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Nagata in [3] defined strongly countable-dimensional spaces which are the countable
union of closed finite-dimensional subspaces. Walker and Wenner in [7] characterized
such metric spaces as follows: a space X is a strongly countable-dimensional metric space
if and only if there exists a finite-to-one closed mapping of a zero-dimensional metric
space onto X with weak local order.

In this paper, we consider strongly countable-dimensionality for the class of w-spaces
in the sense of Nagami [S] and show that the above characterization is generalized to this
class. To begin with, we give the definition of a mapping with weak local order, which is
introduced in [7]. A mapping f: X — Y is called to have weak local order if for each point
y € Y there exist a point x € f~'(y), an open neighborhood U of x and a positive integer n
such that ord f| U=n. All spaces are assumed to be Hausdorff and all mappings to be
continuous and onto. N always denotes the set of all positive integers. An open collection
of a space X means a collection of open sets of X. For a point p of a space X and for a
collection AU of sets of X we denote by ord, U the largest integer n such that there exist n
members of % which contain p, and denote sup{ord, % : p € X} by ord 4.

LemMma 1. Let X be a hereditarily collectionwise normal space. Then X satisfies the
following (a):

(a) Let F be a closed subspace of X and # ={H,:ac A} a collection of pairwise
disjoint open sets of F. Then there exists a collection ' ={H_:a € A} of pairwise disjoint
open sets of X such that

H.NF=H,, acA.
Proof. Observe that # is a discrete collection of closed sets of the subspace
X' =U{H,:ae A}U(X—F).

Since X' is collectionwise normal, there exists a collection #' ={H_,:a € A} of pairwise
disjoint open sets of X', and hence of X, such that H, « H., o € A. This implies

H,NF=H,, acA.

LemMA 2. Let X be a hereditarily collectionwise normal space. Then X satisfies the

following (B):
(B) Let F be a closed subspace of X and # ={H,:ac A} an open cover of F with
ord # =< m, where m € N. Then there exists an open collection § ={G, :a € A} of X covering
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F such that
G.,NF=H,, acA,

m(m+1)

d¥4 =<
ord%4 2

Proof. We shall prove (8) by induction on m. Consider the case m = 1. In this case, #
is a collection of pairwise disjoint open sets of F. By Lemma 1, there exists a collection
4 ={G, :a € A} of pairwise disjoint open sets of X with the required property. Thus (8) is
true for m =1. Assume that the theorem is true for all open covers with ord=m of a
closed subspace of X. Let # ={H, :a € A} be an open cover of F withord ¥ =m +1. Let

A*={Bc A:|B|=m+1},
Hy=N{H,:acB}, BeA*

Then {Hg : B€ A*} is a collection of pairwise disjoint open sets of F. Therefore by Lemma
1 there exists a collection {Gg : B € A*} of pairwise disjoint open sets of X such that

Gg NF=Hy, BeA*,
Let F; be the set of all points x of F such that
Hae A:xeHl=m.

Then Fy is closed in F, and hence in X. Since {F;MN H, :a € A} is an open cover of F, with
ord = m, by the induction assumption there exists an open collection M ={M, :a € A} of X
such that

M,NF,=F,NH, «acA,

ord g <Mm+1)

Set
G, =M, U(UJ{Gg:acB)}), acA,
4={G,:acA}.
Then each G, is an open set of X such that G, N F=H,. We shall show that ord 4 =<

(m+1)(m+2)/2. Let p be an arbitrary point of X. Since {Gg : B € A*} is pairwise disjoint,
there exists at most one B € A* such that p e Gg. Set

K={acA:peM,}, K'=KUB.
Then we have

+ + +2
|K"Sm(m 1)+m+1=(m 1)("1 )
2 2
Since pe G,, a € A implies @ € K', we have ord 4 <(m +1)(m +2)/2. This completes the

proof.
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LemMMA 3. Let X be a hereditarily collectionwise normal space. If X is a strongly
countable-dimensional space such that for a closed cover {F, :k € N},

X=U F, dim F, = n, <, keN,
k=1
then for every locally finite open cover U of X there exists an open cover V' of X such that V'
is a refinement of U and
ord, V=N, if pekF, ke N,
where
_ (m + 1)(m; +2)
2 3
Proof. Let k be an arbitrary fixed number. By [6, Th. 4.3, p. 132] there exists an open
cover U, ={U, :a € A} of the subspace F, satisfying
U, <, ord U, =n, +1.

Ne=m+...+m, m; k,ieN.

By Lemma 2 and its proof, there exists an open collection U, ={U.:a € A} of open sets
of X such that

Uc,ansza: (XEA, oullc<ou>

(e +1)(m +2) _

ord¥U; = 2 M.

Set
k—1
ve={oun (-0 F)-aea)

i=1

k—1
Then ¥, is an open cover of F, — |J F; in X satisfying
i=1

Vie<uU,

ord, Vi=m, it peUF,
=k

1
k—1
ord, Vi, =0 if pe U F.

i=1

Set
V: U Vk-
k=1

Then V' is an open cover of X such that

V<,
OrdeSm|+...+mk=Nk if pEFk, kEN
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This completes the proof.
Note that from the above proof, we can take V' to be locally finite in X.

LemMA 4. Let f be a mapping of a hereditarily collectionwise normal, totally normal
and strongly countable-dimensional space X onto a metric space Y. Then there exist
mappings g, h such that g is that of X onto a strongly countable-dimensional metric space Z
and h is that of Z onto Y such that f = hg.

Proof. Let

X=U F, dim F, =n, <o, i €N,

where each F, is closed in X. Since Y is a metric space, there exists a sequence {U; :i € N}
of locally finite open covers of Y such that mesh; < 1/i for each i € N. By induction and
by virtue of Lemma 3 we can define a sequence {V;:i<c N} of locally finite open covers of
X satisfying the following:

(1) V;,, is a star-refinement of V;Af "(U;), ueN,

(2) ord, Vi=N, if peF, keN, ieN,
where N, is the number defined in Lemma 3. For this {¥;}, construct X', i: X — X',
f: X =Y, Vi W,[x], g:X—Z and h:Z — Y by the same method as in the proof of
[1, Theorem 4.2.5]. Then the mappings g: X —Z and h:Z — Y have the required
properties. Since {W; :i € N} is easily seen to be a sequence of open covers of Z satisfying
the following:

(3) {W;} is a development of Z,

(4) ord,; Wi =N, for ieN if peg(F,), keN.

(5) Wi, is a star-refinement of W; for each ie N.
By [3, Theorem 5.3] Z is a strongly countable-dimensional metric space. This completes
the proof.

Of course it follows easily that if f is one-to-one, then so are both of g and h.

Let p: X — X be a one-to-one mapping of a space X onto a metric space X and
g:Y— X a mapping of a metric space Y onto X. Construct the subspace Z of XX Y as
follows:

Z={(x,y)e XxY:p(x)=g(y)}

Let f:Z— X and 0:Z— Y be the restrictions to Z of the projections.

LEMMA 5. Let f, g be the same mappings stated above. (1) If g is a perfect mapping,
then so is f. (2) If g is finite-to-one, then so is f. (3) If g has weak local order, then so does f.

Proof. (1) and (2) follow from the argument of [6, Lemma 5.13, p. 293]. To see (3),
let x be an arbitrary point of X. Since g has weak local order, there exist a point
acg '(p(x)), its open neighbourhood U and ne N such that ord g| U=n. Let

V=0""U), z=0Ya)e Z,
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where o is a mapping stated above. Then V is an open neighborhood of z in Z such that
ord f| V=n. Hence f has weak local order.

THEOREM. Let € be the class of all w-spaces and Xe 4. Then X is a strongly
countable-dimensional space if and only if there exists a closed, finite-to-one mapping from
Z €€ with dim Z=0 onto X with weak local order.

Proof. Only if part is proved by the argument parallel to that of the proof of [2,
Th.1], and therefore we describe the outline. Let X be a strongly countable-dimensional
p-space. Then it is seen that X is the inverse limit of a sequence {X;, gj}, where each X,
i=2, is a paracompact o-metric space with (X, g}) as its replica in the sense of [4]. Each
projection g;: X — X; is a one-to-one mapping. By virtue of Lemma 4, there exist
one-to-one mappings h,: X — Y, and k;:Y; — X such that Y; is a strongly countable-
dimensional metric space and g; = k,h,. For each i=2, construct the subspace Y; of
X; XY, by

Y ={(x, y) € X; x Yy :g1(x) = ki ()}

Let k;: Y; = X; and hi:Y; — Y, be the restrictions of the projections. Each Y; is strongly
countable-dimensional because Y, is so and (Y, h}) is the replica of Y;, [4, Th. 6]. For
each pair i, j with i>}, h} is defined by hi=(h})"'h}. Since Y; has the base

{k; ' ()N (hY)~Y(V): U, V are open in X,, Y, respectively},
h; is continuous. It follows from this that X is homeomorphic to lim{Y;, hj}, where each
Y, i=2, is a strongly countable-dimensional paracompact o-metric space. Thus we can

write X =1im{Y,, hj}, By the theorem of Walker and Wenner, there exists a closed, finite-

to-one mapping f, of a zero-dimensional metric space Z, onto Y, with weak local order.
By the similar way to the construction of Y; and hj: Y;— Y, from X,, Y, g} and k, we
define a zero-dimensional paracompact o-metric space Z; and mappings m;: Z, — Z;, i > .
Let Z =1lim{Z, mi}. Then Z is a zero-dimensional w-space. Let f: Z — X be defined by

f)=(fx), x=kx)eZ

Then f is similarly shown to be a closed, finite-to-one mapping of Z onto X, [2, Th. 1].
Since f; has weak local order by Lemma 5, (3) and m} is one-to-one, it is easily seen that f
has weak local order. This completes the proof of the only if part. Since the if part is
proved by the same argument as in the proof of [7, Th. 2]. Thus we complete the proof.

Nagata called a space X countable-dimensional if X is the countable union of
zero-dimensional subspaces, and proved the following, [3]:

THEOREM. Let 6 be the class of all metric spaces and X € €. Then X is countable-
dimensional if and only if there exists a closed, finite-to-one mapping of a zero-dimensional
space Z €€ onto X.

The author does not know whether this holds or not for the class of all w-spaces.
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