus

provide a significant advantage over str variables for corpus linguists who

work with multiple texts that are each many tokens long.

Finally, the mutability of list variables also explains why methods like

append() return None instead of a new list. If append() returned a new

list, all the values in the list would also have to be copied and assigned to the new

list while the old one would just sit in memory until Python had a chance to dispose

of it. This would entail significantmemory overhead for appending just one value to

the list.

2.14.7 Working with Dictionaries

As described in the preceding discussion, dictionaries are like lists in that they

hold other variables but differ in that the order of items in a dict cannot be

accessed through indexing or slicing. Rather, values (the dictionary equivalent

of list elements) are accessed through their keys. Keys are typically strings or

integers. There are no type restrictions on values.

Literals in a dict are created using curly braces, {}, and keys are separated

from their values using colons :.

word_counts = {'beginning': len(words)}

word_counts

{'beginning': 8}

We can then access the value associated with a key using square brackets [].

word_counts['beginning']

8

We can also use a variable to access values as long as the variable is an

immutable type.

text = 'beginning'

word_counts[text]

8

2.14.8 Adding Items to Dictionaries

There is no append() method for dictionaries. To add a new key/value pair,

we simply access the dictionary with the new key in square brackets and assign

the value to it with the assignment operator =.

word_counts['ending'] = len(ending)

word_counts
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{'beginning': 8, 'ending': 7}

We now have two items in our dictionary, separated by a comma. Each item is

a key and value pair. Changing a value in a dictionary is accomplished in the

same way as adding a new value.

word_counts['ending'] = 9001

word_counts['ending']

9001

As you might guess, a dictionary’s keys must be unique. If we try to add a new

value with an existing key, we will simply overwrite the original value for that

key.

2.14.9 More on Accessing Items in Dictionaries

We can access a dictionary’s keys using the keys() method and its values

using the values() method.

word_counts.values()

dict_values([8, 9001])

Note that the keys and values are returned as lists (they are in square

brackets []). Like all lists, the order of their elements is fixed, and the ith

key is the key for the ith value. This behavior is useful for converting dictionaries

to lists. We can also access the items (key/value pairs) independently using the

items() dictionary method.

word_counts.items()

dict_items([('beginning', 8), ('ending', 9001)])

Here, the return type is a list of tuple variables (each item is enclosed in

parentheses). Tuples are a datatype similar to lists, but immutable. We will not

be using tuples much in this Element, since in most corpus linguistics tasks that

would call for a list-like variable type, it is more efficient to use list, dict, or

Series (a column in a dataframe).

2.14.10 Iterating over Lists and Dictionaries

Sometimes, it is desirable to go through every element of a list or dict one

at a time. For example, suppose we wanted to test whether each element in

a list of tokens is punctuation or a word. To do this, we can use a for loop

and the built-in string method isalnum(), which tests whether each character
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in a string is a letter or number character. If all characters in the string are

alphabetical or numeric, the method returns True, and if not, False.

"abcd1359".isalnum()

# returns True because all characters in "abcd1359" are

# either alphabetical or alphanumeric

True

"?".isalnum()

# returns False because "?" is neither alphabetical nor

# numeric

False

"abcd123?".isalnum()

# returns False because at least one character in "abcd123?"

# is neither alphabetical nor numeric

False

If we want to apply this method to each element in tokens, we need to set up

a loop to iterate through the elements in tokens and invoke the isalnum()

function on each element.

for token in tokens:

result = token.isalnum()

print(result)

True

True

True

True

True

True

True

False

True

True

True

True

True
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True

True

In the preceding code block, the loop is created using the syntax
for a in b:

where b is a list and a is used to refer to the elements in that list. The loop will

execute once for each element in b, each time making a refer to the current

element. The : indicates that we are beginning a nested block of code.

Everything that comes after the : and is indented will be executed on each

pass of the loop.

In the preceding case, the code inside the loop executes 15 times (once for

each element in tokens). On the first pass through the loop, a refers to the first

element of tokens (It). On the second pass, a refers to the second element

(was), and so on. Each pass through the loop, the isalnum()method is called

on token, and the return value is stored in the variable result. Next,

result is printed to the console using the print() function. The upshot

of all this is that we end up with a sequence of Trues and Falses printed to

the console.

Let us modify the loop so that instead of just printing True or False, we

store the result of isalnum() in a list for later use.

is_word = []

for token in tokens:

result = token.isalnum()

is_word.append(result)

is_word

[True,

True,

True,

True,

True,

True,

True,

False,

True,

True,

True,

True,

True,

21Programming for Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


True,

True]

Now, instead of printing to the console, we append each isalnum() result to

a list which we create before the loop begins using

is_word = [].

We now have two lists with corresponding indices (tokens and

is_word); since lists are ordered, the ith element in tokens is associ-

ated with the ith element in is_word. This will be useful later, but we

can test that this is the case now. The seventh element in tokens should

be the punctuation mark . and the corresponding element in is_word

should be False.

tokens[7]

'.'

is_word[7]

False

2.15 Testing Conditions

One common reason to iterate over a list is to test each element of the list to see

whether it meets certain conditions and then execute one set of instructions if it

meets those conditions and a different set of conditions if it does not. We can

accomplish this with the if and else keywords.

Let us modify our loop so that as we iterate over tokens, we test each

element to see whether it is alphanumeric or not. If it is, we will add it to a list of

words. If it is not, we will add it to a list of punctuation marks.

words = []

punct = []

for token in tokens:

if token.isalnum():

words.append(token)

else:

punct.append(token)

Now we check the values of words and punct to see if our loop worked.

words
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['It',

'was',

'a',

'dark',

'and',

'stormy',

'night',

'and',

'they',

'all',

'lived',

'happily',

'ever',

'after']

punct

['.']

In the fourth line of our loop, we begin a conditional block using the if

statement. What follows if on the same line is a function that returns either

True or False. As described previously, isalnum() returns True if all

characters in the string are alphanumeric and False otherwise, so it works

perfectly here. Following the if statement is one indented line (the fifth

line). This line is executed if isalnum() returns True. If isalnum()

returns False, however, the indented line after the else statement

is executed. This creates a fork in the execution of the program. If

isalnum() returns True, the fifth line (but not the seventh) is executed.

Elsewise, the seventh line (but not the fifth) is executed.

if statements can be followed by functions that return True or False

(called a Boolean variable), but there are other ways to test a condition. For

example, the == logical operator can be used to test if two variables have the

same value (and the same datatype).
a == b

will evaluate to True if a and b are both the string ‘1’, or if both are the integer

1, but not if one is a string ‘1’ and the other is the integer 1.

a = '1'

b = '1'

a == b
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True

a = '1'

b = 1

a == b

False

We can also test whether a variable equals a literal using the == operator.

a = ['hello', 'world']

greeting = ' '.join(a)

greeting == 'hello world'

True

b = 6 * 4

b == 24

True

We can test whether a list contains a variable or a literal using the in

keyword.

a = ['hello', 'world']

'world' in a

True

articles = ['a', 'an', 'the']

for token in tokens:

if token in articles:

print(token)

a

Finally, following if with a variable evaluates to True if the variable has

a value other than None, or False if the value of the variable is None.

a = None

if a:

print(a)

else:

print("the variable does not have a value")
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the variable does not have a value

With numeric variables, we can use the < (less than), > (greater than), <= (less

than or equal to), and >= (greater than or equal to) logical operators to test

relative values.

a = 5

b = 10

a <= b

True

2.16 Creating Lists and Dictionaries Using Comprehensions

The loop we have worked with is useful, but the syntax is a little clunky.

Happily, Python gives us a fast, efficient way of creating lists exactly like the

one we just created – the list comprehension. With list comprehensions, we

iterate over a list and take elements from that list to create a new one. The basic

syntax for a list comprehension is:
new_list = [a for a in b]

where a is an element of list b. Note that the syntax here combines the syntax

for creating a list literal
new_list = []

with the syntax for iterating over a loop
for a in b:

There are two notable differences, however. First, there is no : in a list compre-

hension because there is no nested block of code. List comprehensions are

single lines and : is used to indicate the start of a code block. Second, the

element that we are taking from list b is included inside the square brackets

before the for. We can do any sort of processing of the element we need to

before we take it for the new list. For example, we might recreate the function-

ality of our loop in a list comprehension using

is_words = [token.isalnum() for token in tokens]

The syntax here says, “Take each element in tokens and apply the isalnum()

method to it. Then take the results and store them in a list called is_words.”

Dictionary comprehensions can be done in the same way. We combine the

syntax for a loop

for a in b:
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with the syntax for creating a dict literal
new_dict = {key: value}

new_dict = {token: token.isalnum() for token in tokens}

new_dict

{'It': True,

'was': True,

'a': True,

'dark': True,

'and': True,

'stormy': True,

'night': True,

'.': False,

'they': True,

'all': True,

'lived': True,

'happily': True,

'ever': True,

'after': True}

2.17 Iterating over Multiple Variables in One Comprehension

When our data is structured as a table (i.e., in two or more dimensions), it is

often desirable to loop through multiple variables; for example, to inspect every

cell in a table. To do this, we start by iterating over the rows in a table, but then

within each row, iterate over the columns. We can do this by nesting one loop

inside of another as in the following code:

First, we will create a table (actually a list of lists) with three rows and

three columns.

table = [[1,2,3],

[4,5,6],

[7,8,9]]

Next, we will iterate over the rows using a for loop:

for row in table:

print (row)

[1, 2, 3]

[4, 5, 6]

[7, 8, 9]
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We can add a second for loop to the first one. When a loop is inside another

loop, it is “nested” in the first. When we take all the values from every cell in

a table, we are said to be “flattening” it because we have moved the data from

a 2-dimensional structure with height and width to a flat, 1-dimensional struc-

ture, with width only.

for row in table:

for cell in row:

print(cell)

1

2

3

4

5

6

7

8

9

We can nest loops in a comprehension with the same comprehension syntax.We

just add the second for loop.

cells = [cell for row in table for cell in row]

print(cells)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

To ease readability, comprehensions with multiple loops can be broken across

multiple lines. Comments can be added to help keep things straight.

cells = [cell # take the unmodified value of each cell by

for rowintable #iterating overtherows inthetable

for cell in row] # and then each cell in each row

List comprehensions provide a fast, memory-efficient way to flatten compli-

cated multidimensional arrays, that is – transform an n-dimensional array into

a 1-dimensional list.

2.18 Testing Conditions in Comprehensions

Conditions can be included in a list or dictionary comprehension by following

the regular syntax with if. Multiple conditions can be tested using and and or.

words = [token for token in tokens if token.isalnum()]

words
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['It',

'was',

'a',

'dark',

'and',

'stormy',

'night',

'and',

'they',

'all',

'lived',

'happily',

'ever',

'after']

It is possible to move the conditions after the if statement to other lines to keep

the list comprehension readable.

short_words = [token for token in tokens

if token.isalnum() and len(token) <= 3]

short_words

['It', 'was', 'a', 'and', 'and', 'all']

2.19 Representing Corpora Using Lists and Dictionaries

At this point, we have much of what we need to start doing CL with Python.

Texts can be stored in memory as a list of strings where each string is one token

from one text. Additional lists can be used to store metadata so that the ith

element of each additional list is a piece of metadata about the token at the ith

position in the first list. We can then pack the lists together into a dictionary

where the keys are types of (meta)data, and the values are the lists. We will have

created a rudimentary dataframe.

This is where Pandas enters the picture. As noted in Section 1.2, Python

does not include datatypes designed specifically for working with data in

a tabular structure; hence, the dictionary of rows described previously.

Pandas, however, does. In particular, the DataFrame datatype provides

exactly the table structure shown earlier, but allows us to use a powerful set

of methods in the Pandas library to perform common CL tasks. Analysts

may learn a relatively small set of methods for counting, sorting, grouping,

combining, and modifying rows of a DataFrame, and then combine these

methods to accomplish a wide range of CL tasks. Section 3 covers these

basic building-block methods in detail.
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3 Working with DataFrames

This section introduces Pandas DataFrame and Series classes, methods for

loading and saving them to disk, andmethods and functions for counting values,

grouping rows, and combining values. These form a core set of tools that can be

used to accomplish a range of CL tasks. The focus in this section is on

explaining these elements generally, while Section 4 describes algorithms that

use these procedures to complete CL analyses specifically.

3.1 Pandas DataFrames and Series

We will use two data types extensively in this element, DataFrames and

Series. These are not core data types in Python and must be imported through

the Pandas package. However, once imported, we will be able to leverage the

powerful methods built into them to do corpus linguistic tasks quickly, reliably,

and with minimal hardware resources.

ASeries is a one-dimensional array of namedvalues– that is, alistof values

of the same typewhere each type has an associated nameor index.Series are very

similar tolists in that the values they hold are always stored in the sameorder, but

they are more memory efficient and allow vector-based calculations. They are also

like dictionaries in that every value in the Series has a name or index associated

with it. Series are useful in part because any element in the Series can be

accessed with either its name or location.

It may be helpful to think of a Series as a column or row in a table or a spre-

adsheet. A DataFrame, by extension, is the whole table or spreadsheet. Data-

Frames contain one or more Series as well as methods for manipulating the

entire table.

3.2 Using Pip to Install Pandas and NumPy

Throughout this Element, we will be using Pandas for dataframe creation and

manipulation. Pandas is a Python package (an add-on that extends Python’s func-

tionality). The easiest way to install it iswith Pip, Python’s built-in package installer.

Pip is designed to be run from a command line inWindows. To access the command

line, press theWindows Key + r and then type cmd. This will bring up a command-

line interface. If your Python path has been added to the system path, you can now

install any Python package simply by typing pip install and the name of the

package.

pip install pandas

installs Pandas. Be careful with the names of packages; they are case sensitive.
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This installation process will automatically install other packages that Pandas

requires. One of these is NumPy, a package that contains functions and data-

types for an array of efficient mathematical operations. If, for some reason,

NumPy is not automatically installed with Pandas, you can install it with

pip install numpy

All code in this Element will run with Pandas version 2.0 or higher and

NumPy 1.24 or higher. Pip will install the most recent versions of packages

available for your current version of Python, however, so it should not be

necessary to manage versions manually.

3.3 Loading and Inspecting a Pandas DataFrame Corpus

The following code instructs Python to make all the datatypes and functions in

the Pandas library available to the user and then reads a DataFrame corpus

into memory (assuming the CORE.pickle file is in your current working direc-

tory). Note that the DataFrame version of CORE is stored on disk in Python’s

pickle format – a compact, though not compressed, file type.

import pandas as pd

c = pd.read_pickle('CORE.pickle')

Here, the corpus is read from a file into memory as a DataFrame and given the

name c. Throughout this Element, c is used as a variable name for dataframe

corpora. It is not necessary to be so terse. Indeed, it ismore in keepingwith the spirit

of Python to name it something like corpus, CORE_corpus, or

CORE_dataframe, but keep in mind that you will be typing the name of this

variable often.

We can see the dimensions of the DataFrame (the number of rows and

columns) using the shape property.

c.shape # returns the shape of the DataFrame (rows, columns)

(69933607, 7)

The value here is a tuple with two elements. The first indicates that there are

69,933,607 rows in this DataFrame. The second indicates that there are seven

columns. If we want to know only the number of rows, we can access only the

first element. Likewise, the second element tells us the number of columns. We

can access the number of columns or rows through list indexing with square

brackets (remember that lists are zero-based in Python).

c.shape[0] # returns the number of rows
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69933607

c.shape[1] # returns the number of columns

7

To view the first n lines of the dataframe, we can use the method head(n)

invoked on the DataFrame. We can view the last n lines with tail(n). We

see the head and tail together (with the body elided) if we just call or print()

the name of the DataFrame.

c.head(3)

token type lemma tag pos text register

0 I i I PRP PRON 1465224 av
1 'm am be VBP AUX 1465224 av
2 22 22 22 CD NUM 1465224 av

c.tail(3)

token type lemma tag pos text register

69933604 . . . . PUNCT 0344188 tv
69933605 hide hide hide VB VERB 0344188 tv
69933606 link link link NN NOUN 0344188 tv

c

token type lemma tag pos text register

0 I i I PRP PRON 1465224 av

1 'm am be VBP AUX 1465224 av

2 22 22 22 CD NUM 1465224 av

3 and and and CC CCONJ 1465224 av

4 I i I PRP PRON 1465224 av

. . . . . . . . . . . . . . . . . . . . . . . .

69933602 or or or CC CCONJ 0344188 tv

69933603 webpage webpage webpage NN NOUN 0344188 tv

69933604 . . . . PUNCT 0344188 tv

69933605 hide hide hide VB VERB 0344188 tv

69933606 link link link NN NOUN 0344188 tv

[69933607 rows x 7 columns]

Here we see the basic structure of our dataframe corpus. The DataFrame has

an index column, which contains numeric indices for each row in the
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DataFrame. The index starts at 0 for the first row and runs all the way to

69,933,606 for the last. The numeric value of the index for the ith row is

thus i-1.

As described earlier, the columns (not including the index) are labeled

token, type, lemma, tag, pos, text, and register. Refer to the

description of the corpus in Section 1.4 for more information.

Each of these columns is a Pandas Series, which we can access using the .

operator after the name of DataFrame. The . operator is used to access the

methods and properties of a variable. Columns in Pandas DataFrames are

properties with the Series datatype.

c.token.head(3)

0 I
1 'm
2 22

Name: token, dtype: category

Categories (514936, object): [' ', '', '!', '"', . . ., 'vouchsaf-

ing', 'wizzle', 'www.safetourist.org', 'www.wilderness']

It is also possible to access a column using Python’s dictionary lookup

notation.

c['tag'].head(3)

0 PRP
1 VBP
2 CD

Name: tag, dtype: category

Categories (49, object): ['$', '''', ',', '-LRB-', . . ., 'WP$',

'WRB', 'XX', '``']

Using the dictionary lookup notation, but not the . operator, we can access

multiple columns by passing a list of column names into the square brackets

[] (note that the set of square brackets defining the list literal must be included

in addition to the set of square brackets used to access the DataFrame's

dictionary of columns).

c[['type', 'tag']].head(3)
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type tag
0 i PRP
1 am VBP
2 22 CD

Whenwe access a single column, Python displays its head and tail with the body

replaced with ellipses as well as a bit of extra information at the bottom: the

name of the column, the length (number of elements), and the column’s datatype

(columns cannot contain data of multiple types).

c.tag

0 PRP
1 VBP
2 CD
3 CC
4 PRP

. . .

69933602 CC
69933603 NN
69933604 .
69933605 VB
69933606 NN

Name: tag, Length: 69933607, dtype: category

Categories (49, object): ['$', '''', ',', '-LRB-', . . ., 'WP$',

'WRB', 'XX', '``']

You may expect that the datatype for all our columns would be string, but as

indicated earlier, the datatype is actually category. Therefore, we also see the

number of categories and a partial list of all the categories in the column.

3.4 The Category Datatype

The category datatype is essential for making DataFrame corpora easy to

manipulate. It does this by reducing the amount of memory required by the

DataFrame. Imagine a dataframe with a million rows and five columns where

every cell contains a string variable. Storing this dataframe in memory

would require Python to manage five million strings. The amount of memory

used for one string varies, but 55 bytes per string is a reasonable estimate for

lengths we are likely to encounter. Five million strings at 55 bytes per string

works out to 275 megabytes of memory. For a one-million-word corpus, this is

not prohibitive for most modern computers, but a 100-million-word corpus like
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the British National Corpus would require 27.5 gigabytes of memory just to

store the elements in the cells of the dataframe.

The category datatype reduces the amount of memory needed by creating

a dictionary of values in the column andmapping them to integer keys. This allows

integers to be stored in the dataframe instead of strings. As integers require less

memory, the full column takes up less space. This also increases performance on

operations like sorting and searching because the algorithms operate on a smaller

memory space.What is more, the increasedmemory and performance efficiency of

categories over strings increases as the ratio of the number of unique values in

a column to the total number of values in the columndecreases. Thismeans columns

with a small number of often-repeated values (e.g., part-of-speech tags, file names)

will benefit more by being stored as categories than columns with a greater number

of unique values repeated less frequently (e.g., tokens, types), but any column with

repeated values will take less memory as category than as string.

3.5 Creating DataFrames

DataFrames can be created by passing data into Pandas’ DataFrame()

function. The DataFrame() function can accept data in a range of different

formats, but the most straightforward approach is to pass it in a dictionary where

the keys are strings with the names of columns and the values are

lists containing the values for that column. Typically, this is done using the

syntax
df = pd.DataFrame({'a': a,

'b': b})

where a and b are lists of the same length. Consider the following code.

df = pd.DataFrame({'col1': ['a', 'b', 'c'],

'col2': [1, 2, 3]})

df

col1 col2
0 a 1
1 b 2
2 c 3

A DataFrame's column names can be accessed with the columns property,

which can also be used to rename its columns.

df.columns
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Index(['col1', 'col2'], dtype='object')

df.columns = ['letters', 'numbers']

df

letters numbers
0 a 1
1 b 2
2 c 3

Columns can be inserted into a DataFrame with insert() where the first

argument is the index of the inserted column, the second is the name of the

column, and the third is a list of column values.

df.insert(0, 'symbols', ['!', '@', '#'])

df

symbols letters numbers
0 ! a 1
1 @ b 2
2 # c 3

It is also possible to create a DataFrame by passing a list of list or Series

for the rows and a list of strings or integers as column names using

columns=. Consider the following code:

s1 = ['!', 'a', 1]

s2 = ['@', 'b', 2]

s3 = ['#', 'c', 3]

rows = [s1, s2, s3]

names = ['symbols', 'letters', 'numbers']

df = pd.DataFrame(rows, columns=names)

df

symbols letters numbers
0 ! a 1
1 @ b 2
2 # c 3

The two approaches produce equivalent DataFrames, but the first is useful if

the raw data are stored as columns and the second if they come in rows. Youmay
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be curious as to how to take text data from files and transform them into columns

or rows – that is, how to create a dataframe corpus from text files. An algorithm

for doing so is presented in Section 5. You may also be interested in how to save

a dataframe corpus that you have created or modified to disk. This is covered in

Section 3.6.2.

3.6 Core Methods

3.6.1 Counting Values – Frequency and Normalized Frequency

Many common corpus linguistic tasks require counting the number of times

a word occurs in a corpus. With DataFrame corpora, this may be done by

invoking the value_counts() method on the column of the DataFrame

we wish to count in.

counts = c.type.value_counts()

counts.head()

type

the 3353004
. 2744928
, 2732675
to 1746985
and 1646234

Name: count, dtype: int64

Here, the type column is accessed using c.type and then the values in it are

counted using value_counts(). The value_counts() method returns

a sorted Series, which we then assign to the variable counts. Note here that

the index of this Series is not numerical (as the index ofc is). Rather, the index

contains all the categories from the type column. Another way to think of this is

that the numbers produced by the value_counts() method are indexed by

their category (in this case, the word type) rather than by a location in the corpus

(whichwould not make sense).We can access the frequency for a specific word in

the same way we would look up a value in a dictionary with a key.

counts['order']

19744

Here, we use square brackets to look up the frequency of order in counts and

find that it occurs 19,744 times.

We may wish to normalize these counts to a standard number of words to

facilitate cross-corpus comparisons. To do this, we pass into the
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value_counts() method the normalize=True argument and multiply

by the integer we wish to normalize to.

normed_counts = c.type.value_counts(normalize=True) * 100

normed_counts.head()

type

the 4.794553
. 3.925049
, 3.907528
to 2.498062
and 2.353996

Name: proportion, dtype: float64

Now we see that the occurs about 4.8 times per hundred words. The normalized

frequency of any word type in the corpus can be found by looking up the word in

the Series index.

normed_counts['order']

0.028232491997731507

Without realizing it, we have leveraged one of Pandas greatest advantages – the

ability to do vector-based calculations. Here, we multiply a Series by a single

value. Pandas automatically knows to multiply each element in the Series by

100 and return a Series of the same length as the original with the same index.

Because Pandas’ vector-based operations are implemented with highly opti-

mized code, they are extremely fast to execute. Vector-based multiplication

with normed_counts takes less than a millisecond, while alternate

approaches may take orders of magnitude longer.

Whenever speed is an issue, we should use vector-based calculations. Pandas can

perform basic arithmetic operations (+, -, /, and *) as well as the modular division

operator (%) and the equivalence test operator (==) this way. A wider range of

mathematical operations can be applied to Series using functions in the NumPy

package.

3.6.2 Exporting DataFrames and Series to Files or the Clipboard

normed_counts contains information about the frequency of word types

in our corpus, but viewing the series on the console only displays its head

and tail. The series is also lost when the script ends, or when the applica-

tion we used to run the code closes. Accordingly, we will often wish to
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export DataFrames to files for later use. We can do this using the

to_csv() method.

The csv (comma separated values) file format stores tabular data as plain text.

When a table is stored as .csv, each column is delimited with a comma (or tab),

and each row is delimited with a return character. All the data in the cells of a

.csv file are stored as plain text.

The to_csv()method takes a string as its first argument – the path for the .

csv file. In Windows, passing “data.csv” into to_csv() creates a file called

data.csv in the current working directory (or overwrites it if the file already

exists).

If you are exporting a DataFrame, you may add a header row with

the names of columns to the .csv file by including the argument

header=True after the string with the file path. If you are exporting

a Series, however, you may want to pass header=False as

the second argument.

Finally, since many tokens may be commas, we should use the tab whitespace

character as the separator character. We can indicate this with the sep='\t'

argument (note that \t refers to the white space indentation that is created when

the tab key is pressed in a text editor or word processor).

To export our normed_counts Series to a file, we use

normed_counts.to_csv(path, header=False, sep='\t')

where path is a string with the location at which we wish to save the file.

Exporting a DataFrame to a file is not always necessary. At times, you may

want to export your data to the system clipboard so it can be pasted into

spreadsheet software, or imported to another programming language as

a dataframe. To do this, use the to_clipboard() method. This method

does not require a file path, but by default still formats the data on the clipboard

as a .csv file. Therefore, the header=True or header=False and

sep='\t' arguments are still necessary. Alternately, you may wish to export

the file to the clipboard in Excel format. In this case, the argument

excel=True should be included and the header and sep arguments

omitted.

normed_counts.to_clipboard(header=False, sep='\t')

or

normed_counts.to_clipboard(excel=True)
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3.6.3 Measuring Range

Wemay wish to find the number or proportion of texts that a word occurs in (its

range), or we may wish to find the frequency of every word in every text in

which it appears. Both can be accomplished with Pandas’ groupby()

method. groupby() takes all the rows in a DataFrame and groups them

together with other rows that share a value in one or more columns. We can then

apply one of a limited range of methods to each group. These methods summar-

ize relevant characteristics of the group. This is useful if we wish to treat word

types or texts as units of analysis.

ranges = c.groupby('type').text.nunique()

ranges = ranges.sort_values(ascending=False)

ranges.head()

type

the 48493
. 48290
, 48261
and 48238
to 48229

Name: text, dtype: int64

Here, we group the rows of the corpus byword type, access the text column of

each group, and then count the number of unique values that occur in the text

column for each group using nunique(). Since each group is a word type, the

resulting Series lists the ranges for every type in the corpus. Then, we sort the

Series using sort_values(). By default, this method returns a Series

sorted in ascending order. However, we can tell Pandas to sort in descending

order with the argument ascending=False. Finally, we assign this series to

the variable ranges and display its head on the console.

The results indicate that the is the typewith the greatest range (it occurs in 48,493

texts), while . occurs in 48,290. It may be more useful to know the proportion of

texts that each word occurs in.We can learn this by dividing the range for each type

by the total number of texts in the corpus – a number we can get by accessing the

text column of the DataFrame and invoking the nunique() method.

n_texts = c.text.nunique()

ranges_prop = ranges / n_texts

ranges_prop.head()
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type

the 0.998394
. 0.994215
, 0.993618
and 0.993144
to 0.992959

Name: text, dtype: float64

3.6.4 Indexing and Filtering

So far, we have been operating on entire columns of a dataframe, but many CL

tasks require looking only at specific words or words within a predefined set.

With Pandas, there are a variety of ways to zero in on specific rows. The most

straightforward of these is to index a DataFrame or Series using square

brackets []. As with lists, the elements of a Series can be accessed by their

indices as one might do with a dict. In what follows, we get the frequencies

and ranges we have calculated thus far for the word type misinformation.

counts['misinformation']

262

normed_counts['misinformation']

0.0003746410506181956

ranges['misinformation']

192

This approach works because we have already created the Series with the

appropriate counts. However, amoreflexibleway to learn about specificwords is to

use Pandas’ ability to select lines from a DataFrame that meet certain conditions

and return only those lines as a new DataFrame. This is done using the loc

property of DataFrames or Series with methods like eq() which returns

True for every value in aSeries that is equal to a value(eq() is identical to the

equivalence test operator == used in the previous section). For example, we can

find all rows in our corpus where the word type is misinformation using

rows = c.loc[c.type.eq('misinformation')]

rows.head()

40 Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


token type lemma tag pos text \

434241 misinformation misinformation misinformation NN NOUN 3243290

842744 misinformation misinformation misinformation NN NOUN 0453603

966462 misinformation misinformation misinformation NN NOUN 0413412

976671 misinformation misinformation misinformation NN NOUN 3115141

976811 misinformation misinformation misinformation NN NOUN 3115141

register

434241 av

842744 av

966462 av

976671 av

976811 av

loc is an indexer. It is not a method, but rather a property that works a lot like

a Python dictionary. Just as we can look up a value in a dict by passing in

a key, we can use loc to look up a row (the value) with the label of that row in

the index (the key). The syntax for doing this is identical to the syntax for

looking up a value in a dictionary.
c.loc[500]

will return the row (as a Series) with the label 500 in the index of the

DataFrame.

c.loc[500]

token do
type do
lemma do
tag VBP
pos AUX
text 1465224
register av

Name: 500, dtype: object

Unlike dictionaries, however, the loc indexer is very flexible in the type of data

that can be used to look up values. For one, we can look up a set of sequential

rows in the DataFrame using the slice notation for lists – the lower bound,

followed by a colon :, followed by the upper bound.

c.loc[500:505]
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token type lemma tag pos text register
500 do do do VBP AUX 1465224 av
501 n't not not RB PART 1465224 av
502 have have have VB AUX 1465224 av
503 to to to TO PART 1465224 av
504 get get get VB VERB 1465224 av
505 drunk drunk drunk JJ ADJ 1465224 av

Note here that the behavior of locwith a slice differs slightly from the behavior of

lists. The upper bound (505 in the preceding code sample) is included in the slice

returned by loc, but would not be included in the same slice of a list. We can test

this by taking a column of the DataFrame, converting it to a list, and slicing it.

c.type.tolist()[500:505]

['do', 'not', 'have', 'to', 'get']

The final row with the token drunk in the slice returned by loc is not included

in the list slice.

In addition to single values and slices, it is also possible to give loc a list

of row labels. The loc indexer will return a DataFramewith one row for each

value in the set or list.

indices = [0, 5, 15, 20]

c.loc[indices]

token type lemma tag pos text register
0 I i I PRP PRON 1465224 av
5 've have 've VBP AUX 1465224 av
15 so so so RB ADV 1465224 av
20 mind mind mind VB VERB 1465224 av

Finally, we can give loc a list or Series of True / False values of the same

length as the number of rows in the DataFrame and loc will return all the

rows that correspond to a True value.

# create a mini-corpus with just the five rows of the corpus

# DataFrame

mini_corpus = c[:5]

# create a list with five True / False values.

indices = [False, True, False, False, True]

# loc the indices that correspond to True in the indices list

mini_corpus.loc[indices]
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token type lemma tag pos text register
1 'm am be VBP AUX 1465224 av
4 I i I PRP PRON 1465224 av

This last approach to using loc is the key to locating rows that meet certain

conditions. Because we can very easily get Series of True / False values using

the eq() method, we can quickly locate all rows that meet the condition. Now

we can see why

c.loc[c.type.eq('misinformation')]

finds all the rows of the DataFrame where the value of the type column is

misinformation:

c.type.eq('misinformation')

returns a Series of True or False values and c.loc[] returns all the rows

that correspond to True in that Series.

It is possible to use this approach to apply multiple conditions. If we

want to extract only those rows where the type column is equal to

misinformation and the register column is equal to ne (news), we

can do so by including multiple logical tests inside the square brackets

[] after loc.

rows = c.loc[c.type.eq('misinformation') & c.register.eq

('ne')]

rows.head()

token type lemma tag pos text \

26383062 misinformation misinformation misinformation NN NOUN 0094414

26533219 misinformation misinformation misinformation NN NOUN 0098047

26606785 misinformation misinformation misinformation NN NOUN 0471982

26633396 misinformation misinformation misinformation NN NOUN 0589360

26852843 misinformation misinformation misinformation NN NOUN 0403213

register

26383062 ne

26533219 ne

26606785 ne

26633396 ne

26852843 ne
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Each condition must be joined with & to indicate and, or | to indicate or.A ~ can

be placed in front of a condition to mean not. The following code locates

instances of misinformation from registers other than news.

rows = c.loc[c.type.eq('misinformation') &

~c.register.eq('ne')]

rows.head()

token type lemma tag pos text \

434241 misinformation misinformation misinformation NN NOUN 3243290

842744 misinformation misinformation misinformation NN NOUN 0453603

966462 misinformation misinformation misinformation NN NOUN 0413412

976671 misinformation misinformation misinformation NN NOUN 3115141

976811 misinformation misinformation misinformation NN NOUN 3115141

register

434241 av

842744 av

966462 av

976671 av

976811 av

3.6.5 Selecting Rows before or after Rows that Meet a Condition
and Removing Unused Categories

Often, wemay search for a word not because we are interested in the word itself,

but rather what comes before or after it. We can do this by rolling the dataframe

forward or backward using

shift(n)

where n is an integer. shift(n)moves the content of the DataFrame forward

n rows such that row i becomes row i + n. Consider the examples below.

c.head()

token type lemma tag pos text register
0 I i I PRP PRON 1465224 av
1 'm am be VBP AUX 1465224 av
2 22 22 22 CD NUM 1465224 av
3 and and and CC CCONJ 1465224 av
4 I i I PRP PRON 1465224 av
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c.shift(1).head()

token type lemma tag pos text register
0 NaN NaN NaN NaN NaN NaN NaN
1 I i I PRP PRON 1465224 av
2 'm am be VBP AUX 1465224 av
3 22 22 22 CD NUM 1465224 av
4 and and and CC CCONJ 1465224 av

After shifting the dataframe forward 1 row, row 0 becomes row 1, 1 becomes

2, 2 becomes 3, and so on. Row 0 is populated with null values (NaN).

DataFrames can also be shifted backward by passing a negative integer

into shift(). This makes row 1 become 0, 2 become 1, 3 become 2, and so on.

c.shift(-1).head()

token type lemma tag pos text register
0 'm am be VBP AUX 1465224 av
1 22 22 22 CD NUM 1465224 av
2 and and and CC CCONJ 1465224 av
3 I i I PRP PRON 1465224 av
4 've have 've VBP AUX 1465224 av

This allows us to locate rows that come after or before rows that meet certain

conditions. If we are interested in finding the set of words that come immedi-

ately after personal pronouns, we need only shift the DataFrame forward one

row and find all rows with a personal pronoun tag (PRP) in the tag column.

df = c.loc[c.shift(1).tag.eq('PRP')]

df.head()

token type lemma tag pos text register
1 'm am be VBP AUX 1465224 av
5 've have 've VBP AUX 1465224 av
18 did do do VBD AUX 1465224 av
44 'm am be VBP AUX 1465224 av
61 left left leave VBD VERB 1465224 av

We can then get frequency counts for these words using value_counts().
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df.type.value_counts().head()

type

ve 195496
have 160875
are 146721
was 133186
's 122563
Name: count, dtype: int64

If you inspect the end of the Series using tail(), you may notice that many

of the counts produced by value_counts() are 0.

df.type.value_counts().tail()

type

enda 0
emmettleffel 0
emedica 0
embaressing 0
zicha 0

Name: count, dtype: int64

These word types never occur in rows immediately before rows with personal

pronouns. They are included in the output because when value_counts()

is invoked on a column of thecategory datatype, themethod produces counts

for all categories in the column even if the value is 0. To drop these excess

categories, we can invoke the cat.remove_unused_categories()

method of the type column before we invoke value_counts().

df2 = df.type.cat.remove_unused_categories()

df2.value_counts().tail()

type

disarmed 1
disgraceful 1
dispelled 1
disperses 1
hippopotamic 1

Name: count, dtype: int64

In the preceding codewe chain together several Pandasmethods. First, we access

the type column. Then we remove unused categories using cat.
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remove_unused_categories(). Thenwe count the remaining values using

value_counts(). Finally, we display the tail of the dataframe using tail

(). This is a natural way to manipulate Pandas DataFrames, but occasionally,

the resulting code gets too long to be readable. In these cases, it is possible to break

the command across several lines by enclosing it in parentheses () and indenting one

level.

(

df.type

.cat.remove_unused_categories()

.value_counts()

.tail()

)

type

disarmed 1
disgraceful 1
dispelled 1
disperses 1
hippopotamic 1

Name: count, dtype: int64

We may also use Python’s line continuation character \ between the chained

methods to split a long sequence of methods across multiple lines.

df.type.cat.remove_unused_categories().\

value_counts().tail()

type

disarmed 1
disgraceful 1
dispelled 1
disperses 1
hippopotamic 1

Name: count, dtype: int64

3.6.6 Finding Words Using Wildcards and Regular Expressions

You may wish to filter a DataFrame for tokens that start or end with a certain

letter sequence or that contain a certain substring. Pandas provides support for

these tasks through the str module, which can be invoked through the .
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operator after the name of a column. In particular, three methods are useful here:

str.beginswith(), str.endswith(), and str.contains(). The

following code, for example, selects only those rows with values in the type

column that begin with “un”.

un = c.loc[c.type.str.startswith('un')]

un.head()

token type lemma tag pos text register

138 unachievable unachievable unachievable JJ ADJ 1465224 av

381 unachievable unachievable unachievable JJ ADJ 1465224 av

391 unless unless unless IN SCONJ 1465224 av

1097 under under under IN ADP 3037012 av

1823 Unwittingly unwittingly unwittingly RB ADV 0290769 av

Similarly, we might select rows with values in the type column that end with

“-ing” and with values in the tag column that are verb tags.

ing_verbs = c.loc[(c.type.str.endswith('ing')) &

(c.tag.str.startswith('V'))]

ing_verbs.head()

token type lemma tag pos text register
22 having having have VBG VERB 1465224 av
37 going going go VBG VERB 1465224 av
107 having having have VBG VERB 1465224 av
122 going going go VBG VERB 1465224 av
128 looking looking look VBG VERB 1465224 av

In these examples, we passed strings into Pandas str methods (str.

startswith(), str.endswith()). It is also possible to search for

values that match a regular expression pattern using str.contains(),

as you can see in the next example.

c.loc[c.type.str.contains('^un.+ing$')]

token type lemma tag pos text \

6793 understanding understanding understanding NN NOUN 0680482

6806 underlying underlying underlying JJ ADJ 0680482

10250 understanding understanding understand VBG VERB 1804331

20960 understanding understanding understand VBG VERB 0208520

32912 understanding understanding understanding NN NOUN 0245302
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69847836 undergoing undergoing undergo VBG VERB 0787810

69863913 unenlightening unenlightening unenlightene VBG VERB 0758536

69872589 undulating undulating undulate VBG VERB 0425080

69899180 understanding understanding understanding NN NOUN 0471174

69905544 unknowing unknowing unknowing JJ ADJ 0532948

register

6793 av

6806 av

10250 av

20960 av

32912 av

. . . . . .

69847836 tb

69863913 tb

69872589 tb

69899180 tv

69905544 tv

[15076 rows x 7 columns]

The string

'^un.+ing$'

is a regular expression pattern indicating the sequence un at the start of

a string (^un), followed by one or more occurrences of any character (.+),

followed by the sequence ing at the end of the string (ing$). The results include

the range of words that fit this pattern.

A full treatment of regular expressions is outside the scope of this

Element, but it is worth noting here that the behavior of Pandas’

string methods may not match expectations if your search term includes

characters that have special meaning in a regular expression. For example,

the ^, ., +, and $ characters in the preceding string are recognized as

special characters. Respectively, they match the beginning of a string, any

character, any number of repetitions from one to infinity, and the end of

a string. Searching for them may produce unexpected results. If we want to

find any type that includes a “.”, for example, we might be surprised if we

use
str.contains('.')

c.loc[c.type.str.contains('.')].head()
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token type lemma tag pos text register
0 I i I PRP PRON 1465224 av
1 'm am be VBP AUX 1465224 av
2 22 22 22 CD NUM 1465224 av
3 and and and CC CCONJ 1465224 av
4 I i I PRP PRON 1465224 av

Because the . character is used by the regular expression engine to match any

character, Pandas matches every row that contains any character (i.e., all of them).

To search for just rowswhere the type column contains a stringwith a . in it, we need

to tell Pandas to treat the string argument for str.contains() as a string

literal, not a regular expression pattern. We do this by passing in another argument,

regex=False.

c.loc[c.type.str.contains('.', regex=False)].head()

token type lemma tag pos text register
10 .. .. .. NFP PUNCT 1465224 av
11 . . . . PUNCT 1465224 av
59 . . . . PUNCT 1465224 av
78 . . . . PUNCT 1465224 av
101 . . . . PUNCT 1465224 av

3.6.7 Finding Any Word in a List

Suppose you want to search for any one of a set of words. For example, we may

be interested in contrasting verbs with similar meanings, but different argument

structures such as fill, pour, and load. We can instruct Pandas to filter the

DataFrame for these words using the isin()method with a list of values

to search for as the argument.

lemmas = ['fill', 'pour', 'load']

c.loc[(c.lemma.isin(lemmas)) &

(c.tag.str.startswith('V'))].head()

token type lemma tag pos text register
7377 fill fill fill VB VERB 0680482 av
65079 filled filled fill VBN VERB 3084729 av
65439 Fill fill fill VB VERB 3084729 av
79585 Fill fill fill VB VERB 3252069 av
88763 load load load VBP VERB 3311654 av
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3.6.8 Finding Multiword Strings

It is possible to search for sequences of values usingshift().We previously used

shift() to find rows that came before or after rows that met certain conditions.

We can also use shift() to apply conditions tomultiple rows. In this waywe can

test whether the type in row n is the first word of a multiword sequence, the type in

row n+1 is the second word in amultiword sequence, and so on. If, for example, we

want to look for the string i used to, we can search using the following conditions:
c.type.eq('i')

c.shift(-1).type.eq('used')

c.shift(-2).type.eq('to')

This will identify rows where the type column equals i, the type column in the

next row equals used, and the type column in the row after that equals to.

rows = c.loc[c.type.eq('i') &

c.shift(-1).type.eq('used') &

c.shift(-2).type.eq('to')]

rows.head()

token type lemma tag pos text register
21833 I i I PRP PRON 0522112 av
21901 I i I PRP PRON 0522112 av
22752 I i I PRP PRON 0522112 av
44021 I i I PRP PRON 0564626 av
105647 I i I PRP PRON 0120208 av

Python finds several instances of the sequence i used to, but returns only

the first row in each sequence. This is because the unshifted value in our

search term is the first word in the sequence. We can get a sense of the

wider linguistic context for these sequences by constructing a context

window for each hit (context windows are discussed in the next section),

but there are times when we are interested instead in the possible values of

a variable slot in a multiword sequence. If we are interested in learning,

for example, which words can fill the * position in the lexical bundle on

the * hand, we can search for rows with on in the type column two rows

before (using shift(2)), the one row before (using shift(1)), and

hand one row after (using shift(-1)).

df = c.loc[c.shift(2).type.eq('on') &

c.shift(1).type.eq('the') &

c.shift(-1).type.eq('hand')]

(
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df.type.

cat.remove_unused_categories().

value_counts()

)

type

other 2724
one 429
right 58
left 44
2nd 1
engine 1
first 1
same 1
wrong 1
invisible 1

Name: count, dtype: int64

Here, we did not set a condition on the unshifted row, so it is not referred to in the

square brackets after loc –we want to retrieve all rows that come after on the and

before hand. Python returns theDataFramewith those rows andwe store it indf.

Then we access the type column, remove unused categories, and count the values

that are left.

The results indicate that on the other hand is mostly fixed in this corpus. The

overwhelming majority of instances of on the * hand occurs with either other or

one in the * position.

3.7 Working with Larger Units: N-grams and Context Windows

3.7.1 Constructing N-grams

Linguists interested in finding sequences of tokens may use Pandas

methods to convert a dataframe corpus to n-grams, n-length sequences

of tokens. This may be done using the cat() method in Pandas’

Series.str module. When invoked on a column of a dataframe,

str.cat() returns the values of the column concatenated into a single

string. The others= argument, however, can be used to concatenate the

values of two columns together where each value is the concatenation of

the values in the same row of the two columns. The sep= argument tells

Pandas which character to place between the concatenated values. For

example, we can use str.cat() to concatenate every word type with the part

of speech tag in the same row.
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type_tag_pairs = c.type.str.cat(others=c.tag, sep='_')

type_tag_pairs.head()

0 i_PRP
1 am_VBP
2 22_CD
3 and_CC
4 i_PRP

Name: type, dtype: object

With shift(), however, str.cat() can be used to concatenate sequential values in

the same column.
c.type.str.cat(others=c.type.shift(-1), sep=" ")

concatenates each value in the type column with each value in the same row

when c.type is shifted one rank backward. In other words, it concatenates

each value in the type column with the value in the subsequent row. The sep=

" " argument tells Pandas to place a whitespace character between each of the

values that are concatenated together. As there is no next row for the last row in

the DataFrame, the value in that slot is null (NaN).

c.type.str.cat(others=c.type.shift(-1), sep=" ").head()

0 i am
1 am 22
2 22 and
3 and i
4 i have
Name: type, dtype: object

The others= argument usually takes a single Series, but if we pass into the

method a list of Series, it will concatenate values from each. For example,
c.token.str.cat(others=[c.type, c.lemma, c.tag], sep=" ")

concatenates the value in the token column of each row with the values in the

type, lemma, and tag columns of the same row.

c.token.str.cat(others=[c.type, c.lemma, c.tag],

sep="_").head()

0 I_i_I_PRP

1 'm_am_be_VBP

2 22_22_22_CD

3 and_and_and_CC

4 I_i_I_PRP

Name: token, dtype: object
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We can use this procedure to concatenate multiple sequential values by

passing in a list with multiple shifts of the same column.

c.type.str.cat(others=[c.type.shift(-1),

c.type.shift(-2),

c.type.shift(-3)],

sep=" ").head()

0 i am 22 and

1 am 22 and i

2 22 and i have

3 and i have never

4 i have never had

Name: type, dtype: object

In the preceding example, we concatenate each value in the type column with

the values in the type column one, two, and three rows after it. Thus, the list we

passed with others= was
[c.type.shift(-1), c.type.shift(-2), c.type.shift(-3)]

Manually creating a list of values to concatenate is fine, but tedious for longer

sequences. We can create a compact list of values to concatenate using a list

comprehension of the form
[c.type.shift(-i) for i in range(1, n)]

where n is the number of words we wish to include in the n-gram. The following

code creates a list of three-grams.

n=3

shifted_cols = [c.type.shift(-i) for i in range(1, n)]

ngrams = c.type.str.cat(others=shifted_cols, sep=" ")

ngrams.head()

0 i am 22

1 am 22 and

2 22 and i

3 and i have

4 i have never

Name: type, dtype: object

To create a list of four-grams, we need only change the value of n from

3 to 4.

n=4

shifted_cols = [c.type.shift(-i) for i in range(1, n)]

ngrams = c.type.str.cat(others=shifted_cols, sep=" ")

ngrams.head()
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0 i am 22 and

1 am 22 and i

2 22 and i have

3 and i have never

4 i have never had

. . .

69933602 or webpage . hide

69933603 webpage . hide link

69933604 NaN

69933605 NaN

69933606 NaN

Name: type, Length: 69933607, dtype: object

The last three values in the Series are NaN because Pandas cannot concaten-

ate three consecutive values to the types in these rows. NaN values can be

replaced using the NaN replace (na_rep) argument. However, as NaNs

interfere with counting, we will drop them using

ngrams = ngrams.dropna()

Next, to count all the four-gram types in the corpus, we will use

value_counts().

ngram_counts = ngrams.value_counts()

ngram_counts.head()

type

_ _ _ _ 14026

. i do not 10683

? ? ? ? 9508

i do not know 5834

i do not think 5747

Name: count, dtype: int64

If we want to know the frequency of a specific n-gram, we can look it up in the

ngram_counts Series using the dictionary lookup notation described

earlier.

ngram_counts['on the other hand']

2724

Alternately, we can use the ngrams series and loc[] to locate n-grams that

meet specific criteria. For example, one of the most frequent four-grams in this

corpus is . i do not (beginning with a “.”). We may wonder what typically comes
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after this. To get a list of all four-grams that start with i do not, we use loc[]with

str.startswith().

idonot = ngrams.loc[ngrams.str.startswith("i do not")]

idonot.value_counts().head()

type

i do not know 5834
i do not think 5747
i do not want 2810
i do not have 2176
i do not see 1495
Name: count, dtype: int64

Earlier, we used shift() to examine the potential variable slot lexical bundle on

the * hand. We can use str.contains() and a regular expression for the same

purpose.

ngrams.loc[ngrams.str.contains('^on the .+ hand$')].\

value_counts()

type

on the other hand 2724
on the one hand 429
on the right hand 58
on the left hand 44
on the same hand 1
on the 2nd hand 1
on the first hand 1
on the invisible

hand
1

on the wrong hand 1
on the engine hand 1

Name: count, dtype: int64

3.7.2 Context Windows

Many corpus-linguistic analyses require accounting for the immediate lin-

guistic context around tokens of interest. However, up to this point, we have

dealt only superficially with context (for example, by finding and counting

the set of word types that occur immediately after personal pronouns). More

realistic use cases for dataframe corpora include analyzing words in context

56 Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


or finding lists of collocates for one or more node words. In these cases (and

others), it is necessary to adjust our unit of analysis from single word tokens

to the linguistic environments around them – from tokens to context

windows.

A context window is a small slice of a dataframe containing a predefined

number of rows, usually n rows before and after a token of interest. There are

several datatypes we might use to represent a context window in memory; each

window could be a list or Series of row indices, or even

DataFrames themselves. An excellent choice, however, is Python’s range.

In Python, a range is a datatype like a list in that it contains multiple

values, but it is more constrained in that it is defined by two values – one

representing the lower bound of a sequence of integers, and the other representing

the upper bound. Ranges are a useful datatype for representing context windows

because context windows are always contiguous sequences of rows. Therefore, it

is only necessary to store the lower and upper bounds of the window. Keeping

a list of all the intermediary indices simply wastes memory. Ranges, irrespective

of the size of the sequence of integers they cover, always take 48 bytes, but they

can be indexed and sliced as if they contained the full set of integers. Additionally,

ranges can be passed into the loc[] indexer without having to convert them to

another datatype first. Consequently, ranges provide a fast, memory-efficient, and

programmatically straightforward way to call up a context window on a corpus.

Ranges can be constructed as literals using the range() function.
range(10,15)

creates a range with a lower bound of 10 and an upper bound of 15. As with

lists, ranges are zero-indexed. This means that the range just created

includes the integers 10, 11, 12, 13, and 14, but not 15.

Therefore, if we want to create a context window around the row labeled 1000

with five rows before 1000 and five rows after 1000, we use
range(1000–5, 1+1000+5)

The extra 1 before the second argument is to offset Python’s zero-based index-

ing. If we use a variable (i) instead of the number 1000, we use
range(i-5, 1+i+5)

Note that in cases where i-5 is less than 0 or where 1+i+5 is greater than the

number of rows in the DataFrame, some of the values in the range will not

correspond to rows in the corpus. More on this in what follows.

If we have a list of indices we want to iterate over and create a context

window for each, we can use a list comprehension.

indices=[10, 20, 30]

cws = [range(i-5, 1+i+5) for i in indices]
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This is precisely the approach taken in the following code sample: first, we use

the loc[] indexer to find all rows where the value in the lemma column is

equal to misinformation and take the index of the resulting DataFrame.

Then we use a list comprehension to create a range for each item in the

index.

indices = c.loc[c.lemma.eq('misinformation')].index

cws = [range(index-5, 1+index+5) for index in indices]

We can test this by taking the first context window in cws and giving it to the

loc[] indexer of our DataFrame.

c.loc[cws[0]]

token type lemma tag pos text \

434236 is is be VBZ AUX 3243290

434237 . . . . PUNCT 3243290

434238 The the the DT DET 3243290

434239 deluge deluge deluge NN NOUN 3243290

434240 of of of IN ADP 3243290

434241 misinformation misinformation misinformation NN NOUN 3243290

434242 that that that WDT PRON 3243290

434243 propagates propagates propagate VBZ VERB 3243290

434244 that that that IN SCONJ 3243290

434245 " " " `` PUNCT 3243290

434246 freelancing freelancing freelancing NN NOUN 3243290

register

434236 av

434237 av

434238 av

434239 av

434240 av

434241 av

434242 av

434243 av

434244 av

434245 av

434246 av

What we have produced is akin to a vertical Keyword in Context

display for misinformation, but with additional information about each

word.

Unfortunately, this approach still requires a bit of tuning. As noted earlier, this

code will cause an error if index-5 is less than 0 or 1+index+5 is greater than

the number of rows in the DataFrame. In these cases, Python looks for row
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labels that do not appear in the index and cannot find them (e.g., -1 or 100001 in

a 100,000-token corpus). We can avoid this problem by slicing the

DataFrame instead of passing the range directly into loc[].

context_window = cws[0]

c.loc[context_window[0]: context_window[-1]]

Here, context_window[0] is the lower bound in the range; context_window[-1] is

the upper bound. Including the : between them tells Python to slice the

DataFrame instead of locating rows by their labels. This effectively avoids the

problem.

More complex concordances can be created with a little more coding.Wewill

also use context windows to create collocates lists. These procedures are

discussed in Section 4.

3.8 Conclusion

In this section, we have discussed how to load, view, and export corpora stored in

Pandas DataFrames; how to shift our unit of analysis from the token to the text or

word type using groupby(); how to locate rows of interest based on one or more

conditions; and how to focus our analysis on only those parts of the corpus that occur

within a certain horizon around rows of interest using loc[]. These fundamental

skills can be combined to complete a range of corpus linguistic tasks. In the next

section,wewill discuss how to use these skills to do common tasks such as construct

concordances, analyze lexical bundles, and create lists of collocates.

4 Algorithms for Common Corpus Linguistic Tasks

4.1 A Brief Introduction to Algorithms

This section contains algorithms for five corpus linguistic procedures. These

represent a small portion of the methods available to corpus linguists, but can be

generalized to other tasks or extended to new procedures. For example, the

lexical bundle algorithm (4.3) can be extended to a broad range of research

questions regarding formulaic language. Thus, each algorithm is intended to

focus on both a set of programming techniques and an area of CL analysis.

For this volume, I will adopt Hetland’s definition of an algorithm as “a

procedure, consisting of a finite set of steps (possibly including loops and

conditionals) that solves a given problem in finite time” (Hetland, 2014,

p. 10). In CL, the problems that algorithms solve involve reducing data in one

form (the corpus) into another that captures something important about the

sample (e.g., a concordance, a keyword list, a normalized frequency table).

Therefore, it is helpful to think about (a) the state of the corpus before the first
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step of the algorithm – how the sample is structured and annotated, (b) what you

intend the algorithm to produce (e.g., frequency counts, a list of collocates), and

(c) the set of steps that will take the input in a and produce b.

Therefore, we will design algorithms in three broad stages:

1. specifying the desired output,

2. describing the form of the input, and

3. creating steps to produce the output given the input.

The last step can be further divided into

1. steps for inputting data,

2. steps for processing data, and

3. steps for producing output.

Each of these can also be broken down into more specific sets of steps. For

example, the input step might be split into

1. import packages and functions,

2. load the corpus, and

3. assign initial values to variables.

When we have broken the problem down into instructions that a computer can

follow, we have reached a desirable level of specificity. This might mean there is

one line of code in the Python implementation for every line in the algorithm, but

that is not always desirable. Rather, when you reach a level of specificity at which

you know how to accomplish each step in code, your algorithm is specific enough.

Often, there are many ways to achieve the same outcome and picking the best

algorithm is a matter of balancing memory use, speed, and time spent writing and

debugging code. For functions you intend to reuse often, speed of execution might

be your primary concern. For a function you intend to use one time, youmay focus

on saving time writing and debugging code at the cost of execution speed.

Specifying the Desired Output

Our first step in designing an effective algorithm is to specify the desired form

of the output. Consider a collocates list. We would reasonably want to know the

following information about each word that co-occurs with a node word:

1. raw frequency in the corpus,

2. frequency of co-occurrence with the node, and

3. a measure of strength of association between the two (e.g., Mutual

Information, Z-score, logDice).
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The output of this algorithm, therefore, might reasonably be a DataFrame

where every row is one collocate, and each column is one piece of information

about that collocate.

Specifying the form of the output of an algorithm requires choosing a unit of

analysis (what the rows of aDataFrame are meant to represent). In the preceding

collocates list example, the unit of analysis is the collocate type. In contrast, the unit

of analysis for an algorithmmeant to find the frequencies of a word in every text in

the corpus might take the text as its unit of analysis (each row would correspond to

one text in the corpus and each column to one type). The output of an algorithm

meant to generate a concordance, on the other hand, would take the word token as

its unit of analysis (each row would correspond to one occurrence of the word).

Specifying the Form of the Input

Given data of a certain form, an algorithm always produces the same result.

However, given data of a different form (even slightly), the algorithm may break

the execution of the program, or succeed, but produce a result that is different from

thatwhichwasexpected.Accordingly, every algorithm includes a set of assumptions

about the state of the data that goes into the first step. These assumptions are

sometimes referred to as the algorithm’s input conditions. Assuming the input is

always a dataframewith rows representing tokens, and columns for token, type, text,

lemma, tag, pos, and register reduces the need to specify input conditions consider-

ably, but there are still timeswhenwewillwant tomodify the dataframe in someway

before the processing begins, for example, by removing function words before

generating a collocates list, or adding a column for semantic tags prior to

a keyword analysis.

Creating a Sequence of Steps to Process the Input and Produce the Output

The next step is to construct a sequence of operations that will complete the

algorithm. As noted previously, there are often many ways to approach corpus-

linguistic tasks, but it is generally a good idea to aim for clear, readable code where

every step has a single, easily identifiable purpose. This not only helps with debug-

ging, but also makes your code accessible to others who might need to check your

work.

An Outline for the Rest of this Section

This section contains five additional sections – one each on algorithms for

creating concordances, finding and analyzing lexical bundles, creating collocates

lists, finding keywords, and performing key feature analysis. They were selected

for inclusion here because they demonstrate important concepts in dataframe
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programming and, when examined in sequence, build on the previous algorithms.

The linguistic and programming focuses for each algorithm appear in Table 4.

4.2 Creating a Concordance

The algorithm in this section finds all instances of one or more words or linguistic

features and presents them with their immediate linguistic context (L preceding

tokens andR following tokens) in a vertical format – one token in context per line.

In other words, this algorithm produces a concordance. Concordances present

instances of linguistic features vertically, centered on the linguistic feature of

interest to facilitate comparison of context across repetitions. They are a core

analytic tool for corpus linguists and thus, the first algorithm described here.

The output of the algorithm is a dataframe where each row represents one

occurrence of the target word. The following algorithm produces a DataFrame

where the first column has the lemma of the key word in the same row, and the

remaining columns include the context to the left, the key word, and the context to

the right.

The algorithm requires two types of input – the corpus to operate on (a

DataFrame corpus with columns for, at least, token and lemma), and

constants such as what to look for and the size of the left and right contexts.

Since CORE is stored in the necessary format already, no additional processing

is required to prepare it for the algorithm. The lemmas to search for are specified

in a list of strings. The window size is specified in two integers – one for

the size of the left context and one for the size of the right context.

Table 4 Linguistic and programming focuses for algorithms in Section 4.

Section Algorithm Linguistic focus Programming focus

4.2 Concordances Analyzing occurrences
of words in linguistic
context

Working with context
windows, creating
DataFrames

4.3 Lexical bundles Analyzing formulaic
language

Working with n-grams

4.4 Collocates Analyzing lexical co-
occurrence patterns

Vector-based
mathematical
operations

4.5 Keywords Determining aboutness of
a text or (sub)corpus

Grouping and applying
functions

4.6 Key features Text linguistic analysis
of lexico-grammatical
variation

Counting grammatical
features, anonymous
functions
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In the input stage, the corpus is loaded into memory and the values of the

constants are set. In the processing stage, all instances of the search terms are

found, and context windows built around their indices. In the output stage,

a new DataFrame in the form of the desired output is arranged and written to

a .csv file. The steps of the algorithm are as follows:

Input

1. Import pandas.

2. Load the corpus.

3. Set search terms.

4. Set left and right context window sizes.

Processing

5. Filter the corpus.

6. Extract the indices of remaining rows.

7. Get context windows around each index.

8. Create a new DataFrame using the context windows.

Output

9. Rename columns to reflect distance from the key word.

10. Insert a lemma column at the start of the DataFrame.

11. Sort the DataFrame on the lemma column.

12. Export the DataFrame to an Excel spreadsheet.

And now in Python. We will search for instances of the semantically related

words fill, pour, and load.

# 1. Import pandas

import pandas as pd

# 2. Load the corpus

c = pd.read_pickle('CORE.pickle')

# 3. Create a list with our search terms

query = ['fill', 'pour', 'load']

# 4. Create two integer variables to represent left and

# right context window sizes
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L = 3

R = 3

# 6. Extract the indices of those rows

indices = c.loc[c.lemma.isin(query)].index

# 7. Get context windows around each index

context_windows = [range(ind-L, 1+ind+R) for ind in indices]

# 8. Create a new DataFrame using a list of slices of the token

# column of the corpus

slices = [c.loc[cw[0]:cw[-1]].token.values

for cw in context_windows]

df = pd.DataFrame(slices, index=indices)

# 9. Rename the columns to reflect distance from the key word

df.columns = range(-L, 1+R)

# 10. Insert a column at the start of the DataFrame with the

# lemma of the key word

df.insert(0, 'query', c.loc[indices].lemma.str.upper())

# 11. sort the DataFrame on the lemma column

df = df.sort_values(by='query')

# 12. export the DataFrame to an Excel spreadsheet

df.to_csv('concordance.csv', sep='\t')

Most of the preceding code is covered in the previous section, though it

may be helpful to zoom in on steps 6–9 to look at how df, the dataframe

with the concordance, is created. In steps 6 and 7, a list of context

windows for the terms in query is generated according to the procedure

in Section 3. Then, in step 8, a list of slices is extracted from c.token

corresponding to the context windows. This is done with a list comprehen-

sion, which iterates over every context window in context_win-

dows and extracts the content of the token column in that window as

a Series.

It is necessary to extract just the values to avoid errors caused by mismatched

indices. The index of the returned Series is identical to the index of the

section of the DataFrame the Series was extracted from. Therefore, each

element in the list comprehension has a different index because each context

window looks upon a different section of the corpus. Differences in the indexes
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would cause problems if we tried to put all the Series together into a single

dataframe, as Pandas will try to align the columns based on their indexes instead

of their distance from the query term. It cannot do this, however, as none of the

indices overlap. Consequently, every word in every slice would get its own

column and NaN values would be filled into all the empty cells. We avoid this

problem by dropping the indexes from the slices using the values property.

As the name suggests, values returns an array of values without any meta-

data – in this case, just the words in the token column without the index.

Also in step 8, slices is passed into pd.DataFrame() with the argument

index=indices. This creates a new DataFramewhere each column contains

word tokens a certain distance from the query. The first column contains words that

areL tokens to the left of the query. The second columncontains itemsL-1 tokens to

the left, and so on. To make this clear, we rename the columns in step 9.

In steps 10 and 11,we insert a column to recordwhich lemmawas in each context

window and then sort the rows of the corpus based on that value. Finally in step 12,

we write the concordance to a .csv file with tab characters delimiting columns.

To view the concordance, open the .csv file. If you would like to check that

the algorithm produced the expected results, view the head of the output

dataframe on the console.

df.head(3)

query -3 -2 -1 0 1 2 3
7377 FILL _ _ ( fill in your favorite
30225971 FILL new law will fill in the "
30127595 FILL you think to fill it)leave them a

The algorithm in this section demonstrates how to create a concordance. One

benefit of the output being a dataframe is that it can be filtered, sorted, and

otherwise manipulated using the methods described in Section 3. However,

examining a concordance is often a step that comes after previous analyses that

indicate which linguistic features to examine in the first place. In the next

sections, therefore, we will explore algorithms that identify prominent lexical

bundles and collocates for a target word. Both algorithms identify linguistic

features that might be examined in more detail through a concordance.

Explore on your own!

1) Modify the algorithm to locate only rows where the next row has

a noun POS tag (HINT: Modify step 6 to include multiple conditions

in loc[]. shift() will also be helpful).
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2) Next, modify the algorithm to locate only infinitives. Look for rows

where the lemma of the preceding row is to.

3) Finally, add code to the algorithm to count the values at R1 for each of

the lemmas using groupby('query') and value_counts().

Write the Series of frequency counts to a .csv file and look for

patterns in the results.

4.3 Analyzing Lexical Bundles

Lexical bundles are frequently recurring n-grams that occur at a rate above

a certain frequency threshold (e.g., 10 times per million words). Other structural

and dispersion criteria have also been applied to the definition of lexical

bundles. In their seminal study of university registers, for example, Biber,

Conrad, and Cortes (2004) required bundles to occur at least 40 times

per million words in at least five texts, and be sequences of four lexical items

(thus, not including punctuation tokens).

Analysts are frequently interested in exploring the lexical bundles that charac-

terize a register or other type of discourse. This often involves a two-step process

of first finding and describing structural patterns in the most frequently recurring

bundles and then investigating how those bundles function in discourse. The

algorithm in this section demonstrates the first step in this process – creating a list

of n-grams that conform to certain structural, frequency, and dispersion require-

ments. The algorithm demonstrates adding an n-gram column to the corpus and

then producing a second DataFrame with frequency and range statistics for

those n-grams that meet the requirements to be considered lexical bundles.

The input for the algorithm includes the corpus itself as a PandasDataFrame,

as well as the set of constants that will define our frequency and range cutoffs. We

will follow Biber, Conrad, and Cortes (2004) in defining lexical bundles as

sequences of four lexical tokens that occur at least 40 times per million words

in at least 5 different texts. As we are defining lexical bundles as lexical four-

grams (e.g., not including punctuation), we should also set a constant defining

what we consider punctuation.Here, wewill include only sentence punctuation (.,

?, and !) and commas. As we are interested in functional interpretation, we will

limit our analysis to a single register – interviews.

The output of the algorithmwill be a DataFramewhere each row represents

one n-gram with columns for the normalized frequency (per million words) and

text range of the n-gram in the corpus.

To start the algorithm, we import pandas, load the corpus, and set the values of

the constants. The punctuation tokens will be held in a regular expression so that
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we can use str.contains() to filter out punctuation later. In the processing

stage, we add an n-gram column to the corpus, filter on our three criteria, and then

write the resulting DataFrame to a file and check the head().

Input

1. Import pandas.

2. Load the corpus and create a subset of interviews.

3. Set constants.

Processing

4. Create an n-gram column and add it to the corpus.

5. Create a DataFrame of four-grams with columns for

1. frequency, and

2. text range.

6. Filter out n-grams that contain punctuation.

7. Filter out n-grams that do not occur at least 40 times per million words.

8. Filter out n-grams that do not occur in at least five texts.

Output

9. Sort the DataFrame on frequency and range.

10. Write to csv.

11. Check output with head().

And now in Python. Note that the code comments are sparser than in the

concordance algorithm.

# 1. import pandas

import pandas as pd

# 2. load corpus and extract interviews ('it')

c = pd.read_pickle('CORE.pickle')

c = c.loc[c.register.eq('it')]

# 3. set constants

min_freq = 40

min_range = 5

punct = r'[.,?!]'
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# 4. add four_gram column to corpus

shifted_cols = [c.type.shift(-i) for i in range(1, 4)]

c['four_gram'] = c.type.str.cat(

others=shifted_cols, sep=' ')

# 5. create DataFrame with frequency and range information

df = pd.DataFrame({

'freq': c.four_gram.value_counts() / (c.shape[0]-3),

'range': c.groupby('four_gram').text.nunique()})

df.freq = df.freq * 1000000

# 6. filter ngrams that cross punc boundaries

df = df.loc[~(df.index.str.contains(punct))]

# 7. filter ngrams that occur fewer than 40 times per million

# words

df = df.loc[df.freq.ge(min_freq)]

# 8. filter ngrams that occur in fewer than 5 texts

df = df.loc[df.range.ge(min_range)]

# Output

# 9. sort df on freq, range

df = df.sort_values(by=['freq', 'range'],

ascending=False)

# 10. write to .csv

df.to_csv('lexical_bundles.csv', sep='\t')

# 11. check output

df.head()

freq range
four_gram
i do not know 264.169188 86
i do not think 196.050089 79
do not want to 181.097116 62
i think it 's 142.883963 64
to be able to 116.300900 48
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In the preceding algorithm, the four_gram column is created using str.

cat() and shift(). Then a four-gram frequency dataframe is created in step

5. Frequency counts are normalized by dividing the raw frequencies of the four-

grams by the number of four-grams in the corpus (equal to the number of tokens

in the corpus – 3) and then multiplied by one million. The df is then filtered

using the loc[] indexer, contains(), and ge(). The first two are

described in Section 3, but ge() is new. The ge() function works exactly as

eq(), but returns True for values that are greater than or equal to its argument.

The algorithm in this section demonstrates how to identify lexical bundles for

a corpus, but the core of the procedure can be applied to a range of concepts

where the unit of analysis is fundamentally a sequence of tokens. Indeed,

n-grams provide a convenient starting point for phraseological analyses of

multitoken units such as compounds and phrasal verbs, formulaic language,

and verb-argument constructions.

Explore on your own!

1) i do not know is the most frequent lexical bundle in interviews. Create

a concordance for the bundle, write it to a .csv file, and examine the

results. What discourse functions are accomplished with it?

2) Choose another register in CORE and compare/contrast the functions

of i do not know in that register and interviews. Consider advice (av) or

opinion blogs (ob) for the comparison register.

3) Choose one or more lexical bundle from your list. Investigate the

possibility of it having variable slots. Use the techniques in

Section 3.7.1.

4.4 Finding Collocates

Linguists are often interested in generating a list of collocates for a node word –

those words which co-occur with the node more often than might be expected.

A range of measures of the collocation strength between the node and words

that co-occur with it have been proposed (see, e.g., Brezina, 2018 for

a comparison of 14 measures). Most measures of collocation strength, however,

cannot be compared across corpora. LogDice (Rychlý, 2008), however, does

permit comparisons across corpora. In this algorithm, we find logDice values

for collocates ofmisinformation in CORE’s news register. We then compare the

values of some of the top collocates to see if the collocation strength differs in

news compared to the opinion blogs register.

Calculating logDice involves three steps:
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1. counting the word types in the corpus to establish base frequencies,

2. finding how often each word occurs in a window around instances of the

node (its observed frequency of collocation), and

3. using those frequencies to calculate Log Dice with Eq. (1)

LogDice ¼ 14þ log2
2� fxy
fx þ fy

ð1Þ

where fxy is the observed frequency of co-occurrence, fx is the frequency of

the node word, and fy is the frequency of the potential collocate.

The output of the algorithm is a DataFramewith each row representing one

word type in the corpus. We include columns for the raw frequency of the word

in the corpus (Y), the observed frequency of collocation (O), and the Log Dice

score (LD).

The input for the algorithm includes

1. the corpus – a Pandas DataFrame with (at least) a column for type,

2. the identity of the node word (a string). Here, we will find collocates for

misinformation in the news register,

3. the size of the window around the node to examine (two integers), and

4. the minimum corpus frequency and frequency of co-occurrences for words

to be considered potential collocates (two integers).

To start the algorithm, we will load the corpus and set the values of all constants

(e.g., the window size and frequency cutoffs). In the processing stage, we will

calculate the observed frequencies of co-occurrence, and calculate logDice

values. Finally, in the output stage, we will apply frequency cutoffs, and export

the resulting DataFrame to a .csv file.

Input

1. Import Pandas and the log2 function from NumPy.

2. Load the corpus and select only news texts.

3. Create string to represent the node.

4. Create integer variables to represent

1. left and right context window sizes, and

2. the base frequency cut-off and observed collocation frequency cutoff.

Processing

5. Get frequency counts for all word types in the corpus.

70 Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


6. Get the indices of all instances of the node in the corpus using loc.

7. Create context windows from the indices.

8. Create a flat list of indices in all context windows (with duplicates).

9. Create a Series with the frequencies of all word types that occur in the

context windows.

10. Calculate logDice.

Output

11. Create a DataFrame with columns for base frequency, observed fre-

quency of collocation, and logDice score.

12. Filter out rows with frequency values below the cut-offs as well as the node

(so it is not considered a collocate of itself).

13. Sort the DataFrame by logDice scores in descending order.

14. Export the DataFrame to a .csv file.

15. Check the output with head().

And now the algorithm implemented in Python:

## INPUT

# 1. import pandas and the log2 function from numpy

import pandas as pd

from numpy import log2

# 2. load the corpus and select the tokens from texts of the

# news (ne) register

c = pd.read_pickle('CORE.pickle')

c = c.loc[c.register.eq('ne')]

# 3. create string to represent the node (node)

node = 'misinformation'

#4.createintegervariablestorepresentthecontextwindow

# and freq cut-offs

L = 5

R = 5

freq_cut = 5

coll_cut = 5

## PROCESSING

# Get Observed Frequencies

# 5. get frequencies of all word types

Y = c.type.value_counts()
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# 6. get indices of node in the corpus

indices = c.loc[c.lemma.eq(node)].index

# 7. create context windows from the indices

cws = [range(ind-L, 1+ind+R) for ind in indices]

# 8. create a flat list of indices in all context windows (with

# duplicates)

cw_indices = [ind for cw in cws for ind in cw]

# 9. create a Series with the frequencies of all word types

# that occur in the context windows

O = c.loc[cw_indices].type.\

cat.remove_unused_categories().value_counts()

# 10. get log Dice

LD = 14 + log2((2*O) / (Y+Y.loc[node]))

## OUTPUT

# 11. create an Output DataFrame

df = pd.DataFrame({'Y': Y,

'O': O,

'logDice': LD})

# 12. filter out rows: the node and words with frequency values

# below the cut-off

df = df.drop(node)

df = df.loc[df.Y.ge(freq_cut) & df.O.ge(coll_cut)]

# 13. sort the DataFrame by Log Dice score in descending order

df = df.sort_values(by='logDice', ascending=False)

# 14. export the DataFrame to an Excel file

df.to_csv('collocates of misinformation in news.csv',

sep='\t')

# 15. check output

df.head(3)
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Y O logDice
type
lies 587 10.0 8.977632
about 26698 10.0 3.614084
so 23950 5.0 2.770400

The statement importing log2() from NumPy in step 1 begins with the

from keyword. This allows us to import only a single function (or a small

set of functions) instead of the entire library. The log2() function

calculates base 2 logarithms and is used in step 10 to calculate logDice.

In step 5, a Series with frequency counts for every word type in the

corpus is created. These are the Y values in the preceding formula. In steps

6–8, the indices of the node are extracted and used to generate context

windows. A list comprehension is used in step 7 to flatten the list of

indices in the context windows produced in step 6 – transforming it from

a 2-dimensional list of lists of indices to a one-dimensional list of

indices. The flattened list is then passed into loc[] in step 8, which

returns a DataFrame with those rows that are in one or more context

windows. Words that occur in multiple context windows are included

multiple times. Then, value_counts() is used in step 9 to count all

the values in the type column of the context windows around the node.

This produces observed frequencies of co-occurrence for all types in all

context windows and stores them in a Series called O. The cat.

remove_unused_categories() in step 9 is necessary to remove

word types from the index of the Series for those words that occur in

the corpus, but not in a context window around an instance of the node. If

we do not remove these, their observed frequencies of 0 will cause an error

when Log Dice is calculated in step 10.

Log Dice is calculated using vector-based math operations according to

the preceding formula. The entire Series O is multiplied by the scalar 2.

The result is divided by the sum of the Series Y (corpus frequencies of all

words) and the corpus frequency of the node (retrieved from the Series

Y using Y.loc[node]). Finally, the result is logged using the log2()

function imported in step 1. In step 10, 14 is added to the result of

log2(). There is no need to add, multiply, divide, or log individual

values. The operations +, *, \ and log2() all work on the entire

Series at once.

Finally, in steps 11, 12, and 13, a DataFrame with frequencies, frequencies

of co-occurrence, and logDice scores is created and filtered according to the

frequency and co-occurrence cutoffs set in step 4.
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The results indicate that the top collocate of misinformation in news is

lies with a logDice score of 8.978. One might wonder if this is true in

other registers. By changing ‘ne’ to ‘ob’ in step 2 (one might also want to

change the name of the output file), we can find collocates of misinforma-

tion in opinion blogs. Results indicate that lies is also a collocate of

misinformation in that register (logDice = 7.69), but the strength of

association is not as great. The difference indicates that lies co-occurs

with misinformation more than twice as often in news than in opinion

blogs. On the other hand, the top collocate in opinion blogs is spread

(logDice = 8.18), which has a logDice value of 7.2 in news. These

differences may (or may not) point to differences in the discourse around

misinformation in the two registers.

The algorithm demonstrated here is flexible enough to be extended to

any corpus-linguistic analysis that relies on measuring association between

linguistic items. Modifying one or more of steps 3 through 10 allows

analysts to apply a different established measure of strength of association

(e.g., Cohen’s d; z-scores), or test a new one. Alternately, strength of

association can be calculated between different types of linguistic items

(e.g., word type and part of speech tag; variable slot lexical bundle and

slot fillers). Further, the output can be used to identify peculiar combin-

ations of word types that may be investigated with close analysis of

a concordance.

Explore on your own!

1) Some strength of association measures require the analyst to calculate

a word type’s expected frequency (e.g., Mutual Information; z-score).

This can be done by multiplying the frequency of the node by the

frequency of the collocate and dividing the result by the number of

words in the corpus. Modify the algorithm to use z-scores instead of

logDice by subtracting expected values from Yand dividing the result

by the square root of the expected values (import the sqrt() func-

tion from numpy).

2) Compare the lists created using the two measures of

strength of association. Does one appear intuitively superior to

the other?

3) Choose a collocate of misinformation from one of the two lists.

Modify the concordance algorithm to produce a concordance for co-

occurrences of the node and collocate. Use the node as your query.

After the slices are extracted, but before the dataframe is created, add
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a line of code to filter out slices that do not include the collocate. Drop

the index=indices parameter from the DataFrame() function

in the next line to prevent an error.

4.5 Keyword Analysis Using Text-Dispersion Keyness

Keywords are often identified by comparing their prominence in one corpus

to their prominence in a second, usually larger corpus (these corpora are

referred to in what follows as the focal and reference corpora respectively).

Though many metrics for measuring this prominence (or keyness) of key-

words have been proposed (see e.g., Gabrielatos, 2018), recent research

suggests that comparing word types’ dispersion across texts in focal and

reference corpora produces readily interpretable keyword lists (Egbert &

Biber, 2019). This measure of keyness has been called text-dispersion key-

ness (hereafter, TDK).

TDK is calculating in three steps. First, a list of all word types in the focal corpus

is generated and the range of each type is found (the number of texts in the corpus in

which the type appears). Then, the number of texts in the reference corpus that

contain each type is found. These numbers, along with the total number of texts in

each corpus is used to calculateG2, a log-likelihood ratio (LLR).Keywords can then

be ranked according to their LLR value. Alternatively, LLRs may be compared to

a critical value where LLRs greater than certain thresholds indicate statistically

significant differences in strength of association at various p-values. Table 5 is

reproduced from Paul Rayson’s online log-likelihood calculator1 (Rayson, n.d.).

Formulae for computing LLRs appear in several sources, but the seminal text

is Dunning (1993). Equation (2) is presented in Egbert and Biber (2019, p. 84).

G2 ¼ 2
X

i
Oiln

Oi

Ei

� �
ð2Þ

The values of i represent the focal and reference corpora. Oi is the range of the

word in the corpus and Ei is the expected range, which can be calculated

according to Eq.(3):

Ei ¼
Ni

X
i
OiX

i
Ni

ð3Þ

where Ni is the number of texts in either corpus.

1 Log-likelihood and effect size calculator. http://ucrel.lancs.ac.uk/llwizard.html
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An algorithm for finding LLRs thus requires the range of the target word

in the focal corpus (Ofoc) the range of the word in the reference corpus

(Oref ), the number of texts in the focal corpus (Nfoc), and the number of

texts in the reference corpus (Nref ). In the processing stage, the algorithm

calculates expected values for both corpora and then uses the observed

and expected values to calculate the LLR, which is printed in the output

stage.

Input

1. Import log from math

2. Set value for O_foc, O_ref, N_foc, and N_ref

Processing

3. Get expected values

4. Calculate LLRs

Output

5. Print LLR to console

And now in Python. The code sample calculates the LLR for the word

misinformation in news compared to a reference corpus consisting of the

other CORE registers. The values of O_foc (observed range in news),

O_ref (observed range in other registers), N_foc (number of texts in news),

N_ref (number of texts in other registers) are set as constants here, but

obtained programmatically in the next algorithm.

## Input

from math import log

# set observed values

O_foc = 63

O_ref = 199

N_foc = 10069877

Table 5 LLR critical values

LLR Critical Value p-Value

3.84 p < 0.05
6.63 p < 0.01
10.83 p < 0.001
15.13 p < 0.0001
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N_ref = 51168525

## Processing

# get expected values

E_foc = N_foc * (O_foc + O_ref) / (N_foc + N_ref)

E_ref = N_ref * (O_foc + O_ref) / (N_foc + N_ref)

# get llr

llr = 2 * ((O_foc * log(O_foc / E_foc)) +

(O_ref * log(O_ref / E_ref)))

## Output

print(llr)

9.916901839587666

The LLR for misinformation is about 9.9, indicating that it is the keyword for

news. To get a sense of the topics in the news subcorpus, however, we will need

a much more extensive list of keywords. We can obtain this by applying the LLR

algorithm to every type in the corpus and then filtering out those types with LLR

values below a critical value of 3.84 or higher depending on the desired p-value.

We can accomplish this by creating a dataframewhere the unit of analysis is the type

(i.e., each row represents one word type) with columns for range in the focal corpus

and range in the reference corpus. Then, we may convert the LLR algorithm into

a function and apply() it to each row in the new DataFrame. The apply()

function is a useful one that allows a coder to apply a function to each column or

row in a DataFrame. It is discussed in more detail in the following discussion.

We now have (nearly) all the tools necessary to complete the full algorithm.

Input

1. Load libraries.

2. Load corpus.

3. Filter out punctuation.

4. Define log-likelihood function.

Processing

5. Create subcorpora.

6. Create a DataFrame with ranges for every word in the corpora.

7. Replace ranges of 0 with ranges of 0.5.

8. Apply the log-likelihood function to each row.
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Output

9. Filter out rows with LLR < 3.84 and sort the DataFrame.

10. Write the DataFrame to a .csv file.

11. Check output using head().

Step 7 is necessary; if the observed range of a word in the reference corpus

is 0, the LLR function will fail because the natural logarithm of 0 is

negative infinity. To avoid this, we might filter out words that do not

occur in one of the two subcorpora, but this will cause us to miss words

that occur frequently in the focal corpus but not at all in the reference. The

solution here, changing values of 0 to 0.5, is taken from Rayson (n.d.), but

other solutions are possible.

# 1. import libraries

import pandas as pd

from math import log

# 2. read corpus

c = pd.read_pickle('CORE.pickle')

# 3. filter out punctuation

c = c.loc[~c.pos.eq('PUNCT')]

# 4. define Log Likelihood Function

def LLR(row, a, b):

# set observed values

O_foc = row.foc

O_ref = row.ref

N_foc = a

N_ref = b

# get expected values

E_foc = N_foc * (O_foc + O_ref) / (N_foc + N_ref)

E_ref = N_ref * (O_foc + O_ref) / (N_foc + N_ref)

# get llr

llr = 2 * ((O_foc * log(O_foc / E_foc)) +

(O_ref * log(O_ref / E_ref)))
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# return LLR

return llr

# 5. create subcorpora

# create focal corpus by selecting news texts

# and get the number of texts in the subcorpus

foc = c.loc[c.register.eq('ne')]

N_foc = foc.text.nunique()

# create reference corpus by selecting non-news texts

# and get the number of texts

ref = c.loc[~c.register.eq('ne')]

N_ref = ref.text.nunique()

# 6. create output dataframe with foc and ref ranges

foc_counts = foc.value_counts(['type','text']).\

groupby(level='type').count()

ref_counts = ref.value_counts(['type','text']).\

groupby(level='type').count()

df = pd.DataFrame({'foc': foc_counts, 'ref': ref_counts})

# 7. replace range counts of 0 with 0.5s to avoid log(0)

# errors in the LLR function

df.foc = df.foc.mask(df.foc.eq(0), 0.5)

df.ref = df.ref.mask(df.ref.eq(0), 0.5)

# 8. create log likelihood ratio column with apply()

df['llr'] = df.apply(LLR, args=[N_foc, N_ref], axis=1)

# 9. filter out values and sort

df = df.loc[df.llr > 3.84]

df.sort_values('llr', ascending=False, inplace=True)

# 10. output

df.to_csv('tdk ne keywords.csv', sep='\t')

# 11. check head

df.head()
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foc ref llr
type
said 6701.0 12248.0 1935.629401
mr 1392.0 1474.0 1029.995499
president 1953.0 2777.0 944.980129
your 3592.0 21819.0 881.697414
government 2881.0 5198.0 859.024513

These first five keywords point to the discourse of news and its characteristic

functions and topics (e.g., reporting speech, government).

There are three new elements in the preceding algorithm: using the def

keyword to define the LLR function, using value_counts() and groupby

() to get text ranges for each type in the corpora, and using apply() to apply

the LLR function to each row in the corpus. Each deserves additional explanation.

At the top of the code, after the import statements, the function LLR() is

defined using the def keyword. The next eight lines (not including comments)

are indented. This indicates that these lines will be executed when LLR() is

called. The content of this function is identical to the content of the algorithm for

finding LLR. However, note that this function takes three arguments (row, a,

and b) and these are used to set the observed values that were constants in the

original algorithm (more on these arguments in a moment).

In step 6, a DataFrame is created with two columns: one each for the ranges

of each word type in the focal and reference corpora. The ranges for the focal

corpus are calculated with foc.value_counts(['type', 'text']).

groupby(level='type').count(). Three methods are chained here.

First, frequencies for each type in each text are calculated with value_-

counts(['type', 'text']). Note that the use of value_counts()

differs slightly here compared to its use in previous algorithms. It is invoked on

the DataFrame instead of a column, and a list of column names is passed into

the method. Passing a list of column names to value_counts() produces

a hierarchical list of counts.

foc.value_counts(['type', 'text'])

type text
the 0737349 5679

0163670 3169
of 0737349 2730
to 0737349 2530
the 1718796 2406
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. . .

matter 3226900 1
3287602 1
3377852 1
0044209 1

percentage 0069238 1
Name: count, Length: 3801200, dtype: int64

The datatype of the result is a Series, not a DataFrame, but note that

the index of the Series has two levels; one for type and one for text.

The output thus indicates that the occurs 5,679 times in text 0737349 and

3,169 in text 0163670 (note that the Series is sorted in descending order).

groupby(level='type') then organizes the rows of the Series into

groups (one for each word type). count() after groupby() returns the

number of values within each group (here, there is one value for each text in

each group), so grouping by type and counting the resulting values per

group produces the range of each word type.

In step 8, the LLR() function defined at the start of the algorithm is applied to

each rowofdf usingdf.apply(LLR,args=[N_foc,N_ref],axis=1).

Since df is indexed by word type, LLRs are found for each word type. The first

argument passed toapply() is the name of a functionwith no trailing parentheses

(in this case,LLR). The second argument (args=[N_foc,N_ref]) is alistof

any variables to pass into the function as arguments in addition to the rows of the

dataframe (in this case, the number of tokens in the foc and ref dataframes). The

last argument for apply(), axis=1 indicates that the function should be applied

to the rows of the dataframe instead of columns. apply() can apply a function to

the columns of a DataFrame by omitting the axis=1 argument.

Careful readers may notice that the line def LLR(row, a, b): in step 4

suggests that the LLR function takes three arguments, but the list in args=

[N_foc, N_ref] in step 9 includes only two values. This is because the first

argument in the function is always the rows of the DataFrame. So, df.apply

(LLR, args=[N_foc, N_ref], axis=1) has the following effect. First, it

iterates over the rows in df. For each row, it calls the LLR() function and passes

three arguments: the current row (as a Series), the number of texts in the focal

corpus (N_foc), and the number of texts in the reference corpus (N_ref). For each

row, LLR() returns a value, which apply() concatenates into a Series. This

series is added to df with the column name llr with the assignment operator =.

In the final two steps, the data are filtered, sorted, and written to a file, and the

head is displayed to the console.
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The algorithm in this section demonstrates keyword analysis but is more

generally designed to demonstrate grouping and hierarchical counting, as well

as row-wise application of functions. These techniques are widely useful for

a range of corpus linguistic tasks that require the analyst to transform

a DataFrame so that the rows represent something other than tokens. In the

final algorithm of this section, the unit of analysis is shifted fully to the text to

facilitate analysis of grammatical structures in the sports reports subcorpus.

Explore on your own!

1) Modify the algorithm so that LLRs are calculated using corpus frequency

instead of text range. Refer to the collocation algorithm for methods for

getting corpus frequencies. Compare the keyword lists. In your opinion,

does one list characterize the discourse of news better than the other?

2) Transform your keyword, collocation, and concordance algorithms

into functions using def. Pay attention to the arguments that must

be passed in and the return values of the functions.

3) Choose another register (e.g., sports reports – “sr”) and generate a list

of keywords for that register. Then, choose a set of words that are key

in both registers and investigate their collocates. How do the colloca-

tions differ across registers?

4.6 Key Feature Analysis

The previous algorithms have focused on lexical items. However, many CL

procedures focus on (lexico-)grammar. Key Feature Analysis (KF Analysis), for

example (see e.g., Egbert & Biber, 2023), involves comparing the frequency of

grammatical features across texts in two corpora to identify features that are

relatively common in each (the key features). After identification, functional

interpretations of the key features are made using close analysis of texts or

concordance lines.

In this section, we replicate part of Egbert and Biber (2023)‘s first case

study – analyzing functional lexico-grammatical features in the register of

sports reports by comparing normalized frequencies in that register to those of

all other registers in CORE. In the case study, the authors selected 15 functional

lexical and lexico-grammatical features for analysis:

• Second-person pronouns

• Third-person pronouns

• Activity verbs
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• Adjectives

• Adverbs of place

• Common nouns

• Contractions

• Human nouns

• Nominalizations

• Past tense

• Perfect aspect

• Passive voice

• Premodifying nouns

• Proper nouns

• Word length

For our replication, we will drop the three semantic categories (activity verbs,

adverbs of place, and human nouns) as well as word length, as the focus of this

section is grammar.

Egbert and Biber propose Cohen’s d as a measure of keyness for features due to

the ease of calculation and interpretability. In KF Analysis, Cohen’s d is the

standardized mean difference in frequency of lexico-grammatical structures in

two corpora. A feature with a d value of 1 occurs 1 standard deviation more often

in the first corpus than the second. It may be calculated using Eq. (4).

d ¼ M1 �M2

SDpooled
ð4Þ

whereM1 andM2 are the mean rates of occurrence of a linguistic feature in two

corpora and SDpooled (see Eq. (5)) is an estimate of the combined variance of the

two sets of observations.

SDpooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

1 þ SD2
2

2

r
ð5Þ

In (5), SD1 and SD2 are the standard deviations of the rates of occurrence for the

feature in the two corpora. As we did for LLRs in the keyword analysis

algorithm, we can write a function for Cohen’s d and apply() it to

a DataFrame. As Cohen’s d is calculated with mean frequencies, however,

it is necessary to calculate normalized frequencies on a per-text basis. This

shifts the unit of analysis from the token (as in the concordance algorithm) or the

type (as in the n-grams, collocation, and keywords algorithms) to the text. Thus,

to perform KFAnalysis, we will need to create a DataFrame for each corpus

(one for sports reports and one for other registers) where rows correspond to

texts and the columns correspond to the lexico-grammatical features that are
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central to the analysis. The cells in these dataframes should contain normalized

frequency counts for each feature in each text. The output should be a Series

of features with d values.

A basic algorithm for KFAnalysis thus follows these steps.

Input

1. Import libraries and functions.

2. Define Cohen’s d function.

3. Load corpus and filter out punctuation.

Processing

4. Create “counts” DataFrame with per-text frequencies of lexico-

grammatical structures.

5. Normalize frequencies in counts.

6. Split the DataFrame into counts for sports reports and counts for other texts.

7. Apply Cohen’s d function to the columns of the two counts dataframes.

8. Filter out low-magnitude values.

Output

9. Write results to file and check results on the console.

As always, we have already discussed most of the tools and procedures neces-

sary to complete this algorithm. However, it is worth noting that counting

grammatical features is not as simple as counting word types. Locating gram-

matical features involves the use of the tag and pos columns, often in

conjunction with lemma and type. It is often not sufficient to rely on only

one type of information. Locating third-person pronouns, for example, requires

locating values of PRON or PRP in the pos or tag column, but then filtering out

first- and second-person pronouns using information in the lemma column.

prp_3rd = c.loc[c.pos.eq('PRON') & c.lemma.isin([

'they', 'she', 'he', 'it', 'one', 'these', 'those',

'that', 'themselves', 'herself', 'himself', 'itself',

'oneself'])]

prp_3rd.head(3)
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token type lemma tag pos text register
135 they they they PRP PRON 1465224 av
327 it it it PRP PRON 1465224 av
337 it it it PRP PRON 1465224 av

How you set the conditions in loc[] will reflect how you have operational-

ized the grammatical structures of interest (reference grammars may be of use

in operationalizing many structures). Many grammatical features can be

located using some combination of coarse-grained part-of-speech tags

(pos), fine-grained part-of-speech tags (tag), lemmas, and word

types. Additionally, properties of the tokens immediately before or after

a token of interest can be accessed through shift(). Pandas str.

startswith(), str.endswith(), and str.contains() methods

can be used to locate any of a set of tokens, types, or part-of-speech tags that

follows a prespecified pattern. Token and POS-tag n-grams can also be used

to find multiword grammatical structures. Context windows can be used to

count grammatical structures when some level of additional parsing is neces-

sary, but doing so is outside the scope of the current volume.

Once located with loc[], per-text frequency counts for grammatical

structures can be found by counting the values in the text column. Note

that text.value_counts() produces a DataFrame where rows cor-

respond to texts. Consequently, the resulting dataframe can be used for this

analysis and others where the unit of analysis is the text.

counts = prp_3rd.text.value_counts().\

sort_index(ascending=False).head(3)

text

3798147 10

3751580 25

3379896 29

Name: count, dtype: int64

The results indicate that text 3798147 has 10 third-person pronouns while text

3751580 has 25.Wemust divide these counts by the number of tokens in the text

to normalize them.

tokens_per_text = c.text.value_counts()

counts = counts / tokens_per_text * 1000

counts.sort_index(ascending=False).head(3)

text

3798147 13.315579
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3751580 22.583559

3379896 23.673469

Name: count, dtype: float64

Third-person pronouns occur at a rate of about 13 per thousand words in text

3798147. Pandas automatically aligned the indices of the two Series so that

counts for each text are divided by the number of words for the same text. This

works when dividing one Series by another Series with identical indices.

We now have a column with normalized frequency counts for one of the 11

features we wish to include in our KF analysis. Counting the other 10 features is

just like counting this one, but with different conditions in loc[]. We are now

ready to examine the full algorithm in Python.

# 1. import pandas and numpy

import pandas as pd

import numpy as np

# 2. def Cohen's d function

def cohen(x, y):

# get estimate of pooled variance

pooled = np.sqrt((x.std()**2 + y.std()**2)/2)

# get standardized mean difference d

d = (x.mean() – y.mean()) / pooled

# return d

return d

# 3. load corpus and remove punctuation

c = pd.read_pickle('CORE.pickle')

c = c.loc[~c.pos.eq('PUNCT')]

# 4. Create counts dataframe

# 4.1 set list of 3rd person pronouns

prp_3rd = ['they', 'she', 'he', 'it', 'one', 'these',

'those', 'that', 'themselves', 'herself', 'himself',

'itself', 'oneself']

# 4.2 set regular expression pattern for locating words with

# common nominalization endings

nom_pat = (r'.+ment$|.+ation$|.+ist$|.+ee$|.+ery$|'+
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r'.+age$|.+ness$|.+ity$|.+dom$|.+ship$|.+hood$|'+

r'.+ite$|.+ish$|.+ism')

# 4.3 create df 'counts' with raw frequency of

# lexicogrammatical features

prop = c.loc[c.pos.eq('PROPN')].text.value_counts()

th_pp = c.loc[c.pos.eq('PRON') &

c.lemma.isin(prp_3rd)].text.value_counts()

se_pp = c.loc[c.lemma.eq('you')].text.value_counts()

past = c.loc[c.tag.eq('VBD')].text.value_counts()

perf = c.loc[c.tag.eq('VBN') &

c.lemma.shift(1).eq('have') &

c.pos.shift(1).eq('AUX')].text.value_counts()

cont = c.loc[c.type.str.contains("'.{1,2}$")].\

text.value_counts()

passive = c.loc[c.tag.eq('VBN') &

c.lemma.shift(1).eq('be') &

c.pos.shift(1).eq('AUX')].text.value_counts()

premod = c.loc[c.tag.str.startswith('N') &

c.tag.shift(-1).str.startswith('N')].\

text.value_counts()

adj = c.loc[c.tag.str.startswith('J')].\

text.value_counts()

common = c.loc[c.tag.str.startswith('N') &

~c.tag.isin(['NNP', 'NNPS'])].\

text.value_counts()

nom = c.loc[c.type.str.contains(nom_pat) &

c.tag.str.startswith('N')].text.value_counts()

counts = pd.DataFrame({

'Proper Nouns': prop,

'3rd Person Pronouns': th_pp,

'2nd Person Pronouns': se_pp,

'Past Tense': past,

'Perfect Aspect': perf,

'Contractions': cont,

'Passive Voice': passive,

'Premodifying Nouns': premod,

'Adjectives': adj,

'Common Nouns': common,

'Nominalizations': nom})
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# 5. normalize counts to per 1000 words

text_lengths = c.text.value_counts()

counts = counts.apply(lambda col: col / text_lengths * 1000)

# 6. create subcorpora for comparison

sr_texts = c.loc[c.register.eq('sr')].text.unique()

sports = counts.loc[sr_texts]

ot_texts = c.loc[~c.register.eq('sr')].text.unique()

others = counts.loc[ot_texts]

# 7. calculate cohen's d

result = sports.apply(lambda col:

cohen(col, others[col.name]))

# 8. filter out low magnitude values

cutoff = .2

result = result.loc[result.abs() > cutoff]

result = result.sort_values()

# 9. write results to csv

result.to_csv('key features of sports reports.csv')

print(result)

Common Nouns -0.838475
Nominalizations -0.778753
2nd Person Pronouns -0.551680
Adjectives -0.421875
Passive Voice -0.334396
Premodifying Nouns 0.215672
3rd Person Pronouns 0.272039
Perfect Aspect 0.317762
Contractions 0.437526
Past Tense 0.515931
Proper Nouns 0.657777

dtype: float64

In steps 1 and 2, packages are imported and a function for computing Cohen’s

d is defined (cohen()). The function takes two arguments, x and y. These

should be Pandas Series. The cohen() function calculates and returns the

standardized mean difference for two Series according to the preceding
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formulae. In step 3, the corpus is loaded, and punctuation is dropped by

selecting only rows where pos does not equal PUNCT (punctuation).

In step 4, the counts dataframe is created with frequency counts for the 11

features of interest. Steps 4.1 and 4.2 set values to help with counting third-person

pronouns and nominalizations. In 4.1, a list of third-person pronouns is created,

and in step 4.2 a string is created with a regular expression pattern to find word

types with common nominalization endings. As described earlier, regular expres-

sions provide a system for matching strings based on patterns instead of matching

literal characters. The pattern.+ment$, for example,matches all strings that end

in -ment. The | is equivalent to “or”, so .+ment$|.+ation$|.+ist$

matches values that end in -ment, -ation, or -ist. The full pattern contains 14

nominalization endings, but will produce results with some error. For example,

nation will be matched, as will gist, though neither of these is a nominalization.

Nominalizations with endings not in the list (e.g., -al) will be passed over; the

program will not catch refusal. In step 4.3, the counts DataFrame is created

with columns for each of the 11 features included in our KF analysis.

A variable is created for each feature with a statement in the form of
c.loc[. . .].text.value_counts()with a unique set of conditions in the

loc[] indexer. For finding proper nouns, the sole condition is c.pos.eq

('PROPN'). In contrast, three conditions are included for finding passive voice

verbs: the tagmust contain a past participle verb tag (c.tag.eq('VBN')), the

lemma column in the preceding row must be a be verb (c.lemma.shift(1).

eq('be')), and the pos column of the preceding row must be an auxiliary verb

tag (c.pos.shift(1).eq('AUX')). A DataFrame is then created with

columns for each feature.

In step 5, the frequencies in counts are normalized to a rate of 1,000 words. In

previous examples, Series of frequency counts were divided by the number of

words in each text. One might assume that this procedure will work with

a DataFrame as well, but it will not. Pandas treats commands to divide

a DataFrame by a Series as an attempt to multiply the matrix of values in the

DataFrame by the inverse vector of the values in the Series. This is not the

desired behavior. Rather, we must select each column of the DataFrame one at

a time and divide it by the Series of text lengths. There are several ways to

accomplish this, but the method here is to use apply() with an anonymous

function.

An anonymous function is a one-line function that is defined and invoked

within another line of code. It exists for as long as that line of code is executing

and then is disposed of. Since it is not kept around for the next line, there is no

reason to give it a name or define it before the line where it is executed.

Anonymous functions are defined with the lambda keyword instead of def.
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Like def, the lambda keyword is followed by one or more arguments (separ-

ated by commas). At the end of the sequence of variables is a colon, followed by

one line of code to execute and return. Consider the following function.

def normalize(frequency_counts, text_length):

value = frequency_counts / text_length

return value

And now the equivalent anonymous function.

lambda frequency_counts, text_length: frequency_counts /

text_length

Note that lambda is used exactly as def would be (but without parentheses

around the arguments) and the code to execute is separated from the def/

lambda by a colon. Anonymous functions always return the result of the line

of code in their body (and there cannot be more than one line of code in an

anonymous function), so there is no need to include a return statement. These

properties make anonymous functions ideal for use with apply().

Remember that apply() takes each column of the DataFrame and passes

it into a function, which must be the first argument. This works exactly the same

when the first argument is an anonymous function, so counts = counts.

apply(lambda col: col / text_lengths * 1000) takes each column

of counts, assigns it to the variable col, divides col by text_lengths,

multiplies the result by 1,000, and returns the aggregated results of performing

this operation on all columns as a DataFrame.

In step 6, subcorpora for sports reporting and all other registers are created

from counts. First, the IDs of all sports reports are found using c.loc[c.

register.eq('sr')].text.unique() and assigned to sr_texts.

Then, these IDs are used to select only the sports reports in counts using

counts.loc[sr_texts]. The same procedure is used to create

a subcorpus of the non-sports reports texts using the ~ at the start of ~c.

register.eq('sr') to indicate that all rows where register does not

equal ‘sr’ should be selected.

In step 7, d values are found using apply(). As in step 5, an anonymous

function is given toapply(), but the underlying logic is a bit more complex than

it was in step 5. Each column of sports is passed into the anonymous function

where it is assigned to the variable col. Then, col is passed to the cohen()

function along with the column of others that has the same name as col.

So, for example, when the proper nouns column of sports is passed into the

anonymous function, it, along with the proper nouns column in others, is
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passed into cohen(). The cohen() function finds the standardized mean

difference between the two columns and returns it to the anonymous function,

which aggregates the results of calling cohen() on every pair of columns in the

twoDataFrames into a singleDataFrame and assigns it the nameresults.

One might reasonably wonder why we cannot just use cohen() with

apply(). We can, but doing so would require writing the cohen() function

to extract the appropriate column from others. This is possible, but creates

more convoluted code than the anonymous function.

At last, in steps 8 and 9, rows with d values between -.2 and .2 are filtered out

and the remaining values are written to a file and displayed to the console.

The results here align well with the results of Egbert and Biber (2023)‘s first

case study, though some magnitudes of d are higher in their study (proper nouns,

third-person pronouns, and nominalizations). No doubt this is due to differ-

ences in operationalization of grammatical features, as well as differences in

tokenization, part-of-speech tagging, and counting. The version of CORE

used in their study was tokenized and tagged by the Biber Tagger (Biber &

Egbert, 2018, pp. 21–22), while the dataframe version used here was token-

ized and tagged using the spaCy Python package. More on tokenizing and

tagging is found in Section 5.

The algorithm in this section focuses on producing per-text, normalized

frequency counts for grammatical features. While the application here is KF

Analysis, per-text frequencies are necessary for more complex text-linguistic

procedures like multidimensional analysis as well.

Explore on your own!

1) In the preceding algorithm, premodifying nouns are operationalized as

tokens with noun tags that occur in rows before tokens with noun tags.

Use the concordance algorithm to examine a subset of noun-noun

sequences and estimate the effectiveness of this operationalization.

Can it be improved?

2) CORE is annotated with a subset of POS tags in the Penn Treebank

tagset and the Universal Dependency Project tagset. Investigate these

tagsets and try to write code to count gerunds, present tense verbs, and

prepositional phrases. Add these to your algorithm. How do they line

up with the other features?

3) Strength of association between a collocate and node can be calculated

using Cohen’s d. Create a list of collocates of misinformation in news

by calculating the mean rate at which each word type occurs in the

node word’s context windows across texts and subtracting the mean
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rate at which each word type occurs outside the node word’s context

windows. Then divide by the pooled standard deviation. Compare

these collocates to the list created using logDice. Do they overlap?

Does one appear superior?

4.7 Conclusion

The algorithms in this section are designed with two goals in mind: to provide

examples of authentic corpus linguistic analyses with Pandas dataframe cor-

pora, and to provide a set of foundational algorithms that can be extended to

novel situations, research goals, and statistical procedures. Thus far, however,

we have worked exclusively with CORE. The procedures described here are not

useful if they can only be applied to a handful of prebuilt corpora. The next

section, therefore, describes methods for creating dataframe corpora.

5 Creating Dataframe Corpora

The examples in previous sections use a version of CORE that has already been

converted to a DataFrame. To work with a different corpus, it is necessary to

transfer it into a DataFrame format. This process will vary depending on file

formats, metadata, and annotations.

The algorithms in this section use the spaCy natural language processing

pipeline for tokenizing, part-of-speech tagging, and lemmatizing (Honnibal,

2020). It should be noted that there is some danger in reliance on third-party

libraries such as spaCy (and Pandas!). The inner workings of these libraries are

often hidden from the analyst who must trust that the library is producing the

results that they expect. Additionally, by using these libraries, analysts lose

some control over their algorithms. For example, by default, spaCy applies

POS-tags from the Penn Treebank tagset, so analysts using this library must

align their research goals with what is possible given that tagset. The accuracy

rates (e.g., precision and recall) are also not always readily available or

obscured behind averages. Arguably, however, the benefits outweigh the draw-

backs. By using established, professionally written and maintained libraries,

analysts not only write code in less time, but may also worry less about bugs or

conceptual errors.

To create a dataframe corpus from files, it is necessary to list files in

a directory, read data from those files, process and annotate these data, create

a DataFrame for the file, and then append it to a DataFrame for the corpus.

These four areas represent stages in a general algorithm for creating a dataframe

corpus. This algorithm takes a string containing the path of the corpus as input
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and produces a DataFrame corpus from the files at that location. In the

processing stage, data are read from files, tokenized and annotated, and aggre-

gated into a single corpus DataFrame file.

Memory management will be a major concern when building large dataframe

corpora from files. As such, it is advisable to build the corpus iteratively, one file

at a time. In this approach, the first file is read, processed, and converted to

a DataFrame. That DataFrame is then saved to disk in CSV format and the

memory that it was occupying released. The next file is then read, processed,

and appended to the file on disk. Appending to the end of a .csv file does not

require Python to read the entire file into memory, so only one file at a time is

taking memory resources and the only practical limit on the size of the corpus is

available disk space.

At the end of this process, however, the corpus will exist as a large .csv file.

For some corpora, this will be fine, but for others, the builder may want to

reduce the memory footprint further by reading the corpus from the .csv file,

converting the datatype of its columns to category, rewriting the corpus to

disk in a more efficient format, and then deleting the CSV version.

Putting all this together, the general algorithm for creating a dataframe corpus

from files is as follows.

Input

1. Load libraries, set constants, and create an empty DataFrame for the

corpus.

2. Get a list of files to process.

Processing

3. Iterate over the list of files. For each file

1. read text,

2. tokenize and annotate the text,

3. create a DataFrame for the file, and

4. append the file DataFrame to the corpus DataFrame.

Output

4. Restructure the corpus DataFrame file to reduce memory requirements.

Much of the algorithm can be accomplished with functions and datatypes that

have already been introduced, but not all. Some steps will vary from corpus to

corpus, so the algorithm must be adapted to account for the unique
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characteristics of each corpus. Step 3.1, for example, will vary based on the

format of the data being processed. However, so long as the data can be coerced

into strings of text with no markup, the rest of the algorithm will produce fully

annotated text without further modification. Similarly, step 3.2 will vary

depending on the extent to which the text is already processed and annotated.

In the following sections, procedures are explained for tokenizing and anno-

tating text using spaCy, opening and reading text from files, and listing files in

a directory based on conditions. These are then combined into a single algo-

rithm for constructing a dataframe corpus from text files. As we are constructing

a new corpus, we will not use CORE in this section, but instead turn to the open

portion of the American National Corpus (OANC; Ide & Suderman, 2004),

which may be downloaded from www.anc.org/data/oanc/download/.

5.1 Tokenizing, POS-Tagging, and Lemmatizing with spaCy

Up-to-date instructions for installing and using spaCy may be found at https://

spacy.io/. In most cases, however, users should be able to install spaCy from the

command line (on a Windows computer, press Windows Key + r and then type

“cmd”). Open a command-line interface and type

pip install spacy

Once spaCy (and the other packages it requires) have been installed, one or

more language models must be downloaded. This can also be done at the

command line using

python -m spacy download

followed by the name of the model. spaCy has several models available for

many languages. We will use the en_core_web_sm model in the following

algorithm. This model is English (en), one of spaCy’s core models, trained on

web data, and it is the small (sm) version. To download this model, type the

following at the command line:

python -m spacy download en_core_web_sm

All code in this Element will run with spaCy version 3.0 or higher, but if pip

is used to install spaCy, the most recent version available for your version of

Python will be installed automatically. Similarly, if you use python -m

spacy download to install a language model, spaCy will ensure that you

have the right model installed for your version of spaCy.
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With spaCy installed, it can be imported like other packages (note that the

package name is lowercase despite its usual irregular capitalization).

import spacy

Before the package can be used, a language model must be loaded with spacy.

load(). This method takes the name of a spaCy model as input (as str) and

returns a spaCy language object, which we call nlp. Consider nlp a variable

with properties and methods necessary to tokenize and annotate text.

nlp = spacy.load('en_core_web_sm')

We can process text by invoking nlp as a function and passing it a str with

the text we wish to process. Invoking nlp in this way returns a spaCy doc

(document). The doc functions like a list of spaCy tokens – one for each

token in the text. Each spaCy token contains properties for the token itself

(text) as well as its lemma (lemma_), Penn Treebank tag (tag_), Universal

Dependency Project tag (pos_) and more. Consider the following code.

doc = nlp('Call me Jonah. '

'My parents did, '

'or nearly did. '

'They called me John.')

for t in doc:

print(t.text, t.tag_, t.lemma_)

Call VB call

me PRP I

Jonah NNP Jonah

. . .

My PRP$ my

parents NNS parent

did VBD do

,,,

or CC or

nearly RB nearly

did VBD do

. . .

They PRP they

called VBD call

me PRP I

John NNP John

. . .
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Here, we create a doc from a string using nlp. Then we iterate over doc using

a for loop. On each iteration of the loop, the variable t is assigned the value of

the next token in doc, and we print some of the annotations the pipeline has

applied to that token. This process can be streamlined with the use of list

comprehensions. All values of tag_, for example, can be extracted using

tags = [t.tag_ for t in doc]

tags

['VB',

'PRP',

'NNP',

'.',

'PRP$',

'NNS',

'VBD',

',',

'CC',

'RB',

'VBD',

'.',

'PRP',

'VBD',

'PRP',

'NNP',

'.']

A DataFrame can be constructed from a doc by extracting each type of

metadata as a list and then passing those lists into the DataFrame() function

as a dict with column names as keys and the lists as values.

tokens = [t.text for t in doc]

tags = [t.tag_ for t in doc]

lemmas = [t.lemma_ for t in doc]

c = pd.DataFrame({'token': tokens,

'tag': tags,

'lemma': lemmas})

c.head()

token tag lemma
0 Call VB call
1 me PRP I
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2 Jonah NNP Jonah
3 . . .
4 My PRP$ my

This is all that is necessary for basic annotations, but spaCy provides additional

types of information that may be added to the corpus, depending on the analyst’s

goals. Refer to https://spacy.io/api/token for more details.

5.2 Obtaining a List of Files in the Corpus

The listdir() function in the os namespace can be used to obtain a list of

all the files in a directory. listdir() takes a string with the path of a folder as

input and produces a list of strings, each of which is the name of a file in the

directory. These filenames can be combined with the directory path using the

join() function (from os.path). The folowing code uses a list comprehen-

sion to create a list of full paths for the files in the corpus directory.

filenames = listdir(path)

filepaths = [join(path, filename) for filename in filenames]

Here, a list of filenames is generated using listdir(). Then each filename is

joined to the path for the root directory in the list comprehension. These two

lines may alternatively be combined into a single list comprehension.
filepaths = [join(path, filename) for filename in listdir(path)]

It is also possible to only extract certain filetypes using an if conditional. The

following code, for example, produces a list of files with .txt extensions (the

list comprehension is broken across lines to aid readability).

filepaths = [join(path, filename)

for filename in listdir(path)

if filename.endswith('.txt')]

listdir()works when all the corpus’ files are in a single folder with no nested

subfolders.

root folder

↳1.txt

↳ file 2.txt

↳ file 3.txt

However, many corpora are stored with multiple levels of nesting.

root folder

↳ written

↳ fiction

↳ file 1.txt

↳ file 2.txt
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↳ academic

↳ file 3.txt

↳ file 4.txt

↳ spoken

↳ file 5.txt

↳ file 6.txt

Getting a list of full filepaths from a directory tree like this one is more

complicated, but Python provides functions for doing this. One is walk() in

the os module. Consider the following code:

from os import walk

from os.path import join

for root, dirs, files in walk(path):

for file in files:

print(join(root, file))

The two for loops iterate over every file in the directory tree. It is possible,

therefore, to retrieve a list of all files in the tree using a list comprehension with

the same two for loops.

all_files = [join(root, file)

for root, dirs, files in walk(path)

for file in files]

Often, we want to look at every file in the directory walk, but not actually

include many of them in the final list of filenames. This can be accomplished by

setting conditions in the list comprehension.

txt_files = [join(root, file)

for root, dirs, files in walk(path)

for file in files

if file.endswith('.txt')]

Adding if file.endswith('.txt') to the end of the comprehension

ensures that only text files will be included in the list of filenames.

In practice, since walk()works in any situation and listdir() does not,

it is generally preferable to use walk(). If valuable metadata about the file is in

the directory structure (e.g., files containing spoken language are in a directory

called spoken), this information can be extracted from root.

5.3 Creating a Corpus from Text Files

Before moving to the next algorithm, make sure you have downloaded and

extracted the files of the OANC. To use the corpus, download and unpack the

zip file to your working directory (the root folder should be called “data”). Note
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that the corpus contains text files as well as several XML files containing

metadata. In the following algorithms, we will be working with only the text

files. The metadata files can be used to create a second metadata DataFrame

keyed to the texts’ IDs. Doing so, however, is outside the scope of this Element.

The input is a string containing the directory where the corpus files are

located, and the output is a DataFrame corpus. As with the general algorithm

introduced at the start of this section, processing broadly involves getting a list

of files and then iterating over this list – reading each file, tokenizing and

annotating it, and then appending it to the corpus’ DataFrame.

In more detail, the algorithm includes the following steps.

Input

1. import packages and functions.

2. Set the path to the corpus files.

3. Create spaCy nlp.

4. Create an empty DataFrame.

Processing

5. Obtain a list of filenames that end in txt.

6. Iterate over the list of filenames.

1. Open the file and read its content into text.

2. Tokenize and annotate the text using nlp.

3. Extract all annotations.

4. Create a DataFrame for the text.

5. Append the text to the corpus DataFrame.

6. Delete the text DataFrame to free resources.

7. Read the full corpus from disk; reset the categories.

Output

8. Rewrite the corpus to disk in compressed format.

9. Delete the temporary version of the corpus.

And now in Python:

# 1. import packages and functions

import spacy

import pandas as pd

from os import walk, remove

from os.path import join, basename
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# 2. set path to data

path = "data"

# 3. create nlp

nlp = spacy.load('en_core_web_sm')

# 4. create an empty DataFrame

pd.DataFrame(columns=['token', 'type', 'lemma',

'tag', 'pos', 'text']).\

to_csv('temp.csv', index=False, sep='\t')

# 5. obtain a list of filenames that end in txt.

filenames = [join(root, file)

for root, dirs, files in walk(path)

for file in files

if file.endswith('.txt')]

# 6. iterate over the list of filenames

for filename in filenames:

# 6.1. open the file and read its content into text

with open(filename, encoding='utf-8') as f:

text = f.read()

# 6.2. tokenize, annotate text

doc = nlp(text)

# 6.3. extract annotations from doc

tokens = [t.text for t in doc]

types = [t.text.lower() for t in doc]

lemmas = [t.lemma_ for t in doc]

tags = [t.tag_ for t in doc]

poss = [t.pos_ for t in doc]

texts = [basename(filename) for t in doc]

# 6.4. create a DataFrame for the text

df = pd.DataFrame({'token': tokens,

'type': types,

'lemma': lemmas,

'tag': tags,

'pos': poss,

'text': texts}, dtype='category')
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# 6.5. append the text to the corpus DataFrame

df.to_csv('temp.csv', mode='a', header=False,

index=False, sep='\t')

# 6.6. delete the text DataFrame to free resources

del df

# 7. read the full corpus from disk; reset categories

oanc = pd.read_csv('temp.csv',

dtype='category',

keep_default_na=False,

sep='\t')

# 8. write the corpus as a pickle

oanc.to_pickle('oanc.pickle')

# 9. delete the csv version of the corpus

remove('temp.csv')

In steps 1–3, packages are imported, the path of the root directory is set, and the

spaCy nlp object is created. In step 4, an empty DataFrame is created, but

not assigned to any variable. It has no rows, but columns named ‘token’, ‘type’,

‘lemma’, ‘tag’, ‘pos’, and ‘text’. This dataframe is immediately written to a .csv

file called “temp.csv”. The index argument is set to False to prevent problems

when we later append other dataframes to it. Step 5 obtains a list of files in the

corpus that end in “.txt” using the walk() function described earlier. Step 6

begins a loop that iterates over the list of filenames.

Step6.1 deserves additional explanation as twonew features are introducedhere–

the with . . . as syntax and the open() function. with open(filename,

encoding='utf-8') as f: opens a file and assigns it to the variable f.
with . . . as instructs Python to open the file with a context manager. Context

managers keep the variables they manage (specified after as) in memory only

long enough to execute the block of code that follows the with statement.

Using with . . . as before the creation of f ensures that the file will be closed,

and the resources allocated to it released at the end of the code block. It is a good

rule of thumb to use context managers to manage variables that connect to

a resource outside Python itself (e.g., databases or files). This is not necessary

when we read a Pandas DataFrame from a file, however, because Pandas

handles opening and closing connections to files.

101Programming for Corpus Linguistics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
11

08
90

40
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781108904094


In these lines, a context manager is used with the open() function to create

a connection to a file. That connection is stored in the variable f. The text of the

file is then read using f's read() function. The argument encoding='utf-

8' in the open() function tells the read() function to treat the data it reads as

encoded with Unicode using UTF-8 (8-bit Unicode Transformation Format),

a widely used, platform-independent encoding scheme.

A substantive discussion of text encoding is not desirable here; suffice it to

say that a text file’s encoding is the scheme that maps ones and zeros to letters,

numbers, punctuation marks, emoji, and everything else. Selecting the wrong

encoding may result in text artifacts or unreadable characters. It is thus crucial

that the encoding scheme is properly specified for the file that is being read.

In step 6.2, the text of the file is tokenized, annotated, and stored in doc. Then

in steps 6.3 and 6.4, the tokens and annotations are extracted and transformed

into a DataFrame. In step 6.5, the DataFrame for the file is appended to the

one created in step 4. The mode='a' argument instructs Python to append the

dataframe to the end of the file instead of overwriting it (the normal behavior).

As the file already contains a header (the names of the columns),

header=False is also passed to the function to prevent it from writing new

headers for each new text in the corpus. Finally, index=False is included as

an argument to simplify aligning the full corpus later.

In step 6.6, the DataFrame for the text (df) is deleted. This frees up the

memory it was occupying for the next text. Then, in steps 7 and 8, the .csv file for

the full corpus is read into memory and its columns’ datatypes set to 'cat-

egory'. Note that in step 7, the argument keep_default_na=False is

passed to the read_csv() function. Without this argument, Pandas will treat

cells in the .csv file with values such as “null”, “none”, and “NA” as None type

data instead of words. In steps 8 and 9, the corpus is rewritten to disk as a pickle

file and temp.csv deleted.

The corpus is now ready for use, but if you load it and examine the head, you

will encounter an oddity.

oanc = pd.read_pickle('oanc.pickle')

oanc.head()

token type \

0 \n \n \n \n \n \n \n \n

1 All all

2 right right

3 , ,

4 this this
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lemma tag pos text

0 \n \n \n \n _SP SPACE AdamsElissa.txt

1 all RB ADV AdamsElissa.txt

2 right RB ADV AdamsElissa.txt

3 , , PUNCT AdamsElissa.txt

4 this DT PRON AdamsElissa.txt

The first token in the corpus is a line of four newline characters (\n). Many of

the algorithms in this Element assume that every token in the corpus is a word or

punctuation mark, not whitespace. This is not an error, though. As the name

suggests, spaCy retains information about whitespace when it tokenizes texts

and treats some strings of whitespace as tokens. This can be useful when

working with corpora where whitespace is linguistically meaningful (by e.g.,

delimiting speaker turns or indicating long pauses), as it is in the OANC, so it is

not always desirable to filter these tokens out. If they are not useful for your

analyses, however, they can be removed with

oanc = oanc.loc[~oanc.tag.eq('_SP')]

oanc = oanc.apply(

lambda col: col.cat.remove_unused_categories())

oanc.to_pickle('oanc.pickle')

5.4 Conclusion

While the example algorithms in this section create dataframe corpora from text

files, they can be applied to corpora in a wide range of common formats

including data interchange formats like Java Script Object Notation (.json)

and other markup languages like XML. By modifying the annotation step to

use other spaCy annotations or annotations from other tools, a wide range of

metadata types can be added. The basic example here is the key to creating

dataframe corpora of many types.

Conclusion

Representing corpora in dataframes allows analysts to use dataframemethods to

complete CL tasks. By combining these methods, it is possible to quickly

produce simple, yet powerful and flexible scripts. The algorithms presented in

previous sections cover several common analyses that may provide foundations

for more complex tasks.

Analysts looking to go beyond the algorithms here have several options.

Those interested in making their code more efficient may wish to learn more
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about algorithms (see, e.g., Hetland, 2014; Lee & Hubbard, 2015). Those

interested in reusing algorithms or distributing their work may wish to learn

more about object-oriented programming (see, e.g., Anthony, 2020). Brezina

(2018) presents an excellent introduction to statistics in corpus linguistics with

formulae and procedures that are readily adaptable to the algorithms in this

Element.
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