
22
Elastic scattering

Electron scattering studies of nuclear and nucleon structure came into their
own with the beautiful experiments at the High Energy Physics Laboratory
(HEPL) at Stanford University by Hofstadter and collaborators in the
1950’s. These experiments measured charge distributions through elastic
scattering [Ho56]. Early results throughout the periodic system from Mg
to Pb were summarized in terms of a two-parameter “Fermi model” charge
distribution

ρ =
ρ0

1 + e(r−R)/a

R = r0 A
1/3

r0 ≈ 1.07 fm

t ≈ 2.4 fm (22.1)

Here the surface thickness t is the 90% to 10% fall-off distance (t ≈ 2a ln 9).
The observed distributions are illustrated in Fig. 22.1. It is difficult to
overstate the impact of these experiments. One could actually see what
the tiny nucleus at the center of the atom looks like.1 The density of the
nuclear matter at the center of the nucleus is approximately constant from
nucleus to nucleus, as is the surface structure. As one adds nucleons, the
nucleus simply grows in size. If fact, it grows exactly as a drop of water
grows when more liquid is added to it. The volume of the nucleus is simply
proportional to the number of nucleons

V =
4

3
πR3 =

4

3
πr30 A (22.2)

1 Experiments on finite-size effects in the spectra of mu-mesic X-rays had previously

yielded good values for the nuclear mean-square radius [Fi53].
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22 Elastic scattering 183

Fig. 22.1. Approximate shapes of the charge distribution of selected nuclei,
including the proton and alpha particle. Note the change of scale for the proton.
The insert explains the Fermi model (here c ≡ R) [Ho56].

Furthermore, Hofstadter and collaborators demonstrated that the charge
distribution of the proton is of finite extent, with a root-mean-square
radius of [Ch56, Ho56]

〈r2p〉1/2 ≈ 0.77 fm (22.3)
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Fig. 22.2. Compilation of the form factors of the proton. Left: (μpG
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M(q2) with τ ≡ q2/4m2] and Gn

M/μnGD [Ba73].

This gave direct evidence that the nucleon itself is a composite structure.2

To extract accurate charge distributions in electron scattering from heavier
nuclei, one has to deal with the Coulomb distortion of the electron wave
functions, as well as other corrections [Ye65, Ra87].

Experiments on elastic magnetic scattering from the proton and neutron
demonstrated the spatial extent, and measured the spatial distribution, of

the magnetization in this (Jπ, T ) = (1
2

+
, 1

2 ) system. Free neutron targets
do not exist, so one uses the next best thing, a neutron lightly bound to a
proton in the deuteron (21H). Both quasielastic scattering where the neutron
is directly ejected, and elastic scattering, have been employed. The latter
depends more sensitively on the ground-state deuteron wave function. Of
course, the accompanying proton is not really inert, and nuclear physics
comes into play in analyzing these experiments. Nevertheless, over the
years reliable charge and magnetic form factors have been obtained for
both the proton and neutron, and a summary of the elastic form factors
for the nucleon is shown in Fig. 22.2. The Sachs form factors are defined
in terms of the Dirac form factors according to

GM(q2) ≡ F1(q
2) + 2mF2(q

2)

GE(q2) ≡ F1(q
2) − q2

2m
F2(q

2) (22.4)

The dipole form factor, to which the measured values are compared, is

2 Of course, the fact that the magnetic moments of the neutron and proton already deviate

so much from the Dirac values (chapter 19) strongly implies the same thing.

https://doi.org/10.1017/9781009290616.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.027


22 Elastic scattering 185

Fig. 22.3. Charge density for 208
82Pb. The solid curve and shaded area represent

the fit to the experimental data [He69]. Relativistic mean field theory results are
indicated by the long dashed lines [Ho81, Se86]. Some density-dependent Hartree–
Fock calculations within the traditional picture are also shown (see [Ho81] for
references).

defined by

GD ≡ 1

(1 + q2/0.71 GeV2)2
(22.5)

By showing the deviations from the phenomenological dipole form, one
can plot the form factors on an expanded scale. Note that at the time of
publication of Fig. 22.2, the charge form factor of the neutron was not
very well known at all. It is important to emphasize that even though
the neutron has no net charge, it can still have a non-uniform spatial
distribution of charge within it. One of the advantages of the Sachs form
factors is that they have a more direct interpretation in terms of the spatial
Fourier transform of the charge and total magnetic moment densities of
the nucleon [Wa59].

Theoretical understanding of the charge distribution of nuclei within the
traditional picture is based on self-consistent Hartree–Fock calculations
of nuclear ground states [Fe71, Go79, Ne82]. The most sophisticated
of these use as an interaction the local-density T-matrix calculated in
the Bruekner theory of nuclear matter [Ne82]. Relativistic mean field
theory (RMFT), described in the previous section, gives a very direct
determination of these densities with a local interaction. In Fig. 22.3 we
show the comparison of the RMFT calculation by Horowitz and Serot

https://doi.org/10.1017/9781009290616.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.027


186 Part 4 Selected examples

Fig. 22.4. As Fig. 22.3, but for 40
20Ca [Fr79, Ho81, Se86].

of the charge density of 208
82Pb and the experimental determination of

this quantity [Ho81, Wa95]. The error band on the experimental charge
distribution arises primarily from the fact that one is always measuring
only a partial Fourier transform in electron scattering, although other
effects contribute [Fr73]. It is from this figure that the density of nuclear
matter is determined [Ho81]. Figure 22.4 shows a similar result for 40

20Ca
[Ho81, Wa95]. Here the half-density radius determines the scalar mass
[Ho81]. All other nuclear charge densities are then predicted in RMFT
(see Fig. 21.5). In summary, although in a sense it is the simplest thing
one can compute [Se97], one has a good theoretical understanding of the
ground-state charge densities of nuclei.

The theoretical analysis of the elastic form factors of the nucleon pro-
ceeds most directly through the spectral representation of these quantities
[Ch58, Fe58, Dr61, Wa95]. From very general field theory principles, one
establishes that the isovector and isoscalar form factors of the nucleon
have the representations

FV
i (q2) =

1

π

∫ ∞

(2mπ)2

wV
i (σ2) d σ2

σ2 + q2
; i = 1, 2

FS
i (q2) =

1

π

∫ ∞

(3mπ)2

wS
i (σ2) d σ2

σ2 + q2
(22.6)

Here mπ is the pion mass. The thresholds in the representations in Eqs.
(22.6) are obtained by angular momentum, isospin, and charge-conjugation
considerations.

The real spectral weight functions w
S,V
i (σ2) are related to the absorptive
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22 Elastic scattering 187

part of the amplitude for a time-like virtual photon to go through an
intermediate hadronic state and then into a nucleon–antinucleon pair.
Time-like virtual photons with q = (0, iW ) can be created in the laboratory
through the process of electron–positron annihilation in the C-M system.
The process e++e− → pions can be measured experimentally for any W ≥
2mπ . The amplitude for e+ + e− → N + N̄ can be accessed experimentally
only for W ≥ 2m; for W < 2m, one needs analytic continuation.

The spectral representations in Eqs. (22.6) hold in the entire q2 plane.
The representation for the charge form factors probably requires one
subtraction [Dr61]

Fα
1 (q2) = 1 − q2

π

∫
wα

1(σ
2) d σ2

σ2(σ2 + q2)
; α = S, V (22.7)

One can readily establish that in elastic electron scattering from the
nucleon there is always one Lorentz frame, the so-called Breit (or brick-
wall) frame, where the electron undergoes no energy transfer. In this
frame, the four-momentum transfer takes the form q = (q, i0). In this case
one can define the form factor as the three-dimensional Fourier transform
of a charge and magnetization density according to3

F(q2) =

∫
d3x eiq·x ρ(r)

ρ(r) =

∫
d3q

(2π)3
e−iq·x F(q2) (22.8)

Insertion of Eqs. (22.6) in the second relation gives

ρ(r) =
1

4π2

∫
dσ2 w(σ2)

e−σr

r
(22.9)

This relation expresses the density as a linear combination of Yukawa
distributions, each of mass σ. By the uncertainty principle, the mass σ of
the intermediate state determines how far it extends out from the origin.
The intermediate state now occurs as a virtual one in electron scattering
where the momentum transfer is space-like.

Consider a simple example of these ideas. The lightest mass hadron is the
pion, and it is evident from Eq. (22.9) that charged pions are responsible
for the long-range part of the electromagnetic structure of the nucleon.
To evaluate the two-pion contribution to the spectral weight function
for F2(q

2) in Born approximation (without pion rescattering) one can
simply look at the Feynman diagram for the lowest-order vertex correction
illustrated in Fig. 22.5. We calculate the contribution of this diagram to Sf i

3 The Wigner–Eckart theorem and parity invariance imply that the ground state densities

must be spherically symmetric for a spin one-half system.
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Fig. 22.5. Two-pion contribution to Sf i and F2(q
2) in Born approximation.

from the following pion–nucleon and pion–photon lagrangian densities4

LπN = igπψ̄γ5τ ψ · π

Lγπ = −ep

[
π× ∂π

∂xμ

]
3

Aμ (22.10)

The component contributions to the diagram are then indicated in Fig.
22.5. It is a nice exercise to show that the result from this diagram can be
put into the following form

2mF2(q
2) = τ3

g2
π

4π

∫ 1

0
dx (1 − x)2

∫ x

0
dy

m2

m2(1 − x)2 + m2
πx + q2y(x − y)

(22.11)
The spectral representation and two-pion contribution to the spectral
weight function follow directly. Note that this contribution is entirely
isovector.

The integral in Eq. (22.11) is well-defined, and one can use it to cal-
culate this two-pion contribution to the anomalous magnetic moment of
the nucleon by simply evaluating 2mF2(0). The longest range two-pion
contribution to the mean-square radius of the isovector magnetic moment
can be obtained through

FV
2 (q2)

FV
2 (0)

= 1 − q2

6
〈r2〉V2 + · · · (22.12)

The use of g2
π/4π = 14.4 from pion–nucleon scattering leads to the results

shown in Table 22.1. The present analysis provides a qualitative, and even
semiquantitative, understanding of the anomalous magnetic moment and
its mean-square radius [Ch58, Fe58].

To pursue this approach even further, it was argued before their discovery
that vector mesons with (Jπ, T ) = (1−, 1) and (1−, 0), the ρ and ω, must be

4 The absorptive part is independent of the particular form of the π–N coupling used.
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22 Elastic scattering 189

Table 22.1. Two-pion contribution to the anomalous magnetic moment of the
nucleon in Born approximation.

λ′ S λ′ V 〈r2〉Vmag (〈r2〉Vmag)
1/2

Theory 0 3.20 0.24 fm2 0.49 fm

Experiment −0.12 3.706 ≈ 0.64 fm2 ≈ 0.80 fm

pion

gamma

(a) Pair Term (b) Pion Term

t

Fig. 22.6. Time-ordered Feynman diagrams retained in the one-pion exchange
current calculation in [Du76].

present to make the size of the distributions quantitative [Na57, Fr60]. The
basic idea is that a two- or three-pion resonance makes the distribution
extend out further.5

Of course, the internal quark structure of the nucleon plays an essential
role in determining the electromagnetic structure of the nucleon (chapter
24); however, it is clear from Eq. (22.9) that pions are responsible for the
long-range contribution to this structure. Both elements of the internal
structure clearly play a role.6 Effective chiral lagrangians that reflect the
underlying symmetry structure of QCD, and chiral perturbation theory,
place the calculation of the the long-range low-q2 pion contribution to
the nucleon form factors on a firmer theoretical foundation [Be98, Ku01].

A prime example of the need for an explicit hadronic description of
nuclei is provided by the additional two-body currents arising from the
exchange of charged mesons between nucleons. Although many exchange
current calculations exist, for concreteness we briefly describe those of
Dubach, Koch, and Donnelly [Du76]. These authors keep the static limit
[leading O(1/m)] of the time-ordered Feynman diagrams shown in Fig.
22.6. Each of these processes clearly represents an additional contribution

5 In chapter 21 we were content to include the contribution of charged mesons to the

internal structure of the nucleon in a phenomenological fashion, through a single-nucleon

form factor fSN(q2) = GD(q2).
6 “Bag models” and “chiral soliton models” attempt to incorporate both elements of this

internal structure [Wa95].
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to the current in the traditional picture, which is now extended to

Ĵμ(x) =
A∑
i=1

J(1)
μ (xi; x) +

A∑
i<j=1

J(2)
μ (xi, xj; x) (22.13)

The two-body current can be identified through reproduction of the S-
matrix as follows.

The free Dirac propagator can be decomposed according to [Fe71,
Wa95]

1

iγμpμ + m
≡
[

1

2Ep

α · p + βm + Ep

Ep − p0 − iη
+

1

2Ep

α · p + βm − Ep

Ep + p0 − iη

]
β (22.14)

The first term yields the usual non-relativistic result [Fe71]; the second
term gives rise to backward propagation in time. The Feynman rules from
the lagrangian in Eq. (22.10) allow one to evaluate the contribution to the
S-matrix from the graphs in Fig. 22.6, retaining just the second piece of the
baryon propagator. An equivalent S-matrix can be constructed from the
current in Eq. (22.13), and one can then identify the additional two-body
current. Define

Jμ(x1, x2; x) =

∫
eik·xJμ(x1, x2; k)

d3k

(2π)3
(22.15)

Then to leading order in 1/m, and with the neglect of k0, the pair contri-
bution to the pion-exchange current in Fig. 22.6(a) is given by

Jpair(x1, x2; k) = −epf
2
π[τ

(1) × τ (2)] 3

×
{

σ2

(
σ1 · r

r

)
e−ik·x2 + σ1

(
σ2 · r

r

)
e−ik·x1

}(
1 + xπ

x2
π

)
e−xπ (22.16)

Here

xπ = μr ; μ ≡ mπ

r = x1 − x2 ; R =
1

2
(x1 + x2)

f2
π =

g2
π

4π

(
μ

2m

)2

= 0.080 (22.17)

The pion contribution in Fig. 22.6(b) is

Jpion(x1, x2; k) = ep

(
fπ

μ

)2

[τ (1) × τ (2)] 3(σ1 · ∇1)(σ2 · ∇2)

×
∫ 1/2

−1/2
dv (−irvk + y)

(
e−y

y

)
exp {−ik · (R − vr)} (22.18)
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Here

y = r

[
μ2 +

(
k2

4

)
(1 − 4v2)

]1/2

(22.19)

There is no exchange contribution to the charge density to this order in
1/m. These results are from [Du76], and the reader is now in a position
to reproduce them.7

This exchange current has the following features to recommend it:

• If the current is taken to be the sum of the one-body current of
chapter 19 and the above exchange current, and if a two-nucleon
potential has the form V = V neutral+VOPEP where the last term is the
one-pion exchange potential [Wa95], then the current is differentially
conserved [Du76]

∂Ĵμ

∂xμ
= ∇ · Ĵ + i[Ĥ, ρ̂] = 0 (22.20)

• The threshold pion electroproduction part of the graphs in the above
amplitude satisfies the Kroll–Ruderman (soft-pion) theorem;

• This one-pion contribution represents the longest-range part of the
two-body exchange current; it is exact as |x1 − x2| → ∞;

• The charge density operator is unmodified to leading O(1/m); hence
transition matrix elements of the charge density can be used to
calibrate the nuclear structure in exchange-current calculations.

Assume that 3
2He can be described by a (ν1s1/2)

−1 harmonic oscillator
shell model configuration as shown in Figs. 20.7 and 20.8. The magnetic
moment calculated with the inclusion of the above exchange current is
μ = −2.078 n.m., now closer to the experimental value μ = −2.127 n.m.

than is the Schmidt value μ = −1.913 n.m. in Table 20.1. (Here 1 n.m.
=eph̄/2mpc). This gives one some confidence in the present exchange cur-
rent calculation [Du76]. The effect on elastic magnetic electron scattering
at modest momentum transfers, say q2 ≤ 6 fm−2, is shown in Fig. 22.7; the
effect is not large. This illustrates the marginal role of exchange currents
in the traditional nuclear physics domain.8

Figure 22.8 illustrates the state of the art with elastic magnetic scattering
from 3

2He [Ca82]. The measurements are from Saclay and Bates. The
dashed line shows the result obtained from the best three-body calculation

7 Use (ab)−1 =
∫ 1

0
dz[az + b(1 − z)]−2.

8 A relativistic QHD calculation of this exchange current, without the 1/m expansion, is

contained in [Bl91].
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Fig. 22.7. Elastic transverse form factor for 3
2He(e, e′) in the harmonic oscillator

model with (dashed) and without (solid) one-pion exchange currents [Du76,
Wa84].

Fig. 22.8. Elastic magnetic form factor for 3
2He(e, e) out to high q2 [Ca82]. Two

exchange-current theories are shown: (a) from [Ha83]; (b) from [Ri80].

done in the traditional picture; the three-body wave function is obtained
by solving the Faddeev equations with potentials fitted to two-body data,
and the current is obtained from the properties of free nucleons. There is
clear disagreement with the data as q2 increases to ∼ 10 fm−2, not by a few
percent, but by orders of magnitude. The best three-body calculation in

https://doi.org/10.1017/9781009290616.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.027


22 Elastic scattering 193

Fig. 22.9. Cross section for 2
1H(e, e′)pnthresh. The dotted curve is the impulse-

approximation result, the dash-dot curve includes the pion-exchange contribution,
the dash curve includes also a ρ-exchange contribution, and the solid curve is the
total result, which includes a Δ contribution. [Au85].

the traditional picture clearly fails at high q2. Also shown in Fig. 22.8 are
two exchange-current calculations that include the pion exchange current
discussed above, as well as other hadronic contributions [Ha83, Ri80]. The
difference between these two curves at high q2 is a good measure of the
present theoretical uncertainty. While the exchange current contribution
is marginal at low momentum transfers, it is a dominant effect at large
q2. A more recent and extensive discussion of electromagnetic interactions
with light nuclei is contained in [Ca91].

This pion exchange current also shows up dramatically in threshold
electrodisintegration of the deuteron 2

1H(e, e′)pnthresh as shown in Fig. 22.9
[Au85].
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