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Nagata in [3] defined strongly countable-dimensional spaces which are the countable
union of closed finite-dimensional subspaces. Walker and Wenner in [7] characterized
such metric spaces as follows: a space X is a strongly countable-dimensional metric space
if and only if there exists a finite-to-one closed mapping of a zero-dimensional metric
space onto X with weak local order.

In this paper, we consider strongly countable-dimensionality for the class of n-spaces
in the sense of Nagami [5] and show that the above characterization is generalized to this
class. To begin with, we give the definition of a mapping with weak local order, which is
introduced in [7]. A mapping / : X—» Y is called to have weak local order if for each point
y s Y there exist a point x e f (y), an open neighborhood U of x and a positive integer n
such that o rd / | C/<n. All spaces are assumed to be Hausdorff and all mappings to be
continuous and onto. N always denotes the set of all positive integers. An open collection
of a space X means a collection of open sets of X. For a point p of a space X and for a
collection % of sets of X we denote by ordp °U the largest integer n such that there exist n
members of °U, which contain p, and denote sup{ordp %:peX} by ord °U.

LEMMA 1. Let X be a hereditarily collectionwise normal space. Then X satisfies the
following (a):

(a) Let F be a closed subspace of X and 3d — {Ha: a e A} a collection of pairwise
disjoint open sets of F. Then there exists a collection W = {H'a:a e A} of pairwise disjoint
open sets of X such that

a Ha, aeA.

Proof. Observe that dK is a discrete collection of closed sets of the subspace

X' = \J{Ha:aeA}U(X-F).

Since X' is collectionwise normal, there exists a collection ffi = {H'a :aeA} of pairwise
disjoint open sets of X', and hence of X, such that Ha c H'a, aeA. This implies

H'aKF = Ha, aeA.

LEMMA 2. Let X be a hereditarily collectionwise normal space. Then X satisfies the
following (/3):

(/3) Let F be a closed subspace of X and 'X = {Ha :aeA} an open cover of F with
ord W<m, where meN. Then there exists an open collection <$ = {Ga :aeA} of Xcovering
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F such that

, aeA,

m(m + l)

Proof. We shall prove (/3) by induction on m. Consider the case m = 1. In this case, 2£
is a collection of pairwise disjoint open sets of F. By Lemma 1, there exists a collection
"S = {Ga : a e A} of pairwise disjoint open sets of X with the required property. Thus (/3) is
true for m = l. Assume that the theorem is true for all open covers with ord^m of a
closed subspace of X. Let $? = {Ha : a e A} be an open cover of F with ord "E < m +1. Let

BnW,aeB}, BeA*.

Then {HB : B e A*} is a collection of pairwise disjoint open sets of F. Therefore by Lemma
1 there exists a collection {GB :BeA*} of pairwise disjoint open sets of X such that

GBnF = HB, Be A*.

Let Fo be the set of all points x of F such that

|{a e A : x e / 4 } | < m.

Then Fo is closed in F, and hence in X. Since {Fo n Ha : a e A} is an open cover of Fo with
ord < m, by the induction assumption there exists an open collection M = {Ma : a e A} of X
such that

m(m

Set
Ga=MaU(U{GB:aeB}), aeA,

Then each Ga is an open set of X such that Ga C\ F = Ha. We shall show that ord ^ <
(m + l)(m +2)/2. Let p be an arbitrary point of X. Since {GB :BeA*} is pairwise disjoint,
there exists at most one Be A* such that peGB. Set

K = {aeA:peMa}, K' = K\JB.
Then we have

m(m + l) (m + l)(m + 2)
| K | ^ + m + l = .

Since peGa, aeA implies aeK', we have ord ($<(m + l)(m + 7)12. This completes the
proof.
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LEMMA 3. Let X be a hereditarily collectionwise normal space. If X is a strongly
countable-dimensional space such that for a closed cover {Fk : fc e N},

oo

X = U Fk, dimFk=£nk<oo, keN,
k = i

then for every locally finite open cover °U of X there exists an open cover Y of X such that Y
is a refinement of "U and

o r d p y < N k if peFk, fce/V,

where

^ ^ fa + Dfa+2) , . NrNk = m, + . . . + mk, mf = , k, leN.

Proof. Let k be an arbitrary fixed number. By [6, Th. 4.3, p. 132] there exists an open
cover %k ={Ua :ae A} of the subspace Ffc satisfying

aUk<% o r d % k < n k + l.

By Lemma 2 and its proof, there exists an open collection aU'k = {U'a:ae A} of open sets
of X such that

U'aC\Fk = Ua, a 6 A, aU'k<%

2)
=mk.

Set

k - 1

Then Yk is an open cover of Fk - U F, in X satisfying

Yk<°U,
oo

ordp yk < mk if p e (J F(,

ordp 7 k = 0 if p 6 U F,.
1 = 1

Set
oo

Y= 11 rt
r \_J r k*

k = l

Then V is an open cover of X such that

F < m, + . . . + mk = Nk if p e Fk,
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This completes the proof.

Note that from the above proof, we can take V to be locally finite in X.

LEMMA 4. Let f be a mapping of a hereditarily collectionwise normal, totally normal
and strongly countable-dimensional space X onto a metric space Y. Then there exist
mappings g, h such that g is that of X onto a strongly countable-dimensional metric space Z
and h is that of Z onto Y such that f = hg.

Proof. Let
oo

X=\jFk, dim Fk <: nk « » , ieN,

where each Fk is closed in X. Since Y is a metric space, there exists a sequence {% :ieN}
of locally finite open covers of Y such that mesh%f < 1/i for each i e N. By induction and
by virtue of Lemma 3 we can define a sequence {Vt-.ie N} of locally finite open covers of
X satisfying the following:

(1) Tj+i is a star-refinement of Vi/\f~*(%), ueN,
(2) ordp Yi<Nk if p e Fk, k e N, ieN,

where Nk is the number defined in Lemma 3. For this {yj, construct X', i:X—*X',
f:X'-> Y, Tf, Wh [x], g : X -> Z and h : Z -» Y by the same method as in the proof of
[1, Theorem 4.2.5]. Then the mappings g:X—>Z and h:Z^>Y have the required
properties. Since {V( :ieN} is easily seen to be a sequence of open covers of Z satisfying
the following:

(3) {W;} is a development of Z,
(4) ord[p] Wt <Nk for i e N if p e g(Fk), keN.
(5) Wi+l is a star-refinement of W{ for each ieN.

By [3, Theorem 5.3] Z is a strongly countable-dimensional metric space. This completes
the proof.

Of course it follows easily that if / is one-to-one, then so are both of g and h.
Let p:X—»X be a one-to-one mapping of a space X onto a metric space X and

g : Y ^ X a mapping of a metric space Y onto X. Construct the subspace Z of X x Y as
follows:

Z = {(x,y)GXxY:pOc) =

Let f:Z^>X and a:Z~^ Y be the restrictions to Z of the projections.

LEMMA 5. Let f, g be the same mappings stated above. (1) If g is a perfect mapping,
then so is f. (2) / / g is finite-to-one, then so is f. (3) / / g has weak local order, then so does f.

Proof. (1) and (2) follow from the argument of [6, Lemma 5.13, p. 293]. To see (3),
let x be an arbitrary point of X. Since g has weak local order, there exist a point
a e g~\p(x)), its open neighbourhood U and n e N such that ord g | U^n. Let
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where <x is a mapping stated above. Then V is an open neighborhood of z in Z such that
ord / | V < M . Hence / has weak local order.

THEOREM. Let <€ be the class of all ^-spaces and Xe<S. Then X is a strongly
countable-dimensional space if and only if there exists a closed, finite-to-one mapping from
Z e ^ with dim Z < 0 onto X with weak local order.

Proof. Only if part is proved by the argument parallel to that of the proof of [2,
Th.l], and therefore we describe the outline. Let X be a strongly countable-dimensional
ju.-space. Then it is seen that X is the inverse limit of a sequence {Xi; gj}, where each Xh

i >2, is a paracompact cr-metric space with (Xb gi) as its replica in the sense of [4]. Each
projection & : X —»Xf is a one-to-one mapping. By virtue of Lemma 4, there exist
one-to-one mappings h, :X—» Yt and fc,: Y, —*X̂  such that Yv is a strongly countable-
dimensional metric space and g1 = k1h1. For each i>2 , construct the subspace Yf of
Xf x Y, by

Yi={(x,y)eXixY1:g'1(x) =

Let fc;: Y; —» X( and h\ :Yi^Yi be the restrictions of the projections. Each Y( is strongly
countable-dimensional because Yj is so and (Y1; h\) is the replica of Yf, [4, Th. 6]. For
each pair i, j with i>j, h) is defined by h) = (h\)~xh\. Since Y, has the base

{kj\U) n (h[)-\V): U, V are open in Xh Y1; respectively},

h] is continuous. It follows from this that X is homeomorphic to lim{Yi, ft)}, where each

Yj, i>2 , is a strongly countable-dimensional paracompact cr-metric space. Thus we can
write X = lim{Yj, h)}, By the theorem of Walker and Wenner, there exists a closed, finite-
to-one mapping /, of a zero-dimensional metric space Z, onto Y, with weak local order.
By the similar way to the construction of Yf and h}: Y,—> Yj from Xb Yu g\ and k, we
define a zero-dimensional paracompact cr-metric space Zt and mappings m): Z, —> Zj; i >j.
Let Z = lim{Zi, mj). Then Z is a zero-dimensional n-space. Let / : Z —> X be defined by

x = (xi)eZ.

Then / is similarly shown to be a closed, finite-to-one mapping of Z onto X, [2, Th. 1].
Since /f has weak local order by Lemma 5, (3) and m) is one-to-one, it is easily seen that /
has weak local order. This completes the proof of the only if part. Since the if part is
proved by the same argument as in the proof of [7, Th. 2]. Thus we complete the proof.

Nagata called a space X countable-dimensional if X is the countable union of
zero-dimensional subspaces, and proved the following, [3]:

THEOREM. Let <£ be the class of all metric spaces and Xe^. Then X is countable-
dimensional if and only if there exists a closed, finite-to-one mapping of a zero-dimensional
space Ze^ onto X.

The author does not know whether this holds or not for the class of all /x-spaces.
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