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Weakly nonlinear internal wave–wave interaction is a key mechanism that cascades energy
from large to small scales, leading to ocean turbulence and mixing. Oceans typically
have a non-uniform density stratification profile; moreover, submarine topography leads
to a spatially varying bathymetry (h). Under these conditions and assuming mild-slope
bathymetry, we employ multiple-scale analysis to derive the wave amplitude equations
for weakly nonlinear wave–wave interactions. The waves are assumed to have a slowly
(rapidly) varying amplitude (phase) in space and time. For uniform stratifications, the
horizontal wavenumber (k) condition for waves (1, 2, 3), given by k(1,a) + k(2,b)+k(3,c)=0,
is unaffected as h is varied, where (a, b, c) denote the mode number. Moreover, the
nonlinear coupling coefficients (NLC) are proportional to 1/h2, implying that triadic
waves grow faster while travelling up a seamount. For non-uniform stratifications, triads
that do not satisfy the condition a = b = c may not satisfy the horizontal wavenumber
condition as h is varied, and unlike uniform stratification, the NLC may not decrease
(increase) monotonically with increasing (decreasing) h. NLC, and hence wave growth
rates for weakly nonlinear wave–wave interactions, can also vary rapidly with h. The most
unstable daughter wave combination of a triad with a mode-1 parent wave can also change
for relatively small changes in h. We also investigate higher-order self-interactions in the
presence of a monochromatic, small-amplitude topography; here, the topography behaves
as a zero-frequency wave. We derive the amplitude evolution equations and show that
higher-order self-interactions might be a viable mechanism of energy cascade.
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1. Introduction

Low-mode long-wavelength internal gravity waves in oceans can travel thousands of
kilometres from their generation site without dissipation (Zhao et al. 2016). The energy
in these long waves can cascade to small scales through a variety of mechanisms, such
as nonlinear interactions among the waves (MacKinnon & Winters 2005; MacKinnon
et al. 2013), scattering through interaction with the seafloor topography (Legg &
Adcroft 2003), and scattering through interaction with turbulent quasi-geostrophic flows
(Kafiabad, Savva & Vanneste 2019). This transfer of energy to small scales will lead
eventually to turbulence and mixing, which is essential for maintaining the meridional
overturning circulation (Munk 1966). In weakly nonlinear wave–wave interactions, an
internal gravity wave can become unstable via resonant triad interactions if it has
the largest frequency in the triad (Hasselmann 1967); through this mechanism, energy
is transferred irreversibly from a high-frequency and low-wavenumber primary wave
to lower-frequency and higher-wavenumber secondary waves. In a resonant internal
wave triad, a wave of angular frequency ω3 and wave vector k3 can transfer its
energy resonantly to two ‘daughter’ waves when both the conditions k3 = k1 + k2 and
ω3 = ω1 + ω2 are met (Davis & Acrivos 1967; Hasselmann 1967; Phillips 1967). The
former condition is a consequence of the quadratic nonlinearity of the Navier–Stokes
equations.

Since ocean’s density stratification is non-uniform, recent efforts have been directed
towards understanding energy transfer in non-uniformly stratified fluids. In Varma &
Mathur (2017), the conditions for the existence of resonant, weakly nonlinear wave–wave
interactions in a non-uniform stratification were studied. They proved that resonant triads
and self-interactions can exist if (i) they satisfy the horizontal wavenumber condition,
and (ii) each wave’s functional form in the z-direction is non-orthogonal to the nonlinear
forcing terms. Wunsch (2017) studied self-interaction of an internal wave mode in the
presence of a non-uniform stratification; the latter was simplified using a three-layer
model. It was shown that the amplitude of the superharmonic wave, which is forced by the
self-interaction of a parent wave, can be highly sensitive to changes in the stratification
profile characteristics such as pycnocline depth and strength. Moreover, Liang, Zareei
& Alam (2017) showed that self-interaction also occurs in the presence of uniform
stratification, provided that the nonlinear terms in the free surface boundary condition are
taken into account. Self-interaction was also studied numerically by Sutherland (2016),
and it was observed that in the presence of non-uniform stratification, self-interaction
of an internal wave mode was more dominant than triadic interactions for low Coriolis
frequency. Furthermore, Baker & Sutherland (2020) studied self-interaction of a mode
under angular frequency mismatch, and found that the daughter wave (superharmonic
wave) can return its energy to the parent wave.

Apart from the weakly nonlinear wave–wave interactions, wave–topography interactions
(where the topography is of small amplitude) have also been studied extensively. In Buhler
& Holmes-Cerfon (2011), the decay of a mode-1 internal tide due to its interaction with
a small-amplitude sea floor topography was studied using ray-tracing. It was shown that
if the bottom bathymetry is ‘resonant’ (see § 6 for more detail), then the internal mode-1
wave interacts with the bathymetry and resonantly gives its energy to the higher modes.
The topography in this case acts like a stationary wave with zero angular frequency. In
Couston, Liang & Alam (2017), this scattering process was explored in a three-dimensional
setting, where the mode-1 internal wave was incident obliquely on a small-amplitude
bottom topography. Buhler & Holmes-Cerfon (2011) and Li & Mei (2014) also focused
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Effects of mild-slope bathymetry on internal wave triads

on scattering of an internal gravity wave by a small-amplitude, stationary, zero-mean
random topography. Li & Mei (2014) consider topographies that vary in zonal and
meridional directions. Both studies, under realistic parameters, estimate a decay length
scale of about 500–1000 km for the mode-1 wave.

In Mathur, Carter & Peacock (2014), a Green’s function approach along with
numerical simulations was used to study internal gravity wave scattering under the linear
inviscid limit in the presence of constant and non-constant buoyancy frequency in a
two-dimensional setting for large-amplitude topographies. Height of the topography and
criticality (Cr) were the two main factors that influence internal gravity wave scattering.
In general, subcritical (Cr < 1) topographies were found to scatter the incoming wave
lesser than supercritical topographies (Cr > 1). Critical topographies (Cr ≈ 1) were the
most proficient in scattering the incoming wave. Scattering of large-amplitude waves –
with breaking and the ensuing kinetic energy dissipation – is a very important quantity
to study since it provides an estimate for local diffusivity. Internal wave breaking due to
different types of topographies was focused on in Legg (2014). In particular, a condition
for internal wave breaking was given using the incoming wave’s Froude number (Fr). The
Froude number for a mode-1 wave is defined as:

Fr = Uπα

Hω
, (1.1)

where U and ω are respectively the peak horizontal velocity and frequency of the wave,
H is the depth of the domain, and α is the slope of the wave. As the mode-1 wave shoals
up a large-amplitude topography, its Fr increases. It is empirically determined that if a
wave’s Fr reaches a range 0.3–1 due to shoaling, then the wave is prone to breaking. A
wave’s local Froude number can also increase due to reflection from a topography. Highly
nonlinear features such as bores were observed in regions of the topography where the
local Froude number was greater than 1 (Legg & Adcroft 2003). Scattering and dissipation
due to large-amplitude highly supercritical topographies were focused on in Klymak et al.
(2013). Interestingly, it was observed that a mode-1 wave loses a maximum ∼20 % of its
energy at an isolated tall supercritical topography.

This paper is ‘Part 2’ of Gururaj & Guha (2020), in which the effect of non-uniform
(albeit slowly varying) stratification on internal wave triads in an unbounded domain
was studied theoretically and numerically. It was shown that the variation in stratification
profile may affect significantly the nonlinear coupling coefficients, (vertical wavenumber)
detuning, and group speed of the wave packets constituting a triad, and hence the ensuing
energy transfer. Different triads were also observed to undergo different amounts of
detuning for the same change in the background stratification. The present paper extends
the paradigm explored in Gururaj & Guha (2020) to a vertically bounded domain with a
mild slope bathymetry, while there is no more restriction for the non-uniform stratification
to be slowly varying. To the best of our knowledge, this is the first work that considers the
effect of the variation of the ocean depth on internal wave triads. A simplified schematic
of the set-up is given in figure 1. The motivation behind this study stems from the simple
fact that ocean depth varies spatially (hence consideration of constant depth might be
an over-simplification), hence waves can move from one depth to another while they are
interacting in a medium of varying stratification. While the effect of change in fluid depth
on resonant and near-resonant interactions between three distinct waves is the primary
focus of this paper, we have also studied higher-order self-interactions among the internal
waves in the presence of a small-amplitude topography. As an analogy, such higher-order
interactions have been studied in Alam, Liu & Yue (2009) for surface waves. Wave–wave
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Figure 1. (a) A general schematic of the problem to be studied, showing the streamfunction field of three wave
packets interacting in the presence of a varying bathymetry h(x). Here, H is the mean depth (equivalent to the
depth in flat bathymetry situation), while Hb(x) denotes the submarine topography shape. (b) The stratification
profile used in constructing the modes. The same non-uniform stratification model is used throughout the paper.

interactions in non-uniformly stratified vertically bounded domains have been considered
previously in various studies (Young, Tsang & Balmforth 2008; Baker & Sutherland 2020;
Varma, Chalamalla & Mathur 2020). In this paper, reduced-order models for wave–wave
interactions in a region of varying h are derived, hence spatially varying nonlinear
coupling coefficients, group speed and detuning are all involved. Moreover, the equations
can model wave–wave interactions of wave trains or finite width wave packets in a region
of varying h. In § 6, we have also derived (and validated numerically) reduced-order
equations that model higher-order self-interactions in the presence of a small-amplitude
topography. Equations in § 6 can also be used to model standard resonant self-interactions
in the presence of slowly varying large-amplitude topographies.

The paper is organized as follows. In § 2, we derive the amplitude evolution equations
of the constituent waves of a triad in the presence of a slowly varying bathymetry using
the Boussinesq Navier–Stokes equations in the f -plane. To derive these equations, the
streamfunction, buoyancy perturbation and meridional velocity due to each wave are
assumed to be a product of a slowly varying amplitude and a rapidly varying phase that
are functions of space and time. In §§ 3 and 4, the effects on the horizontal wavenumber
condition when waves interact in a region of varying ocean depth in the presence of
uniform and non-uniform stratification are studied, respectively. In § 5, we study the
effect of ocean depth variation on the rate of energy transfer in triadic interactions
and self-interactions in the presence of a non-uniform stratification. In § 6, we analyse
higher-order self-interactions of a wave in the presence of small-amplitude monochromatic
topography. In § 7, the reduced-order equations derived in this paper are validated by
solving the full Boussinesq equations using an open source code Dedalus (Burns et al.
2020). The paper has been summarized in § 8.

2. Derivation of the governing equations in terrain-following coordinates

The incompressible, inviscid, two-dimensional (2-D) (in the x–z plane) Navier–Stokes
equations on the f -plane under the Boussinesq approximation – hereafter referred to as
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the Boussinesq equations – can be expressed in terms of the perturbation streamfunction
ψ , meridional velocity v (along the y-direction), and perturbation buoyancy b as follows:

∂

∂t
(∇2ψ)+ ∂b

∂x
− f

∂v

∂z
= −{∇2ψ,ψ}, (2.1a)

∂v

∂t
+ f

∂ψ

∂z
= −{v, ψ}, (2.1b)

∂b
∂t

− N2 ∂ψ

∂x
= −{b, ψ}. (2.1c)

Here, N2(z) ≡ −(g/ρ∗)(dρ̄/dz) is the squared buoyancy frequency, ρ̄ is the base density
profile, ρ∗ is the reference density, and g is the acceleration due to gravity (directed along
−z). The perturbation buoyancy is defined as b ≡ −gρ/ρ∗, where ρ is the perturbation
density.

The operator {G1,G2} ≡ (∂G1/∂x)(∂G2/∂z)− (∂G1/∂z)(∂G2/∂x) denotes the Poisson
bracket, and f is the Coriolis frequency. Viscous effects have been neglected owing to the
fact that we consider waves with long wavelengths.

The fluid domain is bounded at the top (z = 0) by a rigid lid (i.e. zero vertical velocity,
leading to the boundary condition ψ(x, 0) = 0). The bottom boundary at z = h(x) satisfies
the impenetrable boundary condition ψ(x, h(x)) = 0.

Instead of solving the fully nonlinear equations (2.1a)–(2.1c) numerically, we combine
(2.1a)–(2.1c) into a single equation and employ a multiple-scale analysis. To this end, we
perform ∂(2.1a)/∂t + f ∂(2.1b)/∂z − ∂(2.1c)/∂x, which results in

∂2

∂t2
(∇2ψ)+ N2 ∂

2ψ

∂x2 + f 2 ∂
2ψ

∂z2 = − ∂

∂t
({∇2ψ,ψ})+ ∂

∂x
({b, ψ})− f

∂

∂z
({v, ψ}).

(2.2)
Following the approach of Maugé & Gerkema (2008), we now change the governing
equations to terrain-following coordinates, where a new variable (η) is defined as

η ≡ − z
h(x)

. (2.3)

According to the definition (2.3), the bottom boundary condition at z = h(x) would now
be enforced at η = −1, while the surface boundary condition at z = 0 remains unaltered,
except that it is now at η = 0. The governing equations, which are in the x–z coordinates,
need to be transformed into the x–η coordinates. The correspondences between the
variables in the x–z and x–η coordinate systems are as follows:

ψ(x, z, t) ⇒ Ψ (x, η, t), b(x, z, t) ⇒ B(x, η, t), v(x, z, t) ⇒ V(x, η, t). (2.4a–c)

On transforming the differential operators from x–z coordinates to x–η coordinates and
substituting the transformed variables in (2.2), we arrive at[

∂2

∂t2
(Lxx + Lηη)+ N2(−h(x) η)Lxx + f 2Lηη

]
Ψ = − ∂

∂t

[
J {(Lxx + Lηη)Ψ,Ψ }]

+ Lx(J {B, Ψ })− f Lη(J {V, Ψ }),
(2.5)
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where the operators Lx, Lη, Lxx, Lηη and J {G1,G2} have the following definitions:

Lx ≡ ∂

∂x
+ ∂η

∂x
∂

∂η
, Lη ≡ −1

h
∂

∂η
, Lηη ≡ 1

h2
∂2

∂η2 , (2.6a)

Lxx ≡ ∂2

∂x2 + η2

h2

(
∂h
∂x

)2
∂2

∂η2 − 2
η

h

(
∂h
∂x

)
∂2

∂η ∂x
+ η

h

[
2
h

(
∂h
∂x

)2

− ∂2h
∂x2

]
∂

∂η
, (2.6b)

J {G1,G2} ≡ Lx(G1)Lη(G2)− Lη(G1)Lx(G2). (2.6c)

For performing multiple-scale analysis, we assume wave-like perturbations, and the
streamfunction due to the jth wave (j = 1, 2, 3) is given according to the following ansatz:

Ψj = aj(εxx, εtt)Ξj(x, η, t)+ c.c., (2.7)

where ‘c.c.’ denotes the complex conjugate, aj is the slowly varying complex amplitude,
and Ξj(x, η, t) is the rapidly varying phase part of the jth wave. The small parameters εt
and εx are respectively used to denote the weak variation of the amplitude function with
time and the streamwise (x) direction. The amplitude is assumed to be an O(εa) quantity,
where εa is a small parameter. The bathymetry (h), which is simply the negative of the
fluid depth, is assumed to be of the form

h = −H + εh Hb(kbx), (2.8)

where H represents the mean depth of the fluid domain, Hb denotes the submarine
topography shape, εh is its amplitude, and k−1

b represents the length scale of the
bathymetry. We always assume the bathymetry to have a ‘mild slope’; for this we use
an analogue condition of that used for surface gravity waves (Meyer 1979; Kirby 1986):

1
Kj

∂h
∂x

= O(εhεk) � O(1), (2.9)

where Kj ≡ kjh is the non-dimensional horizontal wavenumber (kj being the horizontal
wavenumber) of the jth internal wave. Moreover, the relation k−1

j = εkk−1
b is used in

(2.9), which implies that either of the parameters, εh or εk, could be a small quantity,
while the other could potentially be an O(1) quantity. We note in passing that the mild
slope condition in our case can still lead to internal gravity wave scattering. Internal wave
scattering is largely dependent on the slope of the wave, which is almost constant; wave
slope is dependent on N, which is nearly constant away from the pycnocline – even for
higher modes whose horizontal wavenumber is much larger. Scaling analysis to find the
relations between these small parameters is given in Appendix B.

2.1. Leading-order analysis
Next we substitute (2.7) in (2.5). At the leading order (O(εa)), the governing equation (2.5)
reduces to (

∂2

∂x2 + 1
h2

∂2

∂η2

)
∂2Ξj

∂t2
+ N2(−h(x) η)

∂2Ξj

∂x2 + f 2

h2
∂2Ξj

∂η2 = 0. (2.10)

Hereafter, we drop the argument of N2, assuming that it is implied. Furthermore, assuming
Ξj = Ξ̂j(x, η) e−iωjt, where ωj ∈ R

+ is the angular frequency of the jth internal wave,
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0 a
x/H

h(x)

z/H η

2a 0 a
x/H
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–1.0

–0.5

0
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–0.5
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Figure 2. The effective change in the stratification profile N(z) when the coordinates are changed from (a) x–z
to (b) x–η, in the presence of bathymetry. For the latter case, if N is a function of z in x–z, then it becomes a
function of both η and x in x–η. The N profiles corresponding to the top of a seamount and an abyssal plain
region have been denoted, respectively, by blue and green lines.

(2.10) simplifies to [
(N2 − ω2

j )
∂2

∂x2 −
ω2

j − f 2

h2
∂2

∂η2

]
Ξ̂j = 0. (2.11)

For a mild slope bathymetry (see Appendix B for details), we can use variable separation
to solve (2.11) at the leading order. To this end, we assume Ξ̂j = φj(η; x)Pj(x), which leads
to

h2

Pj

∂2Pj

∂x2 =
ω2

j − f 2

N2 − ω2
j

1
φj

∂2φj

∂η2 = −K2
j , (2.12)

where φj depends parametrically on x via h. We emphasize that in the x–η coordinates, the
presence of bathymetry makes N also a function of x; see figure 2 for clarity.

Two separate equations, one for Pj and the other for φj, can be formed from (2.12):[
∂2

∂x2 +
K2

j

h2

]
Pj = 0, (2.13a)

Ljφj ≡
[
∂2

∂η2 + K2
j χ

2
j

]
φj = 0, (2.13b)

where χj ≡
√
(N2 − ω2

j )/(ω
2
j − f 2) is defined for convenience. The boundary conditions

for (2.13b) are φj = 0 at η = 0,−1. The non-dimensional horizontal wavenumber of
the jth wave, i.e. Kj, is the set of eigenvalues obtained from (2.13b), which can vary
in x when N is a function of x in x–η coordinates. An important point to note is the
convention used in our study. While positive (negative) kj implies waves propagating along
+x (−x), owing to the fact that h is negative, Kj follows the exact opposite convention.
This means that a negative (positive) Kj implies that the wave is travelling along the
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+x (−x) direction. Moreover we notice that (2.13b) does not depend explicitly on h.
The only way (2.13b) can be influenced by h is through N when the latter varies in the
z-direction (in x–z coordinates). However, for a uniform stratification, i.e. N = constant,
eigenvalues of (2.13b) are independent of h. In this case, the eigenvalues are given by

Mj ≡ Kjχj = nπ, (2.14)

where n ∈ Z
+. We also observe that the quantity Mj behaves like the vertical wavenumber

of the wave that is non-dimensionalized by the local bathymetry h.
Meanwhile, Pj at the leading order of the Wentzel–Kramers–Brillouin (WKB)

approximation given by

Pj = exp
{

i
∫ x

0

Kj(x′)
h(x′)

dx′
}
. (2.15)

We introduce a function βj(εkx) such that Pj is corrected to Pj/βj. This slow varying
function βj(εkx), which acts as a correction to the first-order WKB solution (2.15), is given
in (2.22). We note in passing that Pj/βj is still a solution of (2.13a) in the leading order
even after the above-mentioned correction. To normalize the eigenfunction of the waves
obtained from (2.13b), every wave’s φj is constrained to satisfy

1
2

∫ 0

−1

1
h2

[
K2

j φ
2
j +

(
∂φj

∂η

)2
]
∂η = 1. (2.16)

After this normalization, waves having the same amplitude (aj) will also have the same
energy density at a given h, provided that βj = 1.

The meridional velocity and the buoyancy perturbation at the leading order can be
obtained by respectively converting (2.1b) and (2.1c) into the x–η coordinates and then
substituting the streamfunction ansatz (2.7):

Vj = i
f

hωj

aj

βj

∂φj

∂η
Pj e−iωjt + c.c., (2.17)

Bj = i
N2

ωj

aj

βj

∂Pj

∂x
φj e−iωjt + c.c. (2.18)

2.2. Second-order analysis

2.2.1. Amplitude evolution equations for a resonant triad in non-uniform stratification
Triad interaction between three internal waves occurs at O(ε2). Below, we describe the
detailed derivation that leads finally to the amplitude evolution equations (2.24a)–(2.24c)
of the waves constituting a triad.

After substituting the streamfunction (2.7), meridional velocity (2.17), and buoyancy
perturbation (2.18) in (2.5), the equation for the jth wave can be written as

aj
𝔓j

βj
Ljφj = −Fj, (2.19)
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where 𝔓j ≡ Pj e−iωjt, Lj has been defined in (2.13b), and

Fj ≡ i
∂aj

∂t

(
φjK2

j − ∂2φj

∂η2

)
2ωj

h2

(𝔓j

βj

)
+ 2i(N2 − ω2

j )

(Kj

h
φj
∂aj

∂x

)(𝔓j

βj

)
︸ ︷︷ ︸

Linear term1

+ i(N2 − ω2
j )

Kj

h

[
2
∂φj

∂x
+ φjh

Kj

∂

∂x

(Kj

h

)
− 2η

h
∂h
∂x
∂φj

∂η
− 2

φj

βj

dβj

dx

](
aj

𝔓j

βj

)
︸ ︷︷ ︸

Linear term2

−NLj.

(2.20)

Here, Fj is the collection of all the linear and nonlinear (NLj) terms at O(ε2) that have the
phase of the jth wave. Equation (2.19) can have a non-trivial solution when Fj is orthogonal
to the adjoint solutions of the linear operator Lj; this procedure is outlined in Craik (1971).
The complete mathematical proof for using such a condition is given in detail in Ince
(1956, § 9.34). Following Craik (1971), Fj is multiplied by φj (since Lj is a self-adjoint
operator, φj is also the solution of the adjoint of Lj) and then integrated in the η direction
inside the boundary limits. This results in

2
[

iωj
∂aj

∂t

(
γ
(1)
j K2

j − γ
(2)
j

) 1
h2 + iγ (3)j

(Kj

h
∂aj

∂x

)] 𝔓j

βj

+ i
Kj

h

[
2γ (4)j +

hγ (3)j

Kj

∂

∂x

(Kj

h

)
− γ

(5)
j

2
h
∂h
∂x

−
2γ (3)j

βj

dβj

dx

]
aj

𝔓j

βj
=
∫ 0

−1
NLjφj dη,

(2.21)

where γ (n)j are functions that vary in the x-direction and are obtained after integration

in the η direction; γ (n)j are provided in Appendix A. Up to this point, βj is an arbitrary
function, and for convenience, we define βj such that the second square-bracketed term
in the left-hand side of (2.21) vanishes identically. It also implies that ‘Linear term 2’ in
(2.20) also vanishes identically. In mathematical terms, this means that

βj = exp

{∫ x

0

h
2Kj

1

γ
(3)
j

[(
2γ (4)j − γ

(5)
j

2
h
∂h
∂x

)(Kj

h

)
+ γ

(3)
j

∂

∂x

(Kj

h

)]
dx

}
. (2.22)

For constant N, βj can be simplified analytically to βj = h(x)/h(0) = −h(x)/H, where it
is assumed that h(0) = −H. We note in passing that the equivalent of the βj functions was
derived in Lahaye & Llewellyn Smith (2020) using a different approach. For this particular
choice of βj, if the amplitudes aj are x-invariant, then the energy flux will be x-invariant as
well, regardless of the modal shape or depth. More importantly, a wave packet’s maximum
amplitude does not change when βj, given by (2.22), is used in (2.21). This invariance of
the maximum value of the aj with varying h is very useful in estimating wave growth rates
in our study, in which a major focus is on wave interactions in a region of varying h.

Next, we outline the procedure to obtain
∫ 0
−1 NLjφj dη in (2.21) to complete the

amplitude evolution equations. The streamfunction, meridional velocity and buoyancy
frequency ansatz are substituted in the nonlinear terms of (2.5). The resultant resonant
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nonlinear terms, after omitting non-resonant terms, can be written in a compact form as∫ 0

−1
NL1φ1 dη =

[∫ 0

−1

(
N̂L(Ψ,1) + N̂L(B,1) + N̂L(V,1)

)
φ1 dη

]
a3ā2

β2β3
𝔓3𝔓̄2, (2.23a)

∫ 0

−1
NL2φ2 dη =

[∫ 0

−1

(
N̂L(Ψ,2) + N̂L(B,2) + N̂L(V,2)

)
φ2 dη

]
a3ā1

β1β3
𝔓3𝔓̄1, (2.23b)

∫ 0

−1
NL3φ3 dη =

[∫ 0

−1

(
N̂L(Ψ,3) + N̂L(B,3) + N̂L(V,3)

)
φ3 dη

]
a1a2

β1β2
𝔓1𝔓2. (2.23c)

We define NL(∗,j) ≡ ∫ 0
−1 N̂L(∗,j)φj dη for convenience; their expressions are provided in

Appendix A. Note that NL(∗,j) is used directly in the amplitude evolution equations given
below in (2.25b).

The amplitude evolution equations for the three internal gravity waves are obtained
finally after equating the left-hand side of (2.21) with its right-hand side, where the latter
has been expressed in terms of (A2)–(A4):

∂a1

∂t
+ c(g)(x,1)

∂a1

∂x
= 𝔑1a3ā2 exp

{∫ x

0
i(K3 − K1 − K2)/h dx′ + i Δω t

}
, (2.24a)

∂a2

∂t
+ c(g)(x,2)

∂a2

∂x
= 𝔑2a3ā1 exp

{∫ x

0
i(K3 − K1 − K2)/h dx′ + i Δω t

}
, (2.24b)

∂a3

∂t
+ c(g)(x,3)

∂a3

∂x
= 𝔑3a1a2 exp

{∫ x

0
i(K1 + K2 − K3)/h dx′ − i Δω t

}
, (2.24c)

where

c(g)(x,j) =
[

2iKjγ
(3)
j

h𝔇j

]
, in which 𝔇j = 2iωj

(
γ
(1)
j K2

j − γ
(2)
j

)
/h2, (2.25a)

𝔑j = 1
Dj

[
NL(V,j) + NL(B,j) + NL(Ψ,j)

]
. (2.25b)

In the above equation,

D1 = 𝔇1
β2β3

β1
, D2 = 𝔇2

β1β3

β2
, D3 = 𝔇3

β1β2

β3
. (2.26a–c)

The coefficient c(g)(x,j) denotes the (weakly varying) horizontal group speed, and 𝔑j

denotes the nonlinear coupling coefficient of the jth wave; 𝔑j determines the rate of
energy transfer between the waves. Also, Δω ≡ ω1 + ω2 − ω3 denotes the detuning in
the frequency. The arguments of the exponential terms in (2.24a)–(2.24c) denote both the
detuning in the horizontal wavenumber condition and the frequency condition. For a pure
resonant triad, K3 − K1 − K2 = 0 and Δω = 0. When K3 − K1 − K2 /= 0 or Δω /= 0,
the triad is said to be detuned. The equations are valid only when both Δω/ωj � 1 and
ΔK/Kj � 1 are satisfied; that is, the equations are valid only in the vicinity of resonance.
Analytical methods have also been developed for studying wave–wave interactions
in non-resonant regimes in the presence of a slowly varying background shear flow
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Effects of mild-slope bathymetry on internal wave triads

(e.g. Grimshaw 1988, 1994; Voelker, Akylas & Achatz 2021), where the wave train can
pass through non-resonant regimes and resonant regimes. However, this is not within the
scope of this paper. To summarize, amplitude (aj) in the wave amplitude equations can
vary because of the group speed term, or the nonlinear term. The group speed term is
responsible for the advection of a wave packet, while the nonlinear term is responsible for
energy transfer among the waves. Moreover, a wave’s energy density changes because of
its motion through a region of varying h. Both φj and βj are heavily involved in the change
in energy density that occurs in a wave due to its motion through a region of varying h.
Note that the evolution of aj does not provide complete information of the changes in a
wave’s quantities. This is because Ψj = ajφj/βjPj e−iωjt, where φj and βj themselves are
functions of x.

For a triad, the parent wave is always wave-3, while the daughter waves (subharmonic
waves) are wave-1 and wave-2. For self-interactions, we use a different convention; see
§ 2.2.2. To determine how fast the daughter waves grow, a growth rate parameter σ is
defined as

σ ≡
√
𝔑1𝔑2A2

3, (2.27)

where A3 is the parent wave’s amplitude, which is held constant. To obtain this expression,
the pump wave approximation of Craik, Adam & Stewartson (1978) is used. Pump wave
approximation is a strong assumption that is valid only at initial times where the parent
wave has much more energy than the daughter waves. Equation (2.27) reveals that the
growth rate is dependent directly on the nonlinear coupling coefficients. If we ignore
the nonlinear terms, then (2.24a)–(2.24c) model the movements of internal wavepackets
over a mild-slope bathymetry. We emphasize here that wave scattering is not included
in these equations. The amplitude variation of internal waves was analysed recently by
Lahaye & Llewellyn Smith (2020) (the authors focused on internal wave scattering, which
is essentially a linear mechanism). While we have restricted our study to mild-slope
conditions, we have extended the previous works by including the physics of (i) finite width
wave packets, (ii) nonlinearity, and (iii) detuning in the horizontal wavenumber condition,
and hence investigation of both resonant (zero detuning) and near-resonant conditions. In
this paper, we focus mainly on the variation of detuning, and growth rates (using pump
wave approximation) with h/H for wave–wave interactions. Even though (2.24a)–(2.24c)
allow finite width wave packets, we do not discuss them significantly since they have been
studied in Gururaj & Guha (2020). The combined effect of nonlinear coupling coefficients,
group speed and detuning has been discussed in Gururaj & Guha (2020).

The main results of scaling analysis, detailed in Appendix B, are summarized here. The
relation between the small parameters is given by

εt ∼ 𝔑
ω
εa − ĉgεx, (2.28)

where ĉg is a non-dimensional term that gives a scale of the group speed. Equation (2.28)
provides the scaling for ‘Linear term 1’, and NLj given in (2.20). These are also the
final terms that are present in the wave amplitude equations (2.24a)–(2.24c). The wave
amplitude (aj) can evolve due to the group speed term or the nonlinear term. Note that if
𝔑 or εa is reduced (implying that nonlinear coupling coefficients or amplitude is reduced),
then we can expect nonlinear effects to decrease. However, if εx is reduced (which means
that packet width is increased), then the effect of group speed, which advects the packets,
is reduced.
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2.2.2. Amplitude evolution equations for self-interaction in non-uniform stratification
Self-interactions can be considered as a special case of triad interactions. During resonant
self-interactions, an internal wave gives its energy spontaneously to another internal wave
that has twice its frequency and horizontal wavenumber (Wunsch 2017). In non-uniform
stratification, a resonant self-interaction occurs when both (ω, k) and (2ω, 2k) satisfy the
dispersion relation. The evolution equations for the self-interaction of a mode can be
obtained from (2.24a)–(2.24c) after some straightforward modifications. The complete set
of governing equations for the self-interaction of a mode in the presence of a mild-slope
bathymetry h is

∂a(3,s)
∂t

+ c(g)(x,3)
∂a(3,s)
∂x

= N3 a2
(1,s) exp

{∫ x

0
i(2K1 − K3)/h dx′ − i Δωs t

}
, (2.29a)

∂a(1,s)
∂t

+ c(g)(x,1)
∂a(1,s)
∂x

= N1 a(3,s) ā(1,s) exp
{∫ x

0
i(K3 − 2K1)/h dx′ + i Δωs t

}
,

(2.29b)

where the subscript ‘s’ denotes self-interaction. Moreover, Δωs = 2ω1 − ω3. Unlike
the triad case, the parent wave for self-interaction is wave-1, while the daughter
(superharmonic) wave is wave-3. The notation throughout this paper follows the
convention that wave-3 always has the highest frequency (hence for triads, wave-3
becomes the parent wave). The functions c(g)(x,j) are the same as the expressions given
in (2.25a). The functions Nj, which are the nonlinear coupling coefficients for the
self-interaction process, are given by

N1 = 𝔑2, (2.30a)

N3 = 2K3
1

h4D3

(
Γ (4)

ω1

)
− 2f 2

h4D3

(
Γ
(3)

1 K1

ω1

)
+ K1ω3

h4D3

(
ζ1ω

2
1Γ

(1)
1 − ζ1Γ

(2)
1 − Γ

(3)
1

)
,

(2.30b)

where ζj ≡ K2
j /(ω

2
j − f 2) is defined for convenience. Here, all Γ,Dj terms in (2.30a) and

(2.30b) are evaluated using (A5) and (2.26a–c) by simply considering all ‘2’ subscripts as
‘1’ – for example, substituting β1 for β2 in Dj, and similarly substituting φ1 for φ2 in Γ
expressions. This is because in self-interaction, wave-2 is the same as wave-1.

Equations (2.29a)–(2.29b) can predict the growth of the daughter wave and the
consequent decay of the parent wave. For obtaining the growth rate of the daughter waves,
we use the pump wave approximation and hence treat the parent wave’s amplitude a(1,s)
as constant. This yields (assuming plane waves in the x-direction)

a(3,s) =
[
N3 a2

(1,s)

]
t, (2.31)

where the term in square brackets denotes the growth rate. From this equation it is evident
that N3 acts as a proxy to the growth rate.

2.3. Energy evaluation
The time-averaged energy density for an internal gravity wave over its time period is given
by

〈TEj〉 = ωj

2π

∫ 2π/ωj

0

ρ0

2

[(
∂ψj

∂z

)2

+
(
∂ψj

∂x

)2

+ v2
j +

b2
j

N2

]
dt. (2.32)
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Effects of mild-slope bathymetry on internal wave triads

The domain-integrated total energy is given by

T̂Ej =
∫ D

0

∫ 0

h
〈TEj〉 dz dx =

∫ D

0

∫ 0

−1
〈TEj〉(−h(x)) dη dx. (2.33)

After some simplification, we arrive at

T̂Ej =
∫ D

0

∫ 0

−1
−2

h

[
K2

j φ
2
j +

(
∂φj

∂η

)2
]

|aj|2 ρ0

β2
j

dη dx, (2.34)

where D is the length of the domain in the x-direction. We non-dimensionalize T̂Ej with
the initial energy of the parent wave (abbreviated as ‘Pw’): Ej = T̂Ej/T̂EPw|t=0. Note that
Pw = 3 (i.e. wave-3) for triads, and Pw = 1 (i.e. wave-1) for self-interactions.

3. Triad interactions in a uniform stratification in the presence of a mild-slope
bathymetry

In this section, we consider resonant and near-resonant triads in a uniform background
stratification in the presence of a mild-slope bathymetry. Here, we will consider briefly the
horizontal wavenumber triad condition in uniform stratification as h is varied. Without any
loss of generality, the triad condition for the horizontal wavenumber is

K3 = K1 + K2. (3.1)

However, using (2.13b), it can be seen that the Kj are constants for uniform stratification.
As a result, triad conditions are satisfied everywhere in the domain, provided that the
conditions are satisfied perfectly for any given domain height.

3.1. Effect of bathymetry on the nonlinear coupling coefficients of resonant triads
Here, we focus on the nonlinear coupling coefficients in resonant triad interactions (i.e.
no detuning) in the presence of a uniform stratification and a weakly varying bathymetry.
Equation (2.27) revealed that the growth rate of the daughter waves is dependent on the
nonlinear coupling coefficients. For constant N, the nonlinear coupling coefficients (𝔑j)
in (2.25b) can be further simplified as

𝔑1 = iH
2h2ω1κ1κ2κ3

[
N2(K3 − K2)

{(K3

ω3
− K2

ω2

)
(K2M3 − K3M2)

}
+ ω1

{
(K2M3 − K3M2)

(
M2

2 + K2
2 − K2

3 − M2
3

)}
,

+ f 2 (M3 − M2)

{(K3

ω3
+ K2

ω2

)
(M3M2)−

(K2

ω3
+ K3

ω2

)(
M2

2 + M2
3

)}]
,

(3.2a)
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𝔑2 = iH
2h2ω2κ1κ2κ3

[
N2(K3 − K1)

{(K3

ω3
− K1

ω1

)
(K1M3 − K3M1)

}
+ ω2

{
(K1M3 − K3M1)

(
M2

1 + K2
1 − K2

3 − M2
3

)}
,

+ f 2 (M3 − M1)

{(K1

ω1
+ K3

ω3

)
(M1M3)−

(K1

ω3
+ K3

ω1

)(
M2

1 + M2
3

)}]
,

(3.2b)

𝔑3 = iH
2h2ω3κ1κ2κ3

[
N2(K1 + K2)

{(K1

ω1
− K2

ω2

)
(K2M1 − K1M2)

}
+ ω3

{
(K2M1 − K1M2)

(
M2

1 + K2
1 − K2

2 − M2
2

)}
+ f 2 (M1 + M2)

{(K1

ω2
+ K2

ω1

)(
M2

1 + M2
2

)
−
(K1

ω1
+ K2

ω2

)
(M1M2)

}]
,

(3.2c)

where κj =
√
M2

j + K2
j . Note that the above expressions are obtained only when the

vertical wavenumber condition is satisfied. The terms inside the square brackets are
constant and hence do not vary with the bathymetry h. The fact that Kj and Mj are
constants for a constant N is given in (2.14). For constant N, βj = −h(x)/H, which has
been used in (3.2a)–(3.2c), and this results finally in 𝔑j ∝ 1/h2. Hence for waves travelling
from a given fluid depth to a lesser depth (i.e. as the waves climb up a seamount), the
nonlinear coupling coefficients, and hence the growth rates, increase following the inverse
square rule.

In summary, for a uniform stratification, if three modes satisfy the resonant triad
condition at a particular domain height, then they would satisfy the resonant triad
condition for any domain height. Moreover, we also showed that the nonlinear coupling
coefficients increase (decrease) as the fluid depth decreases (increases) following an
inverse square law.

4. Triad interactions and self-interactions in a non-uniform stratification in the
presence of a mild-slope bathymetry: detuning effects

In § 3, it was shown that in the presence of a uniform stratification, if the triad condition
is satisfied between three modes at a particular h, then it is satisfied for all h. However,
in non-uniform stratification, such a simple outcome is not possible. In certain types of
triads, there can be a heavy mismatch in the horizontal wavenumber condition as the waves
involved in the triad interact in a region of varying domain height. This may affect the
energy transfer between the waves.

In this section, we study the factors that decide the detuning (or mismatch) between
the horizontal wavenumber of the waves as h is varied in the presence of non-uniform
stratification. Here, as well as in the rest of this paper, we will consider a Gaussian function
to represent the buoyancy frequency

N(z) = Nb + Nmax exp
[
− {

(z − zc)/Wp
}2
]
, (4.1)

where the parameters Nb,Nmax,Wp and zc are varied. This kind of profile (see figure 1b) is
a simplified representation of oceanic stratification and is used widely in the literature; see
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Grisouard, Staquet & Gerkema (2011), Mathur et al. (2014) and Varma & Mathur (2017).
We choose stratification profiles such that the pycnocline is above the topography. If the
topography cuts the pycnocline, then internal wave scattering may be significant, as shown
in Hall, Huthnance & Williams (2013).

4.1. Effect of varying h on the horizontal wavenumber condition for waves satisfying
f � ωj � Nb

First, we study the class of triads for which the angular frequencies of the constituent waves
obey the condition f � ωj � Nb. It is assumed that the parent wave (angular frequency
ω3) gives its energy to two subharmonic daughter waves of angular frequencies ω1 and
ω2, respectively; that is, the conditions ω1 < ω3 and ω2 < ω3 are always assumed. A
parameter α ∈ (0, 1) is defined such that ω1 = αω3 and ω2 = (1 − α)ω3. Two different
types of interactions, Class-1 and Class-2, are defined for which a parent wave can form a
triad with the subharmonic daughter waves.

4.1.1. Class-1 interactions
We consider three waves with angular frequencies ω3, ω1, ω2 such that ω3 = ω1 + ω2.
Furthermore, we assume that at a particular h, the horizontal wavenumber condition is
satisfied between mode i of wave-1, mode j of wave-2, mode k of wave-3, i.e.

K3(k) = K1(i) + K2(j), (4.2)

where i, j and k are not all equal. This constitutes a Class-1 interaction. Now, if the
stratification profile changes (the stratification profile will change in x–η coordinates
provided that h is varying), then the wavenumbers K1(i),K2(j),K3(k) will also change.
However, for a given change in h, all the wavenumbers may not change in a way such
that condition (4.2) is satisfied. For example, if K1(i) = func(h), then it is possible
that K2(j) /= c func(h), where c and func( ) denote an arbitrary constant and function,
respectively. Therefore, even though the triad condition may be satisfied at a particular
h, it may not be satisfied for all h. Hence Class-1 triads might get detuned as they interact
in a region of varying h.

To measure the detuning (or mismatch) in the horizontal wavenumber, we define a new
variable ΔK:

ΔK ≡ K3(k) − K1(i) − K2(j)

Kmin
, (4.3)

where Kmin is the minimum wavenumber of the three wavenumbers at a particular
x-coordinate. This ΔK acts basically as a non-dimensional measure of the detuning
between the waves, and for a resonant triad, ΔK = 0.

We now study how different (non-dimensional) wavenumbers K3(n) of frequency
ω3 change as h is varied in the presence of a non-uniform stratification. To obtain
K3(n) for a given stratification profile, we solve (2.13b) for h/H ∈ [−1,−0.2]. The
functional form of h, as long as it is mildly varying, does not influence the
wavenumbers or detuning at a particular h. The non-uniform stratification profile
given by (4.1) is used throughout this paper. The stratification profiles are chosen
such that Nmax = (2Nb, 4Nb, . . . , 12Nb), Wp = (H/200, 2H/200, . . . , 5H/200) and zc =
(H/80,H/40,H/20,H/10); and we consider all possible (120) combinations. Moreover,
ω3 = 0.1Nb and f = 0 are used consistently for all combinations. Figure 3 shows the
variation of K̂3(n) ≡ K3(n)(h)/K3(n)(H) with h/H for different modes n. Figures 3(a–c)
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Figure 3. Variation of K̂3(n) with h/H for two different stratification profiles. For stratification profile N(1):
(a) modes 1–5, (b) modes 6–10, and (c) modes 11–15. For stratification profile N(2): (d) modes 1–5, (e) modes
6–10, and ( f ) modes 11–15.

uses the stratification profile N(1) with the parameters Nmax = 2Nb, Wp = H/200 and
zc = H/80; figures 3(d–f ) use the profile N(2) given by Nmax = 10Nb, Wp = H/50 and
zc = H/10. Note that N(1) has a sharp pycnocline, while N(2) has a larger Wp resulting
in a wider pycnocline. For profiles where all three parameters are low (e.g. N(1)), K̂3(1)
is nearly constant for some range of h/H and then starts decreasing. This can be seen in
figure 3(a), where the first five modes exhibit this behaviour. Moreover, for profiles where
all zc,Wp,Nmax are high (e.g. N(2)), K̂3(1) decreases almost linearly with h/H, as can be
seen clearly in figure 3(d). For any profile, K̂3(1) always monotonically decreases as the
fluid depth is reduced for h/H ∈ [−1,−0.2]. However, this behaviour does not hold for
any mode other than mode-1. For example, for zc = H/10 (regardless of Wp,Nmax), K̂3(2)
increases for some h/H as fluid depth is reduced; see figure 3(d) (blue curve). Similar
behaviour is observed for modes 3, 4 and 5 when Wp is low. In summary, the variation of
K̂3(1) with h/H can be different from that of the higher mode’s wavenumber, which can
result in detuning.

For profiles with high Wp, the K̂3(n) for n > 10 start to collapse on each other; see
figure 3( f ). In such scenarios, since K̂3(n) remains nearly the same, ΔK will not be induced
by the difference in higher modes’ K̂3(n). In general, it was observed that as Wp is reduced,
n has to be higher for the modes to collapse on each other.

The interaction of a mode-1 internal wave (wave-3) with different modes in the presence
of two different non-uniform stratification profiles is considered next. These profiles are a
part of the 120 profiles that we mentioned already. Sample results are shown in figure 4 in
which the frequencies and stratification profile parameters are as follows:

(i) N(3): ω3 = 0.1Nb, f = 0,Nmax = 10Nb, Wp = H/100 and zc = H/10;
(ii) N(4): ω3 = 0.1Nb, f = 0,Nmax = 10Nb, Wp = H/50 and zc = H/20.
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Figure 4. Variation of detuning (ΔK) with h/H for various modal interactions pertaining to the stratification
profiles (a) N(3), and (b) N(4). The legends indicate what daughter waves were involved in the triad interactions,
where α ≡ ω1/ω3.

For each profile, we have shown five different modal interactions. Figure 4 reveals
clearly that the detuning can be quite sensitive to the changes in the domain height.

4.1.2. Class-2 interactions: a special case of triad interactions
The interaction in Class-2 is between the nth modes (where n ∈ Z

+) of different waves
constituting a triad. For example, if mode-1 with frequency ω1, mode-1 with frequency ω2,
and mode-1 with frequency ω3 form a triad, then it is classified as a Class-2 interaction.
This kind of triad is possible when f � ωj � Nb. To show how this interaction is possible,
we consider the eigenproblem concerning the nth mode of the jth wave:

∂2φj(n)

∂η2 + K2
j(n)χ

2
j φj(n) ≈ ∂2φj(n)

∂η2 +
(Kj(n)

ωj

)2

N2φj(n) = 0, (4.4)

where we used χj ≈ N/ωj (under the approximation f � ωj � Nb), and the system
is solved using the boundary conditions φj(n) = 0 at η = 0 and η = −1. However, by
Sturm–Liouville theory, for a given operator (here ∂2/∂η2) and weight function (here
N(z)2), the nth eigenvalue (here Kj(n)/ωj) is unique, i.e. Kj(n)/ωj = constant for all j.
Therefore, if the triad condition for frequency ω3 = ω2 + ω1 is valid, then this implies
automatically the validity of the wavenumber condition K3(n) = K1(n) + K2(n).

The situation mentioned above is true for all stratification profiles satisfying f �
ωj � N(z) (at all z-locations). This is especially important because in the presence of
a bathymetry, the stratification profile changes in the x-direction in x–η coordinates.
However, for Class-2 interaction, all three non-dimensional wavenumbers (eigenvalues)
are the same functions of h since they are the same eigenvalues divided by their frequency.
Thus the resonant triad condition will be still be satisfied even if h is varied significantly
(i.e. variation of h will not cause detuning). Note that in the parameter regime f � ωj �
N(z), only Class-2 self-interactions were observed in numerical experiments of Sutherland
(2016), hence Class-2 triads may always be dominated by self-interactions, resulting in the
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parent wave’s energy transfer to the superharmonics instead of subharmonics. As a result,
Class-2 triads may not be as relevant practically as Class-2 self-interactions.

4.2. Effect of bathymetry on horizontal wavenumber condition for Class-1
self-interaction

Detuning can also be introduced during a self-interaction process as h is varied. Following
the same terminology as before, we classify self-interactions as Class-1 and Class-2.
As shown by Wunsch (2017), Class-2 self-interactions will always be slightly detuned,
where the detuning increases as f increases. This is due to the fact that in a non-uniform
stratification, if the nth mode of ω satisfies the dispersion relation, then the nth mode of
2ω will be able to satisfy it only approximately.

Following (4.3), the detuning for a self-interaction process is defined as

ΔKs = K3(k) − 2K1(i)

K1(i)
, (4.5)

where wave-3 is the superharmonic (daughter) wave, while wave-1 is the parent wave,
i.e. ω1 = ω3/2 (following the convention used throughout this paper that wave-3 has the
highest frequency). The amplitude evolution equations for a self-interaction process are
discussed in § 2.2.2.

For the range f � ωj � N(z), the Class-2 self-interaction process will follow principles
similar to those outlined in § 4.1.2. As mentioned in § 4.1.2, significant variations in h
for this frequency range will not introduce detuning in Class-2 self-interactions. We now
study the other end of the parameter space, where (N2 − ω2

j ) ≈ N2, which was the basic
approximation used in much of our analysis in § 4.1, is no longer valid. Hence out of
Class-1 and Class-2 self-interactions, only the latter are possible. This would mean that
as the domain height changes, the detuning introduced could be significant. Interestingly,
though, if the wavenumbers involved in the self-interaction change with h/H in a similar
way, then the detuning is insignificant; see figure 5. The frequencies and the stratification
profile parameters used here are:

(i) N(6): Nmax = 10Nb, Wp = H/100 and zc = H/10;
(ii) N(7): Nmax = 10Nb, Wp = H/100 and zc = H/20;

and f = 0 always. Figure 5(a) uses the set N(6), and shows the variation of the horizontal
wavenumber of mode-2 (ω3 = 0.89Nb) and mode-3 (ω1 = ω3/2). These modes satisfy the
condition for resonant self-interaction. We observe that these two wavenumbers behave
quite similarly for a wide range of h/H, hence the detuning, shown in figure 5(b), is small
(and constant for an appreciable range), in spite of the fact that it is a Class-1 interaction.
The same phenomenon is also shown for several other self-interaction combinations in
figure 5(c), where the parameter set N(7) is used.

The detuning for all the combinations shown stays constant for a certain range of h/H.
We note in passing that Class-1 triad interactions may also give rise to a small detuning
for a range of h/H, provided that all the modes involved behave in a similar way. However,
this is a more stringent condition than a self-interaction process, where only two waves are
involved. Even though equations derived in § 2 are valid only when ΔK � 1 (or ΔKs �
1), there are a significant number of interactions where ΔK, or ΔKs, is a small quantity
even for O(1) changes in depth and the wavenumber. For example, for interactions shown
in this section, and for Class-2 interactions, detuning can stay as a small quantity even for
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Figure 5. (a) Variations of K3(2) and K1(3) with h/H for the parameter set N(6). (b) Variation of detuning with
h/H for the same case. (c) The detuning for three different self-interaction combinations for the parameter set
N(7). Here, the notation (Pa)(Db) implies ‘Parent wave’ with mode-a, and ‘Daughter wave’ with mode-b.

O(1) changes in depth. However, we do note that in several triad interactions, detuning can
be sensitive to h, and in those cases, O(1) changes in depth cannot be modelled accurately
by the wave amplitude equations.

To summarize, in the presence of a non-uniform stratification, we divide triad and
self-interactions into two classes: Class-1 and Class-2. Class-1 interactions contain waves
whose mode numbers are not all the same, while Class-2 interactions contain waves
that are the nth modes of their respective frequencies. Class-1 interactions may undergo
detuning with the variation in h, irrespective of the frequency. However, interestingly,
certain Class-1 self-interactions do not undergo detuning as h is varied inside a certain
range. For both triads and self-interactions, Class-2 interactions can exist only for f �
ωj � N(z), and do not get detuned as h is varied.

5. Variation of growth rates and nonlinear coupling coefficients with depth for
non-uniform stratification

In this section, we focus on the effects of domain height variation on the growth rate (σ ) of
triads, and the nonlinear coupling coefficient N3, which provides a measure of the growth
of the daughter wave in a self-interaction. The non-uniform stratification profile (4.1) will
be used in this section.

5.1. Variation of growth rates with domain height for triads
Triad interactions are important for the decay of internal waves near the 28.9◦ latitude
(MacKinnon & Winters 2005; MacKinnon et al. 2013), specifically the mode-1 wave,
which is the most energy containing mode (Vic et al. 2019). Here, we study this
phenomenon in the high-latitude region (f /ω3 ≥ 0.3) for varying N(z) and h. The
mode-1 wave (which, being the parent wave, is wave-3) can decay forming various triad
combinations; we restrict the subharmonic daughter waves (wave-1 and wave-2) up to
mode-50. Moreover, for studying growth rates in the presence of varying h, the triads are
identified separately at different h/H. This is because a triad combination at a particular
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Figure 6. Contours of non-dimensional growth rate (σ/σref ) of triads formed between mode-n, mode-m and
mode-1 (i.e. wave-3). Blue and red, respectively, represent Branch-1 and Branch-2 triads, and both colours
represent positive values. For Branch-1 triads, mode-m(n) is wave-1(2), while for Branch-2 triads, mode-n(m)
is wave-1(2).

h/H value may not satisfy the horizontal wavenumber condition at a different h/H (as
explained in § 4). Three main branches of triads are considered here for the mode-1 internal
wave:

|K3| = |K2| − |K1|︸ ︷︷ ︸
Branch-1

or |K3| = |K1| − |K2|︸ ︷︷ ︸
Branch-2

or |K3| ≈ |K1| + |K2|︸ ︷︷ ︸
Branch-3

. (5.1)

For Branch-1(2) triads, the wavenumber of wave-2(1) is larger in magnitude than that
of wave-1(2). The only possible Branch-3 interaction is a Class-2 interaction, where
both the daughter waves are also mode-1 of their respective frequencies. However, this
interaction, like the Class-2 self-interaction, also undergoes heavy detuning for high f
values. Therefore, Branch-3 being an inefficient energy transfer pathway, we restrict our
focus to Branch-1 and Branch-2. Triads are studied for f /ω3 = (0.3, 0.4, 0.45) in the
presence of various stratification profiles. The triads are computed for α ∈ [0.31, 0.5],
α ∈ [0.41, 0.5] and α ∈ [0.455, 0.5] for f /ω3 = 0.3, 0.4 and 0.45, respectively (see § 4.1
for the definition of α).

Figure 6 shows the non-dimensionalized growth rate contour for a mode-1 wave. All
growth rates σ are non-dimensionalized with a reference growth rate value σref , where
the latter denotes the maximum growth rate for all Branch-1 triads at h = −H (hence the
value of A3 does not impact the results shown). The frequency of the mode-1 wave is
ω3/Nb = 0.2, while f /ω3 = 0.4 is taken. The stratification profile is given by:

(i) N(8): Nmax = 10Nb, Wp = H/50, zc = H/20.

Branch-1(2) triads have the higher (lower) frequency daughter wave propagating in
the same direction as the parent wave. Figure 6 reveals that from both branches, the
highest growth rates are centred around n ≈ m. However, the majority of the white region
contains resonant triads, but their growth rates are significantly lower in comparison
to that clustered around n ≈ m. Note that the central region is asymmetric between
Branch-1 and Branch-2 triads, and this is purely a consequence of the internal wave’s
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dispersion relation. When the lower frequency daughter wave (wave-1) travels in the same
direction as the parent wave (i.e. Branch-2), wave-1’s mode number (n) should always be
higher than wave-2’s mode number (m) for the triad condition to be satisfied. However, for
Branch-1, where wave-2 travels in the same direction as the parent wave, the mode number
of wave-2 (n) need not be higher than wave-1’s mode number (m).

The clustering around n ≈ m is observed consistently for any setting or stratification
profile considered in our study. As a result, instead of focusing on all possible triads,
we choose a specific line of interaction near the central region and plot the growth rate
along that line of interaction. For example, the interaction lines (n, n), (n + 1, n) and
(n, n + 1) are plotted for n ∈ (1, 50) in figures 7(a–c) for Branch-1 triads, and (n + 4, n)
in figure 7(d) for Branch-2 triads. The notation (a, b) means wave-1(2) is mode-a(b). The
notation is same for both branches. The dominant nature of the interaction lines (n, n),
(n + 1, n) and (n, n + 1) has also been observed in Young et al. (2008) while studying the
stability of mode-1 internal waves in the presence of near inertial daughter waves (with
frequency f ). Furthermore, figure 7 also reveals that the different lines are sensitive to h.
For completeness, we explore another stratification profile given by:

(i) N(9): Nmax = 10Nb, Wp = H/50, zc = H/80;

and the corresponding plots are in figure 8. Both figures 7 and 8 show that the growth rates
along different lines of interaction have a significant oscillatory nature with n. In general,
line (n, n) has the largest amplitude of oscillations. More importantly, the growth rate of a
modal combination can change significantly as h changes. For example, figure 7(a) shows
that the most unstable modal combination at h = −H is (5, 5). However, for h = −0.8H,
the most unstable triad is the modal combination (4, 4). Moreover, the combination (5, 5)
has approximately 0.25 times the (4, 4) growth rate at h = −0.8H. This behaviour can
be seen for the line (n, n) in both figures 7 and 8. This means effectively that the growth
rate of certain daughter wave combinations can be sensitive to changes in h (especially
the combinations that involve lower modes). Such combinations may not be effective in a
region of varying h because of the significant drop in the growth rates. However, sensitivity
to h is reduced slowly as the mode number is increased for both the branches. Even though
Branch-2 triads have considerably lower growth rates for the profiles N(8) and N(9), for
different profiles (not displayed here), Branch-2 can have σ comparable to that of the
Branch-1 triads.

5.1.1. Effect of variation of f /ω3 and ω3/Nb on different branches
For both stratification profiles used in § 5.1, f /ω3 = (0.3, 0.45) for ω3/Nb = (0.2, 0.7) is
explored (hence a total of four different combinations). For N(8), in all four cases, the
qualitative behaviour of all Branch-1 lines is similar to figure 7. However, the maximum
growth rate has a significant increase from h = −H to h = −0.8H for ω3/Nb = 0.7.
Moreover, Branch-2 triads’ maximum growth rate significantly increases in two cases
of f /ω3 = 0.3 in comparison to f /ω3 = 0.4. For N(9), the qualitative behaviour of line
(n, n) is similar to what was observed in f /ω3 = 0.4. In general, the maximum growth
rate is the (n, n) modal combination. Interestingly, it is found that the maximum growth
rate among all triads increased nearly twice from h = −H to h = −0.8H for f /ω3 = 0.45,
ω3/Nb = 0.7. A significant increase in maximum growth rate is also found for ω3/Nb =
0.2 for the same f . For f /ω3 = 0.3, ω3/Nb = 0.7, the behaviour of line (n + 1, n) has a
significant oscillation with n, similar to line (n, n). Note that this is different from the line
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Figure 7. Plots of non-dimensional growth rates of mode-1 triads for profile N(8), with f /ω3 = 0.4 and
ω3/Nb = 0.2: (a) line (n, n) of Branch-1; (b) line (n + 1, n) of Branch-1; (c) line (n, n + 1) of Branch-1;
and (d) line (n + 4, n) of Branch-2.

(n + 1, n) shown in figure 8. In general, it is also observed that reducing the fluid depth
increases the maximum growth rate of all possible triads even without considering the β
term of the parent wave amplitude.

5.2. Variation of nonlinear coupling coefficient with domain height for self-interaction
process

Here, we restrict to self-interaction of internal gravity waves that do not experience
significant detuning ΔK with changes in h. In this subsection, we focus mainly on the
superharmonic wave’s nonlinear coupling coefficient N3 given in (2.30b).

5.2.1. Class-1 interactions
As mentioned previously in § 4.2, some Class-1 self-interactions can have negligible
detuning even for a finite range of h/H. We study the variation of Ñ3 under such
circumstances; the different interactions considered (denoted by Ip) are as follows:

I1 – [P3,D2] I2 – [P4,D2] I3 – [P4,D3] I4 – [P5,D3] I5 – [P5,D4]
I6 – [P6,D3] I7 – [P6,D4] I8 – [P6,D5] I9 – [P7,D4] I10 – [P7,D5]

Here, the notation [Pm,Dn] denotes that the parent wave is the mth mode, and the daughter
(superharmonic) wave is the nth mode.

The stratification profiles are chosen such that Nmax = (2Nb, 5Nb, 10Nb), Wp =
(H/200,H/100,H/50) and zc = (H/40,H/20,H/10). For the profiles considered,
we study variations of Ñ3 ≡ |N3|/max(|N3|) for interactions that strictly satisfy
|ΔKs| < 0.01 for h/H ∈ [−1,−0.8]. Figure 9 shows variations of Ñ3 for two Class-1
self-interactions. Figure 9 reveals that interactions can have a non-monotonic variation
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Figure 8. Plots of non-dimensional growth rates of mode-1 triads for profile N(9), with f /ω3 = 0.4 and
ω3/Nb = 0.2: (a) line (n, n) of Branch-1; (b) line (n + 1, n) of Branch-1; (c) line (n, n + 1) of Branch-1;
and (d) line (n + 6, n) of Branch-2.

of Ñ3 with h/H. Moreover, the figure reveals that even relatively small changes in h/H
can lead to significant variations in Ñ3. For all interactions Ip considered in the list
above, small changes in h/H can cause significant change in Ñ3. Some generic features
are summarized below. Sensitivity of Ñ3 to h/H increases as zc is increased for a given
Wp,Nmax. For every interaction, there are specific combinations of Wp,Nmax where this
behaviour is not exhibited. Moreover, increasing Wp also increases the sensitivity of Ñ3 to
changes in h/H. Increasing Nmax for given (zc,Wp) also increases the sensitivity of Ñ3 to
h/H.

5.2.2. Class-2 interactions
Initially, we study the variation of N3 with h for Class-2 self-interactions. To this end, we
consider N3 of the first five modes for 27 different stratification profiles. Similar to the
case of Class-1 self-interactions in § 5.2.1, the stratification profiles are chosen such that
Nmax = (2Nb, 5Nb, 10Nb), Wp = (H/200,H/100,H/50) and zc = (H/40,H/20,H/10),
where we consider all possible (33) combinations. Out of the 33 = 27 combinations, nine
profiles are chosen for plotting in figure 10 and thereby elucidating the effect of each
individual parameter in the stratification profile. For all cases, ω3 = 0.1Nb and f = 0.
For some higher modes, the nonlinear coupling coefficient has a band-like structure;
there exists some range of h/H where Ñ3 is significantly higher in magnitude than that
corresponding to other values of h/H. For example, the mode n = 5 corresponding to
Nmax = 5Nb in figure 10(c) reveals a large increase in Ñ3 near h/H ≈ −0.75, while
it is much lower at either end. Wunsch (2017) also observed such a banded structure
in the self-interaction of different modes as the stratification profile was changed.
The reason behind the direct analogy between our observations and that of Wunsch (2017)
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Figure 9. Variation of Ñ3 with h for Class-1 self-interactions: (a) I1 and (b) I10. Each panel shows plots for
two different stratification profiles (for details, see legend).
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Figure 10. The variation of non-dimensionalized nonlinear coupling coefficient (Ñ3) of wave-3 (the
superharmonic wave) as h is varied. Altogether, there are nine blocks, each consisting of five units, and each
unit represents the mode number (given by n). For each block, (Nmax,Wp, zc) is fixed. The figure is further
subdivided into three horizontal panels (each panel consisting of three blocks): (a) Nmax = 2Nb, Wp = H/200,
and zc is varied; (b) Nmax = 5Nb, zc = H/20, and Wp is varied; and (c) zc = H/10, Wp = H/50, and Nmax is
varied.

is straightforward – when an internal wave travels to a different domain height, essentially
it travels to a different stratification profile.

For mode-1, when zc,Wp,Nmax are all on the lower side, we observe that Ñ3 ∝ 1/h4.
For higher Nmax, even lower values of zc and Wp do not have the property Ñ3 ∝ 1/h4. In
general for modes > 1, proportionality to 1/h4 is lost faster as zc,Wp,Nmax are increased.

943 A33-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

43
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.431


Effects of mild-slope bathymetry on internal wave triads

In several profiles, Ñ3 of higher modes is also more sensitive to changes in h than Ñ3 ∝
1/h4.

6. Higher-order self-interactions in the presence of a small-amplitude monochromatic
topography

The focus of this section is on higher-order self-interactions between a parent wave of
frequency ω1 and a superharmonic daughter wave of frequency ω3 = 2ω1 in the presence
of a small-amplitude monochromatic topography. In such scenarios, the topography can
act as a ‘zero frequency wave’, which can lead to resonant higher-order interactions,
and is similar to the Class-2 studied in Alam et al. (2009) for surface gravity waves.
Such higher-order self-interactions might be important for mode-1 internal waves
propagating in regions where f > ωd/2 (where ωd is the semidiurnal frequency), since
triad interactions involving two (subharmonic) daughter waves is not possible. Moreover,
resonant self-interaction for a mode-1 internal wave of frequency ωd is also not possible
when f > ωd/2 for any stratification profile, as a consequence of its dispersion relation
(Wunsch 2017). This arises from the fact that a mode-1 parent wave with frequency ωd
and a superharmonic daughter wave with frequency 2ωd fail to satisfy the horizontal
wavenumber condition for a self-interaction process. Note that higher-order interactions
are different from Bragg resonance focused on in Buhler & Holmes-Cerfon (2011), which
is also a mechanism via which a parent mode-1 wave can decay by transferring its energy
to the higher modes. In a standard Bragg resonance, resonant wave–topography interaction
occurs if the bottom topography has a wavenumber kb such that (ω1, kb ± k1) satisfies the
dispersion relation.

To study higher-order self-interactions, we follow the streamfunction ansatz used in
Couston et al. (2017) for studying internal wave Bragg resonance, and in Lahaye &
Llewellyn Smith (2020) for studying internal wave scattering due to interaction with a
large-amplitude topography. This ansatz for the streamfunction of the jth wave is

Ψj = Aj(x) φj(η; x) e−iωjt + c.c. (6.1)

The corresponding buoyancy frequency and meridional velocity are given by

Bj = iN2

ωj

∂Aj

∂x
φj e−iωjt + c.c., (6.2)

Vj = if
ωj

Aj

h
∂φj

∂η
e−iωjt + c.c. (6.3)

The above-mentioned ansatz can also be used to study systems where the detuning is
ΔKs ∼ O(1) in the presence of a flat or slowly varying bathymetry. The functions φj are
same as the functions used in § 2 and are obtained by solving (2.13b). Here we consider
only a small-amplitude topography whose wavenumber is comparable to the parent wave,
i.e. εh � O(1) and εk ∼ O(1).

To study higher-order interactions of a parent wave propagating in the presence of a
small-amplitude topography, we also consider the linear scattering of the parent wave.
Note that the linear scattering of the parent wave on its own is not resonant (we do not
consider topography wavenumbers that allow resonant Bragg scattering) and hence over
a long distance has a negligible effect on the parent wave’s amplitude. However, even
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the non-resonant linear interaction of the parent wave with the topography, which leads to
higher modes with ω1 frequency, can impact significantly the growth of the superharmonic
wave. To derive the linear scattering of the parent wave as it moves through a topography,
we assume the streamfunction of the waves to be

Ψ1 =
n=Mn∑
n=1

A(1,n)(x) φ(1,n)(η; x) e−iω1t + c.c., (6.4)

where Mn is the maximum mode number after which the series is truncated, and φ(1,n) is
the nth eigenfunction of the ω1 frequency. The streamfunction ansatz (6.4) is substituted in
(2.5), and similar to § 2, the linear terms of (2.5) are multiplied by φ(1,n) and integrated in
the η direction. This leads to Mn ordinary differential equations, where the nth differential
equation is given by

γ (3)n

[
∂2A(1,n)

∂x2 + K2
(1,n)

A(1,n)

h2

]

= −
m=Mn∑
m=1

[
2γ (5)(m,n) + γ

(6)
(m,n)

h2

(
∂h
∂x

)2

−
2γ (7)(m,n)

h
∂h
∂x

]
A(1,m)

−
m=Mn∑
m=1

[
γ
(8)
(m,n) −

γ
(5)
(m,n)

h

(
∂2h
∂x2

)]
A(1,m)

−
m=Mn∑
m=1

2

[
γ
(4)
(m,n) −

γ
(5)
(m,n)

h
∂h
∂x

]
∂A(1,m)

∂x
, (6.5)

where K(1,n) is the corresponding eigenvalue of φ(1,n). Moreover, γ (∗)(m,n) are evaluated
using the expressions given in Appendix A. The above equations are similar to the
equations derived in Lahaye & Llewellyn Smith (2020), except that we do not consider
waves that travel in the direction opposite to the parent wave since they are assumed to be
negligible. Now that we have the full wave spectrum with ω1 frequency by solving (6.5),
we model the evolution of the superharmonic wave. For simplicity, the feedback to the
parent wave is neglected, which is analogous to the pump wave approximation used in § 2.

The streamfunction of the superharmonic wave Ψ3 is substituted in (2.5), and the linear
terms are multiplied by φ3 and integrated in the η direction. This leads to

LIN3 ≡
[(
γ
(3)
3

∂2A3

∂x2

)
+ K2

3

(A3

h2 γ
(3)
3

)]
e−iω3t

+ 2

[
γ
(5)
3
h2

(
∂h
∂x

)2

− γ
(7)
3
h

∂h
∂x

]
A3 e−iω3t

+
[
γ
(6)
3
h2

(
∂h
∂x

)2

− γ
(5)
3
h

(
∂2h
∂x2

)
+ γ

(8)
3

]
A3 e−iω3t

+ 2

(
γ
(4)
3 − γ

(5)
3
h

∂h
∂x

)
∂A3

∂x
e−iω3t, (6.6)
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where LIN3 contains only linear terms, and models the propagation of superharmonic wave
in the presence of a topography. Note that a superharmonic wave cannot exchange energy
with higher modes of ω3. Now we move on to deriving the nonlinear terms that force
the superharmonic wave. Since we are focusing on higher-order interactions, all nonlinear
terms (including terms containing x-direction derivatives of φ and h), which have the
same angular frequency as the superharmonic wave, are retained. In the terrain-following
coordinates, this would, however, lead to a large number of terms that need to be evaluated.
This issue can be circumvented following the procedure outlined below. The nonlinear
terms in the terrain-following coordinates are given by the right-hand side of (2.5).

We assume that the superharmonic wave is forced nonlinearly by the ω1 spectrum. To
model this, we substitute Ψ1,B1,V1 into the nonlinear terms of (2.5). Note that we can
obtain B1 and V1 from (6.2) and (6.3), respectively. After the substitution, similar to the
linear terms of wave-3, the nonlinear terms are multiplied by φ3 and integrated in the
η-direction within the domain limits. The resultant expression obtained is

〈NL3〉 =
∫ 0

−1
φ3

[
iω3 J {(Lxx + Lηη)Ψ1, Ψ1} + Lx(J {B1, Ψ1})− f Lη(J {V1, Ψ1})

]
dη.

(6.7)
Therefore the final superharmonic wave equation can be written in a compact form:

LIN3 = 〈NL3〉. (6.8)

In (6.6) and (6.8), instead of splitting Aj into a product of slowly varying amplitude and
rapidly varying phase part, we simply solve the equations numerically by retaining Aj as
it is. This is mainly because, as mentioned above, the number of nonlinear terms would be
significantly high in terrain-following coordinates. For high ratios of f /ω1 (for example,
north of the critical latitude), the parent wave cannot self-interact resonantly with the
superharmonic wave in the presence of a flat bottom. However, a resonant higher-order
self-interaction can occur provided that the topography has a wavenumber kb such that

kb = k3 − 2k1, (6.9)

where k3 is the wavenumber of the superharmonic wave, and the k1 is the wavenumber of
the parent wave. In such scenarios, the daughter wave’s amplitude will grow consistently.
However, this being a higher-order interaction, the growth rate of the daughter wave
(consequently, the decay of the parent wave) can be expected to be slower than a resonant
self-interaction.

To elucidate and validate the higher-order self-interaction process, we perform
numerical simulations by solving the complete 2-D Boussinesq equations and comparing
the output with the results of the reduced-order model derived in this section. We run three
simulations where the parent and daughter waves’ frequencies are held fixed. They are
denoted by Case-1, Case-2 and Case-3. For all the simulations, the parent wave frequency
is ω1/Nb = 0.2, where ω1 is the semi-diurnal frequency, i.e. ω1 = 1.4 × 10−4 s−1. Both
the parent and daughter waves are mode-1 of their respective frequencies (ω1 and 2ω1).
These parameters would result in a significant detuning between the two waves at high f
values. The bathymetry profile is given by

h = −H + [εhH sin (kb(x − xc))] × 1
1 + (x − xc)32/W32

T
, (6.10)

where εh = 0.01, H = 3000 m, and domain length L = 540H and xc = L/2 are held
fixed across all three simulations. The stratification profile parameters, f value, incoming
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Wp/H zc/H Nmax/Nb f /ωd umax (m s−1) WT/L

Case-1 1/16 1.5/1000 4.5 0.58 0.0120 0.30
Case-2 29.5/400 1.5/1000 7 0.64 0.0227 0.30
Case-3 1/20 1.5/1000 10 0.60 0.0232 0.31

Table 1. The stratification profile parameters, Coriolis frequency WT , and velocity amplitude of the three
waves for Case-1, Case-2 and Case-3.
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Figure 11. Higher-order self-interaction of mode-1 internal waves in the presence of a monochromatic
bathymetry for three different cases: (a) Case-1, (b) Case-2, and (c) Case-3. The topography profile (not to
scale) is shown for all three cases.

maximum velocity of the parent mode (umax), and WT for the three simulations are given
in table 1.

The results after solving the reduced-order model and 2-D Boussinesq equations for
the above-mentioned parameters are shown in figure 11. The 2-D Boussinesq equations
are solved using Dedalus (Burns et al. 2020). More details on the simulations are
given at the end of § 7. In figures 11(a–c), the amplitude of the daughter wave is
observed to be slowly increasing due to the higher-order self-interaction. Moreover, the
daughter wave’s amplitude also rapidly oscillates because of the non-resonant standard
self-interaction process between the parent wave and the daughter wave. In the absence of
a varying bathymetry, only the rapid non-resonant interaction would be present without
any consistent growth in the daughter wave’s amplitude. Therefore, we have shown that
for scenarios where Bragg resonances are not resonant, higher-order interaction might be
a possible mechanism that can scatter the energy of the mode-1 internal wave.

7. Numerical validation

In this section, we provide numerical validations for the reduced-order equations (2.29a)
and (2.29b) derived through multiple-scale analysis for two different cases. This is done
by solving the 2-D Boussinesq equations in terrain-following coordinates using the
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open-source, pseudo-spectral code Dedalus (Burns et al. 2020). The above-mentioned
equations in primitive variables along with viscous and hyperviscous terms (the latter
terms damping much smaller scales than the former) are

∂u
∂t

+ Lx(P)+ u Lx(u)+ w Lη(u) = ν Lηη(u)+
(
ν6z

H6
∂6u
∂η6 + ν6x

∂6u
∂x6

)
, (7.1a)

∂w
∂t

+ Lη(P)+ u Lx(w)+ w Lη(w) = ν Lηη(w)+ B, (7.1b)

∂B
∂t

+ N2w + u Lx(B)+ w Lη(B) = ν Lηη(B)+
(
ν6z

H6
∂6B
∂η6 + ν6x

∂6B
∂x6

)
, (7.1c)

Lx(u)+ Lη(w) = 0. (7.1d)

Here, (u,w) = (Lη(Ψ ),−Lx(Ψ )), meaning that here the velocity field is defined in x–η
instead of x–z coordinates. In all our simulations, ν = 10−5 m2 s−1, ν6x = 108 m6 s−1 and
ν6z = 81 m6 s−1. Equations (2.29a) and (2.29b) are solved using the fourth-order Runge
Kutta method for time stepping and a second-order-accurate discretization scheme for the
term ∂aj/∂x, where the scheme is forward or backward depending on the group speed
direction of the particular wave. We estimate the validity of two different cases.

For Case-1, self-interaction of a plane wave in the presence of a constant h is simulated.
The parameters of the simulation are H = 3000 m and Nb = 10−3 s−1. The frequency of
the parent wave is taken as ω1/Nb = 0.447, while f = 0 is chosen. The stratification profile
(4.1) is considered, and the parameters used are:

(i) N(13): Nmax = 3Nb, Wp = 3H/100, zc = H/10.

Mode-3 of the parent wave frequency (ω1) in this scenario self-interacts resonantly with
mode-2 of 2ω1 (Varma & Mathur 2017). The parent wave streamfunction input (initial
condition) to the full numerical simulation is given by

Ψ = A1φ1 sin(k1x) exp(−(x − xc)
2/W2

1 ), (7.2)

where |A1| = 0.06, W1 → ∞ is chosen (note that xc can be any value since W1 → ∞), and
Ψ is used to obtain (u,w). The numerical code is also initialized with the corresponding
buoyancy frequency for the streamfunction given in (7.2).

For estimating the energy of parent and daughter waves from the numerical simulations,
only the potential energy of the waves is considered. This is valid because when f = 0,
energy is partitioned equally between potential energy and kinetic energy. For evaluating
the potential energy of the two waves, we take the Fourier transform of B in the x-direction.
Then by simply isolating the k3 and k1 wavenumbers, the respective fields due to wave-3
and wave-1 can be obtained for all time. The resulting energy evolution of the waves for
Case-1 is shown in figure 12(a). At the end of the simulation, the parent wave energy was
observed to be 86 % of the total energy in the Boussinesq equations simulation, while
the reduced-order model predicted that 85.5 % of the total energy will be contained in
the parent wave at the specified time interval. Moreover, at the end of the simulation, the
daughter wave’s energies in the Boussinesq equations simulation and the reduced-order
model are 13.0 % and 14.4 %, respectively.
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Figure 12. (a) The energy evolution of waves for Case-1 from reduced-order equations and numerical
simulations. The superscript (N) denotes the results from numerical simulation of 2-D Boussinesq equations.
(b) The energy evolution of waves for Case-2 from reduced-order equations and numerical simulations in the
time span t∗ = 30 to t∗ ≈ 40, where t∗ ≡ ω1t/2π. (c) Fourier transform of B at η = −0.42 and t∗ = 40. Here,
W1 and W3 indicate wave-1 and wave-3, respectively.

In Case-2, we consider the self-interaction of a parent wave packet travelling in the
presence of a slowly varying bathymetry. The parameters considered are H = 3000 m and
Nb = 2.5 × 10−3 s−1. The following stratification profile is used:

(i) N(14): Nmax = 5Nb, Wp = 3H/100, zc = H/10.

Here, ω1/Nb = 0.447 with f = 0 are chosen. Mode-3 of ω1 self-interacts resonantly with
mode-2 of 2ω1 for h/H ∈ [−1,−0.8]. The bathymetry is given by

h = −H + 0.1H
[
tanh((x − xt1)/Wt1)+ tanh((xt2 − x)/Wt2)

]
, (7.3)

where Wt1 = 2.7H, Wt2 = Wt1/1.3, xt1 = 25H and xt2 = 83H were considered, where
100H is the domain length in the x-direction. The bathymetry shape can be visualized in
figure 13.

The parent wave streamfunction of the form (7.2) is used with |A1| = 0.022, W1 =
3.57H, and xc = 10.2H is chosen. Here, k1 is evaluated at h = −H for the initial
conditions. The xc value is chosen such that the wave packet is just at the bottom of the
‘plateau-like’ topography at t = 0 (as shown in figure 13a). The bathymetry is considered
to be slowly varying so that the wave packet scattering by the bathymetry is negligible.
Here, the same procedure of energy evaluation as for Case-1 is followed, except that the
energy is evaluated from t∗ = 30, when the entire energy of both wave packets is almost
confined to the top of the plateau region (where h = −0.8H). This makes the energy
evaluation straightforward. We consider B only in the range x/H ∈ [33, 68] (where most
of the energy is contained), and then again perform a Fourier transform to separate the
energy of the daughter and parent wave packets.

In Case-2, since wave packets are considered, the Fourier transform of B would not have
a sharp peak at k1 and k3. Instead, a smoother peak in k-space would be produced as shown
in figure 12(c). We define a non-dimensional wavenumber k̃ as k̃ ≡ k/k1. For evaluating
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Figure 13. Horizontal velocity plot (u) from Case-2 simulation at (a) t∗ = 0 and (b) t∗ = 30. The stratification
profile shape used is also shown for visual purposes. A faint but clear mode-2 trail left by the mode-3 parent
wave can be seen in (b). The shape of the stratification profile used in Case-2 is given by green curves in (b).

the energy of both wave packets, amplitude (|ak̃|) in a finite range of k̃ is considered.
The energy contained in k̃ ∈ [0.6, 1.4] is considered as the energy of the parent wave
packet, while the energy in k̃ ∈ [1.6, 2.4] is considered as the daughter wave’s energy.
For example, the k̃ ranges considered for the parent and daughter waves are highlighted
in figure 12(c) using coloured dashed lines for a specific η and t∗. For the parent wave,
|ak̃| between the blue dashed lines is considered. Similarly, for evaluating the energy
of the daughter wave packet, we consider the amplitude |ak̃| between the red dashed
lines. The energy evolution of the wave packets is shown in figure12(b). The parent wave
packet energies in the Boussinesq equations simulation and the reduced-order model were
observed to be 88.1 % and 88.9 %, respectively, at the end of the simulations. At the
same time, the daughter wave’s energies in the Boussinesq equations simulation and the
reduced-order model are 8.95 % and 10.6 %, respectively.

To obtain the numerical results in figure 11, (7.1a)–(7.1d) along with the equation for
meridional velocity (v) were solved. A vertical hyperviscous term was not used, while
a different horizontal hyperviscous term was used: ν12x ∂

12/∂x12, where ν12x = 1.4 ×
1025 m12 s−1. The kinematic viscosity was chosen to be ν = 10−3 m2 s−1. The primary
wave was forced by using a forcing function in the u-momentum equation, which sends a
constant-amplitude mode-1 wave train onto the small-amplitude topography.

8. Summary and conclusion

Weakly nonlinear wave–wave interactions is one of the mechanisms through which
internal gravity waves energy cascade from large length scales (hundreds of kilometres)
to small scales (centimetres to metres). At small length scales, internal waves can give
rise to convective or shear instabilities (Koudella & Staquet 2006) and cause mixing,
thus resulting in increased diffusion in oceans. The 2-D Boussinesq equations are
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written in terrain-following coordinates (x–η). Using multiple-scale analysis, we derive
the amplitude evolution equations for internal gravity waves undergoing weakly nonlinear
wave–wave interactions in the presence of varying density stratification (resembling that of
actual oceanic scenarios) as well as mild-slope bathymetry in a vertically bounded domain.
If the stratification varies with z in the x–z coordinates, then it becomes a function of both x
and η in the x–η coordinates when bathymetry h varies with x. In other words, the effective
stratification profile varies with the ocean depth. Both triads and self-interactions are
studied, and both pure resonant conditions as well as systems with wavenumber detuning
are analysed. The main results of this paper are given in a brief format in figure 14.

In the presence of uniform stratification, we show that the horizontal wavenumber triad
condition, given by k(1,a) + k(2,b) + k(3,c) = 0, is not violated due to changes in h. Here,
a, b, c are the mode numbers of waves 1, 2 and 3, respectively. Moreover, in the presence
of uniform stratification, the nonlinear coupling coefficients are inversely proportional to
the square of the fluid depth (∝ 1/h2).

For non-uniform stratifications, we define two classes of interaction for both triads and
self-interactions. Class-1 involves weakly nonlinear interactions of waves that do not have
the same mode number. Class-2 is a special situation that involves interactions of waves
with the same mode number, i.e. a = b = c. Class-2 triad interactions can exist only in the
parameter regime f � ωj � N. Moreover, in the same parameter regime, near-resonant
Class-2 self-interactions can exist with very low detuning even as h is varied. This is
because the wavenumbers involved in a self-interaction change in the same way as h
changes. For Class-1 interactions, detuning may be induced in triads and self-interactions
if the waves interact in a region of varying h. This is because in a vertically bounded
domain, the horizontal wavenumbers are not only a function of h but also a function of the
mode number. Moreover, the functional dependence of the wavenumber on h may change
as the mode number changes. Therefore, in a weakly nonlinear interaction where different
mode numbers are involved, there is no constraint for the wavenumbers to satisfy the triad
condition in a given range of h.

The variation of the growth rate of the daughter waves in both triadic- and
self-interactions is studied when h is varied. For both Class-1 and Class-2 self-interactions,
it is observed that small changes in h may result in large changes in the growth rate of the
daughter waves. This characteristic is observed especially for Class-1 self-interactions.
Variation of growth rates with h is studied for triads of a mode-1 parent wave in the
presence of non-uniform stratification. Triads were identified such that the daughter
waves can be up to mode-50. For relatively small changes in h, the growth rates can
vary significantly for triads that involve only lower modes. Moreover, the most unstable
daughter wave combination for the same parent wave can also change for relatively small
changes in h. Unlike uniform stratification, in non-uniform stratification, the growth rates
do not have a monotonic behaviour with h. This was observed for both triadic- and
self-interactions.

Reduced-order equations for higher-order self-interactions of an internal wave in
the presence of a small-amplitude monochromatic topography are also derived. In
the higher-order self-interaction process, the small-amplitude topography behaves as a
zero-frequency wave. It is shown that such higher-order interactions can cause resonant
growth of the superharmonic wave. Such higher-order interactions can play a crucial
role in the decay of the mode-1 internal wave at latitudes greater than 28.9◦. This is
because sum-type triad interactions are not possible (Olbers, Pollmann & Eden 2020),
and a mode-1 internal wave cannot self-interact resonantly for high values of f (Wunsch
2017).
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Non-uniform stratification

Class-1

Class-2

Higher-order

self-interactions

Topography behaves as a zero-frequency wave.

Nonlinear coefficient may increase or decrease with h. For Class-2, K̂j(n)(h)

dependence on j is
negligible.

For lower modes, K̂j(n)(h) can

depend strongly  on n (mode

number).

For very high  modes, K̂j(n)(h)’s

dependence on n is very small.

Detuning will be small even with O(1) variation in h.

Resonant interactions are possible only for f � ωj � N.

Resonant interactions are possible for any ωj.

Occurs when kb = k3 – 2k1.

Superharmonic wave grows linearly with x.

Parent wave non-resonant interaction with topography

can increase the superharmonic wave growth.

Uniform stratification

Class-2 interactions

are not possible.

Detuning does not

change with h.

Nonlinear coefficients

are ∝ 1/h2.

Nonlinear coefficients may increase or decrease with h.

Interaction can get detuned as h is varied.

Growth rates can be sensitive to change in h.

Figure 14. A summary diagram shows how different factors such as detuning and nonlinear coefficients can
vary for different classes of interaction in the presence of non-uniform stratification. It also provides a brief
picture of the higher-order self-interaction studied in § 6.
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Appendix A. Expressions for γj, Γj and NL(∗,j)

The expressions for γ (n)(j,i), which are used in §§ 2.2.1 and 6, are as follows:

γ
(1)
(j,i) =

∫ 0

−1

[
φj
]
φi dη, γ

(2)
(j,i) =

∫ 0

−1

[
∂2φj

∂η2

]
φi dη,

γ
(3)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )φj

]
φi dη, γ

(4)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )
∂φj

∂x

]
φi dη,

γ
(5)
(j,i) =

∫ 0

−1

[
η(N2 − ω2

j )
∂φj

∂η

]
φi dη, γ

(6)
(j,i) =

∫ 0

−1

[
η2(N2 − ω2

j )
∂2φj

∂η2

]
φi dη,

γ
(7)
(j,i) =

∫ 0

−1

[
η(N2 − ω2

j )
∂2φj

∂x ∂η

]
φi dη, γ

(8)
(j,i) =

∫ 0

−1

[
(N2 − ω2

j )
∂2φj

∂x2

]
φi dη.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)

Throughout the paper, γ(j,j) is simply denoted by γj for convenience.
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The expressions for NL(∗,j) used in amplitude evolution equations (2.24a)–(2.24c) in
§ 2.2.1 are provided below (note that NL(∗,j) is used in (2.25b)):

NL(Ψ,1) = ω1

h4

[
K3

(
ζ3ω

2
3Γ

(1)
2 − ζ3Γ

(2)
2 − Γ

(3)
3

)
− K2

(
ζ2ω

2
2Γ

(1)
3 − ζ2Γ

(2)
3 − Γ

(3)
2

)]
+ ω1

h4

[(
K2

2 − K2
3

)
(K2Γ

(1)
3 + K3Γ

(1)
2 )

]
,

NL(Ψ,2) = ω2

h4

[
K3

(
ζ3ω

2
3Γ

(1)
1 − ζ3Γ

(2)
1 − Γ

(3)
3

)
− K1

(
ζ1ω

2
1Γ

(1)
3 − ζ1Γ

(2)
3 − Γ

(3)
1

)]
+ ω2

h4

[(
K2

1 − K2
3

)
(K1Γ

(1)
3 + K3Γ

(1)
1 )

]
,

NL(Ψ,3) = ω3

h4

[
K1

(
ζ2ω

2
2Γ

(1)
1 − ζ2Γ

(2)
1 − Γ

(3)
2

)
+ K2

(
ζ1ω

2
1Γ

(1)
2 − ζ1Γ

(2)
2 − Γ

(3)
1

)]
+ ω3

h4

[(
K2

2 − K2
1

) (
K1Γ

(1)
2 − K2Γ

(1)
1

)]
;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A2)

NL(B,1) = (K3 − K2)

h4

[
K2K3

(
1
ω2

− 1
ω3

)
Γ (4)

+
(K3

ω3
− K2

ω2

)(
K3Γ

(2)
2 − K2Γ

(2)
3

)]
,

NL(B,2) = (K3 − K1)

h4

[
K1K3

(
1
ω1

− 1
ω3

)
Γ (4)

+
(K3

ω3
− K1

ω1

)(
K3Γ

(2)
1 − K1Γ

(2)
3

)]
,

NL(B,3) = (K1 + K2)

h4

[
K1K2

(
1
ω1

+ 1
ω2

)
Γ (4)

+
(K2

ω2
− K1

ω1

)(
K1Γ

(2)
2 − K2Γ

(2)
1

)]
;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

NL(V,1) = f 2

h4

[(
1
ω3

+ 1
ω2

)
(K2 + K3)

(
ζ3ω

2
3Γ

(1)
2 − ζ3Γ

(2)
2 + ζ2ω

2
2Γ

(1)
3 − ζ2Γ

(2)
3

)]
+ f 2

h4

[(K2

ω3
+ K3

ω2

)(
Γ
(3)

2 + Γ
(3)

3

)]
,

NL(V,2) = f 2

h4

[(
1
ω3

+ 1
ω1

)
(K1 + K3)

(
ζ3ω

2
3Γ

(1)
1 − ζ3Γ

(2)
1 + ζ1ω

2
1Γ

(1)
3 − ζ1Γ

(2)
3

)]
+ f 2

h4

[(K1

ω3
+ K3

ω1

)(
Γ
(3)

1 + Γ
(3)

3

)]
,

NL(V,3) = f 2

h4

[(
1
ω1

− 1
ω2

)
(K1 − K2)

(
ζ1ω

2
1Γ

(1)
2 − ζ1Γ

(2)
2 + ζ2ω

2
2Γ

(1)
1 − ζ2Γ

(2)
1

)]
− f 2

h4

[(K2

ω1
+ K1

ω2

)(
Γ
(3)

2 + Γ
(3)

1

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A4)
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Moreover, the Γ (n)j are defined as follows:

Γ
(1)

1 =
∫ 0

−1
φ2φ3

∂φ1

∂η
dη, Γ

(1)
2 =

∫ 0

−1
φ1φ3

∂φ2

∂η
dη,

Γ
(1)

3 =
∫ 0

−1
φ2φ1

∂φ3

∂η
dη,

Γ
(2)

1 =
∫ 0

−1
N2φ2φ3

∂φ1

∂η
dη, Γ

(2)
2 =

∫ 0

−1
N2φ1φ3

∂φ2

∂η
dη,

Γ
(2)

3 =
∫ 0

−1
N2φ2φ1

∂φ3

∂η
dη,

Γ
(3)

1 =
∫ 0

−1
φ2φ3

∂3φ1

∂η3 dη, Γ
(3)

2 =
∫ 0

−1
φ1φ3

∂3φ2

∂η3 dη,

Γ
(3)

3 =
∫ 0

−1
φ2φ1

∂3φ3

∂η3 dη,

Γ (4) =
∫ 0

−1

∂N2

∂η
φ1φ2φ3 dη.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

Appendix B. Scaling analysis for finding the relation between the small parameters

Here we perform a scaling analysis for all the terms appearing in (2.21). Equation (2.21)
is chosen here so that scaling analysis can be also done for the different terms that
compose the βj function in (2.22). Integrals γj in (2.21) (where γj expressions are given
in (A1)) cannot be simplified analytically for non-uniform stratification profiles. Hence
we adopt a numerical approach where we study how different integrals scale in an
ensemble of stratification profiles that resemble the profiles used throughout the paper.
Using this information, we scale the different terms. To this end, the stratification profiles
are chosen such that Nmax = (5Nb, 10Nb, 15Nb), Wp = (H/100, 2H/100, 3H/100) and
zc = (H/80,H/40,H/20,H/10); and we consider all possible (36) combinations.

The analysis provides a relation between the time scale of the amplitude’s temporal
evolution (εtt), the length scale of the amplitude function (εxx), and the magnitude of the
waves’ amplitude (εaaj). Small parameters εh, εk represent the bathymetry, and they also
influence the wave amplitude evolution. Equation (2.21), after some simplifications to the
nonlinear term, is

∂aj

∂t
+ 1

𝔇j

[
2iγ (3)j

(Kj

h
∂aj

∂x

)
+
γ
(6)
j

h2

(
dh
dx

)2

aj

]

+ 1
𝔇j

[
2Kj

h
γ
(4)
j + γ

(3)
j

∂

∂x

(Kj

h

)
− γ

(5)
j

2
h
∂h
∂x

(Kj

h

)
−
γ
(3)
j

βj

2Kj

h
dβj

dx

]
aj = 𝔑̂ja2,

(B1)

where 𝔑̂j is defined as

𝔑̂j = 1
𝔇j

[
NL(V,j) + NL(B,j) + NL(Ψ,j)

]
. (B2)
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The analysis is similar for all three waves, hence from here on all subscripts j (denoting the
jth wave) are dropped for convenience. Moreover, a term containing γ (6) is also included
in the above equation. It will be proved in this Appendix that this term is an order of
magnitude smaller than the other terms for the parameter regime that we consider.

The time scale of the wave amplitude’s evolution is assumed to be at least an order
of magnitude larger than the time period of the wave. Therefore, ∂a/∂t will scale
approximately as ∂a/∂t ∼ εtεaω. The amplitude’s length scale is assumed to be much
larger than the wavelength of the wave. Hence ∂a/∂x will scale as ∂a/∂x ∼ εxεaK/h.
Using the above scaling, the ∂a/∂x term in (B1) (including its coefficients) will scale as

2
γ (3)

𝔇

(K
h
∂a
∂x

)
∼ 1
ω

γ (3)K2

γ (1)K2 − γ (2)
εxεa ∼ (̂cgεx)ωεa, (B3)

where ĉg represents the scale of group speed term for the packet, and is given by

ĉg ≡ ω2 − f 2

ω2

[
γ (3)

(ω2 − f 2)γ (1) + γ (3)

]
. (B4)

It can be noticed that as εx is reduced, the effect of group speed diminishes as expected
since a decrease in εx means the length scale of the packet is increased. Here, we also
emphasize that for ω ≈ N, we have γ (3) � ω2γ (1). In such a parameter regime, ĉg � 1,
hence ∂a/∂x term will have a reduced effect on the amplitude evolution. Moreover, for
ω ≈ f , similar behaviour is observed since ĉg � 1.

Now we focus on the term containing γ (6) in (B1), which is (after some simplification)(
dh
dx

)2 W
K2

ωa
2
, (B5)

where W is a non-dimensional quantity defined as

W = ω2 − f 2

ω2
γ (6)

(ω2 − f 2)γ (1) + γ (3)
. (B6)

The integral γ (6) is evaluated numerically to study its scaling. For uniform stratification,
W can be evaluated analytically as

Wu = −M2

[
ω2 − f 2

ω2

N2
b − ω2

N2
b − f 2

](
1
3

− 1
2M2

)
, (B7)

where Wu is used to denote W in constant stratification Nb, and M = nπ is the
non-dimensionalized vertical wavenumber of the wave. Moreover, using (dh/dx)2 ∼
(εhεk)

2K2, the term given in (B5) will scale as(
(εhεk)

2

2
W
)
ωεa. (B8)

Hence for the multiple-scale analysis to be consistent, W((εhεk)
2/2) has to be a small

quantity. Figure 15 plots W for nine stratification profiles, where f = 0 and ω/Nb = 0.4
were used. In all panels, Wu is also plotted for reference, where Wu is evaluated with
constant stratification Nb (hence Wu is the same in all panels). From figure 15, it can be
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10
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Figure 15. The variation in W for modes 1–10 for different stratification profiles: (a) Nmax = 5Nb is used with
zc = H/10, and Wp is varied; (b) Nmax = 10Nb is used with zc = H/10, and Wp is varied; (c) Nmax = 15Nb is
used with zc = H/10, and Wp is varied.

seen that in general for any stratification profile, W is almost proportional to the square
of the mode number n, similar to Wu. Hence the bathymetry has to be more slowly
varying (εk has to be smaller) as the mode number increases. Other pycnocline depths
(zc = H/20,H/40,H/80) were also tested for different combinations of Wp,Nmax used in
figure 15 that provided similar results.

The term that contains the γ (5) integral is now analysed. For all non-uniform
stratification profiles used in this appendix, it was observed that

γ (5) � 1
2
γ (3). (B9)

Using (B9), the term containing γ (5) can be scaled to

1
𝔇j

[
γ (5)

2
h
∂h
∂x

(K
h

)
a
]

∼
(

ĉg

2
εhεk

)
ωεa. (B10)

Now we analyse how the wavenumber of a mode changes as h changes. To this end, (2.13b),
which provides the nth eigenfunction, is differentiated in the x-direction, yielding[

∂2

∂η2 + K2
nχ

2
]
∂φn

∂x
= −K2

n
∂χ2

∂x
φn − dK2

n

dx
χ2φn, (B11)

where Kn = knh. Equation (B11) can have a non-trivial solution only when the right-hand
side is orthogonal to the solution of the self-adjoint operator on the left-hand side. Hence
multiplying the right-hand side by φn, and then integrating in the η-direction between the
domain limits, would result in

1
kn

dkn

dx
+ 1

h
dh
dx

= − 1

2γ (3)n

∫ 0

−1

∂N2

∂x
φ2

n dη. (B12)

From (B12), we notice that the dimensional wavenumber kn can change due to (i) change
in the domain height, and (ii) change in the effective stratification profile. For uniform
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stratification, dKn/dx = 0. For the lower modes (1–10) in profiles considered in this
appendix, it was observed that

kh ≡ O
(

1
kn

dkn

dx

)/
O
(

1
h

dh
dx

)
∼ O(1). (B13)

Moreover, in general it was observed that as the mode number increases, kh increases.
Using (B13), the term containing the derivative of the wavenumber can be scaled as

1
𝔇j

[
γ (3)

dk
dx

a
]

∼
(

ĉg

2
εhεk

)
ωεa. (B14)

We now evaluate γ (4) for the stratification profiles considered in this appendix. For modes
1–10, we find

γ (4)

γ (3)
∼ O

(
1
h

dh
dx

)
. (B15)

Using (B15), the term containing γ (4) can be scaled to

1
𝔇j

[
2K
h
γ (4)a

]
∼ (̂

cgεhεk
)
ωεa. (B16)

Using (B10), (B14) and (B16), we observe that for the lower modes, the three terms
that comprise the β function can scale to a maximum value that is of the same order of
magnitude. Hence they are all retained and are used in evaluating the β function (2.22).
Moreover, it can be seen that the topographic terms are all dependent on the magnitude
of the group speed. This relation is there naturally because a wave packet has to travel to
different h fast enough to feel the effect of h variation. Scaling (B16) also holds for uniform
stratification, where φ still varies in the x-direction. This is because of the nature of the φ
normalization, i.e. (2.16), used in this paper.

The nonlinear coupling coefficient on the right-hand side cannot be further simplified,
hence the nonlinear term scales as

RHS of (B1) ∼ 𝔑̂ε2
a . (B17)

Hence the final scaling for (2.24a)–(2.24c), using all the scalings derived, and with the
inclusion of the γ (6) term, is (after some simplification)

εt ∼ 𝔑
ω
εa − ĉgεx − (εhεk)

2

2
W . (B18)

Here, an important point to remember is that the multiple-scale analysis was derived
with the assumption that internal waves do not scatter/exchange energy to different
modes of the same angular frequency. Therefore, the reduced-order equations provide
the most accurate results when the internal waves do not scatter significant amount
of their energy as they pass over a bathymetry. Moreover, even when O(εhεk) � O(1)
is satisfied, there could be special circumstances when waves may still get scattered
significantly. An example of such a scenario is Bragg resonance of internal waves due
to small-amplitude subcritical topographies (Buhler & Holmes-Cerfon 2011; Li & Mei
2014; Couston et al. 2017). Scattering/energy exchange can also occur for large-amplitude
slowly varying topographies. However, it was observed that modes 1–8 are scattered
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very little for large-amplitude topographies (εh ≈ 0.5) with low criticality (� 0.1) in the
presence of uniform stratification. Criticality is defined as the ratio of the maximum slope
of the topography to the slope of the internal wave. Mode-8 has ≈8 % variation in its
amplitude as it propagates through a Gaussian topography with εh = 0.5 and criticality
= 0.1. Low-criticality topographies for mode-n of any ω/Nb are obtained when the
condition nεk � O(1) is satisfied. Moreover, for the condition nεk � O(1), the last term
in (B18) becomes an ε2

k term even for large-amplitude topographies. This can be seen by
considering Wu (which can also be used as a reference for non-uniform stratifications)
given in (B7). Hence this term is neglected in the governing equations (2.24a)–(2.24c).

Appendix C. Scaling analysis of (6.8)

The scaling analysis of equation (6.8) has been done with the help of results derived in
Appendix B. Equation (6.8) is re-written below for clarity:[(

γ
(3)
j

∂2Aj

∂x2

)
+ K2

j

(Aj

h2 γ
(3)
j

)]
Tj + 2

(
γ
(4)
j −

γ
(5)
j

h
∂h
∂x

)
∂Aj

∂x
Tj + γ

(8)
j AjTj

+
[
γ
(6)
j

h2

(
∂h
∂x

)2

−
γ
(5)
j

h

(
∂2h
∂x2

)
+

2γ (5)j

h2

(
∂h
∂x

)2

− 2
γ
(7)
j

h
∂h
∂x

]
AjTj = 〈NL3〉. (C1)

From here on, the subscripts are omitted, since the analysis is similar for both the waves.
The leading-order terms scale as[

∂2A
∂x2 ,K

2 A
h2

]
∼ εa

K2

h2 . (C2)

Using (2.9), the scalings derived in Appendix B, and the small-amplitude assumption for
topography (εh � O(1) and εk ∼ O(1)), we obtain

2
γ (4)

γ (3)
∂A
∂x

∼ 2εhεa
K2

h2 ,
2
h
∂h
∂x
γ (5)

γ (3)
∂A
∂x

∼ εhεa
K2

h2 ,(
1
h
∂2h
∂x2

)
γ (5)

γ (3)
A ∼ εh

2
εa

K2

h2 , 2
(

1
h
∂h
∂x

)2
γ (5)

γ (3)
A ∼ ε2

hεa
K2

h2 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (C3)

For the profiles and the parameters used in Appendix B, we observe that (ω2 − f 2)γ (1) +
γ (3) ∼ γ (3). Hence the γ (6) term can be scaled as

γ (6)

γ (3)
1
h2

(
∂h
∂x

)2

A ∼
(
Wε2

h

)
εa

K2

h2 , (C4)

where W is plotted in figure 15 for various stratification profiles. Therefore, similar to
Appendix B, the term Wε2

h has to be a small number for the multiple-scale analysis to be
consistent. Furthermore, the γ (7)j term was observed to scale as(

2
h
∂h
∂x

)
γ (7)

γ (3)
A � K2

n

K2
1

(
1
h
∂h
∂x

)2

2εa, (C5)

where Kn is the non-dimensional wavenumber of wave-1 (or wave-3), and n gives the
wave’s mode number. Note that this scaling has behaviour similar to that of W , which is
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nearly proportional to n2. Now we focus on the scaling of the integral γ (8):

γ (8) =
(

dh
dx

)2 ∫ 0

−1
(N2 − ω2)φ

∂2φ

∂h2 dη + d2h

dx2

∫ 0

−1
(N2 − ω2)φ

∂φ

∂h
dη. (C6)

For a uniform stratification, ∂2φ/∂h2 = 0. Moreover, for the non-uniform stratification
profiles used in Appendix B, it was observed that∫ 0

−1
(N2 − ω2)φ

∂2φ

∂h2 dη � K2
n

K2
1

γ (3)

h2 ,

∫ 0

−1
(N2 − ω2)φ

∂φ

∂h
dη ∼ γ (3)

h
. (C7a,b)

Hence using (C7a,b), the scaling for γ (8) can be given in the simpler form

γ (8) ∼
[
K2

n

K2
1

(
1
h

dh
dx

)2

+ 1
h

d2h

dx2

]
γ (3). (C8)

For low modes in the presence of small-amplitude topographies, the second term on the
right-hand side of (C8) would be significantly higher than the first term. For any mild-slope
bathymetry, the nonlinear terms 〈NL3〉 in (C1) can be scaled using the relation dnA/dxn ≈
(K/h)nA, where n ∈ Z

+. Using this approximation, the nonlinear term can be scaled as

〈NL3〉 ∼ 1
γ (3)

[
NL(V,3) + NL(B,3) + NL(Ψ,3)

]
ε2

a . (C9)

The nonlinear coupling coefficients cannot be simplified further. Moreover, the
nonlinear terms have to be at least one order of magnitude less than the leading-order
terms (given in (C2)).
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