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THERMODYNAMICS OF SNOW METAMORPHISM DUE TO 
VARIATIONS IN CURVATURE 

By S. C. COLBECK 

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New 
Hampshire 03755, U.S.A. ) 

ABSTRACT. In the absence of imposed temperature gradients, the metamorphism of dry snow is dominated 
by the slow process of vapor diffusion between surfaces of different radii of curvature. This process is so slow 
in a seasonal snow cover (where temperatures normally change on the scale of hours or days) that vapor 
migration is usually dominated by the imposed temperature gradient. Thus radius of curvature contributes 
to but does not control metamorphism except for short periods in very fresh snow. As opposed to dry snow, 
liquid-saturated snow (i.e. pore space filled by the melt) is metamorphosed by h eat flow arising from relatively 
large temperature differences among the particles. Grain growth in liquid-saturated snow is rapid because 
of the large temperature differences at nearly constant liquid pressure. In wet snow with low liquid content 
(2-5% by volume), grain growth is dominated by vapor diffusion (as in dry snow) so grain growth is much 
slower than under conditions of liquid saturation. 

RESUME. Thermodynamique des metamorphoses de la neige dues aux variations de courbures. En I'absence de 
gradients de temperature imposes, la metamorphose de la neige seche est dominee par le processus lent de 
diffusion de vapeur entre les surfaces de differents rayons de courbure. Ce processus est si lent dans un 
couvert neigeux saisonnier (Oll les temperatures varient normalement a l'echelle des heures ou des jours) que 
la migration de vapeur est generalement dominee par le gradient thermique impose. Par consequent, le 
rayon de courbure contribue a la metamorphose mais ne la contrale pas excepte pour de courtes periodes 
dans la neige tres fraiche. Au contraire de la neige fraiche, la neige saturee d'eau (e'est-a-dire dont les pores 
sont remplies d'eau de fusion) est transformee par le flux de chaleur entraine par de relativement fortes 
differences de temperature entre les particules. La croissance des grains dans la neige saturee d'eau liquide 
est rapide en raison de fortes differences de temperatures a des pressions de liquides a peu pres constantes. 
Dans la neige humide a faible teneur en eau liquide (2 a 5% en volume), la croissance des grains est reglee 
par la diffusion de vapeur (comme dans la neige seche) si bien que la croissance des grains y est beaucoup 
plus lente que dans les conditions de saturation en liquide. 

ZUSAMMENFASSUNC. Thermodynamik der Sclmee-Metamorphose infolge von Antierungen der Kriimmzmg. Beim 
Fehlen aufgepragter Temperaturgradienten wird die Metamorphose trockenen Schnees durch den langsamen 
Prozess der Dampfdiffusion zwisehen Oberflachen mit verschiedenen Krummungsradien bewirkt. Dieser 
Prozess ist in der Schneedecke eines Jahres (wo die Temperaturen gewohnlich innerhalb von Stunden od er 
Tagen wechseln) so langsam, dass die Dampfwanderung meist durch den aufgepragten Temperatur­
gradienten gesteuert wird. So spielt der Krummungsradius bei der Metamorphose eine nur untergeordnete 
Rolle, ausser in den kurzen Period en nach Neusehneefall. Im Gegensatz zu trockenem Schnee wird wasser­
gesattigter Schnee (d.h. wenn die Poren mit Schmelzwasser gefullt sind) durch Warmefluss infolge der 
relativ grossen Temperaturunterschiede zwischen den Partikeln umgebildet. Im wassergesattigtem Schnee 
wachsen die Kbrner infolge der hohen Temperaturdifferenzen bei annahernd konstantem Wasserdruck 
schnell. In feuchtem Schnee mit niedrigem Wassergehalt (2-5% des Volumens) wird das Kornwachstum 
durch die Dampfdiffusion (wie in trockenem Schnee) beherrscht; es geht daher viel langsamer vor sich als 
bei Wassersattigung. 

INTRODUCTION 

The metamorphism of snow is of interest for a variety of reasons. The processes in snow 
can simulate those in high-temperature metal and ceramic powders, but at temperatures more 
convenient for experimental investigations. The metamorphism of snow causes large changes 
in snow properties, especially strength, permeability, reflectivity, and thermal conductivity. 
These properties affect every investigation of the snow cover including avalanche release, 
melt-water run-off, and radiant-energy penetration. 

The metamorphism of snow at sub-freezing temperatures (where only the solid and vapor 
phases of water occur) has been described as either "temperature-gradient" or "equi­
temperature metamorphism" (Sommerfeld and LaChapelle, 1970). In the former case a 
large temperature gradient is imposed on the snow cover; heat and vapor transfer arising 
from this temperature gradient dominate the exchange of heat and mass between snow 
particles and layers. Giddings and LaChapelle (1962) assumed the pore space to be saturated 
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with water vapor and ignored radius of curvature effects, this allowed the temperature gradient 
to dominate the exchange processes. Their model, a significant first approximation in the 
presence of large temperature gradients, simulates the rate of formation of "depth hoar" , a 
cohesionless, cup-shaped crystal which forms at the base of those snow covers which experience 
strong cooling at the surface. 

"Equi-temperature metamorphism" in sub-freezing snow, is poorly named since phase 
changes cannot occur without some heat flow and heat flow cannot occur without a tempera­
ture gradient. As shown later, the process is nearly isothermal since vapor-pressure gradients 
in isolated, dry snow are much larger than temperature gradients but a better term would be 
"radius-of-curvature metamorphism". 

Although a seasonal snow cover at a sub-freezing temperature can never be isothermal for 
an extended period, vapor migration due to differences in radius of curvature is thought to be 
important in the initial metamorphism of fresh snow when large temperature gradients are 
absent. This process is described here together with the metamorphic processes in liquid­
saturated snow (i.e. pore spaces filled with liquid) and wet snow with a low liquid content. 

B ASIC THERMODYNAMICS 

A brief review of the basic concepts is made so that the limitations of the application of 
thermodynamics to snow metamorphism will be apparent. The basic approach is to assume 
that the phases of water (solid, liquid, and/or vapor) are in local equilibrium because they are 
finely divided (i.e. the specific surface area is very large). Although complete equilibrium is 
impossible in any system with a large surface area, local equilibrium between phases is a good 
approximation when the rate of mass exchange between the phases is very slow. We use the 
classical thermodynamic approach which assumes reversible processes although the basic 
Gibbs equation is also valid for a large class of irreversible processes (Prigogine, 1949). 

The chemical potential of the ith phase (/Lt ) is given by (Condon, 1958) 

/Lt = OFi/ Gmi, ( I) 
where Fi is the Gibbs free energy and mt is the mass. The Gibbs free energy is a minimum at 
equilibrium and so the chemical potentials of the phases must be equal at equilibrium. This 
leads to a particularly useful relationship, the Gibbs-Duhem equation applied to the ith 
phase which is 

where Vi is the specific volume, Si is the specific entropy, Pt is pressure, and Tis the temperature. 
This relationship could be applied to a multi-phase system as a whole or to an entire multi­
component system (e.g. water and air). However, for our purposes it is most convenient to 
apply Equation (2) to each phase separately. In fact it is not necessary to treat the inert 
component of snow (air) at all since its inclusion does not affect the calculation of the triple 
point of water except that the values of surface energy may be slightly different in the presence 
of air (Defay and Prigogine, 1951, p. 273). We assume that the liquid is saturated with 
dissolved air, which reduces the triple-point temperature by a constant value of 0.002 4 deg. 

When other dissolved impurities (e.g. soluble salts) or chemically active impurities are 
present in snow it is necessary to take them into account as additional components. In general, 
when there are C components in a system of P phases, there are P(C+ I) variables which must 
be specified at equilibrium (Condon, 1958). However, since the value of the chemical 
potential of each component must be the same for all phases, there are C(P- I ) restrictions 
on the number of degrees offreedom. Also, since the temperature of all phases must be equal, 
there are (P- I) additional restrictions. Thus for a system with curved interfaces, the variance 
or number of degrees of freedom is equal to C+ I since 

P(C+I)-C(P-I)-(P-I) =C+I. (3) 
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This form of Gibb's phase rule shows why we can ignore the air in the pore space; if we 
consider gaseous air and specify its pressure, the number of intensive variables which remain 
independent does not change. In effect, snow is a one-component, two- or three-phase system 
with two degrees of freedom. Thus when two variables are specified, the remainder of the 
system is fixed at equilibrium. Langham (1974) quoted the phase rule for a system with flat 
surfaces (C-P+ 2). This form of the phase rule does not apply to a system with curved 
surfaces (e.g. snow or liquid veins in ice layers) . 

One other concept must be mentioned before snow metamorphism can be examined: 
curved interfaces are necessarily accompanied by a pressure difference between the adjacent 
phases. This balance of forces at an interface is expressed by Laplace's equation (Defay and 
Prigogine, 1951) 

where crij is the interfacial energy between the ith and jth phases and Tij is the "mean radius 
of curvature" of the interface. This mean curvature is related to the actual radii by 

2 1 1 
- = - +-, (5) 
Tij TI T2 

where TI and 72 are the principal radii (or the radii of curvature measured in any two ortho­
gonal planes) of the surface separating the two phases. TI and T2 are positive when the ith 
side of the phase boundary is concave toward the point of measurement. It follows that 
Tij = - rji. The solid, liquid, and vapor phases are indicated by the subscripts s, 1, and g 
respectively. Gibbs ( 1928, equations 500 and 662) derived the same equation in a more 
general way for both fluid- fluid interfaces and fluid- solid interfaces. It is important to note 
that all derivations of Equation (4) are valid only for isotropic states of stress, hence analysis 
of metamorphism involving other states of stress (Yosida, 1963; Perla, 1 978[ a 1) are not valid 
for curved surfaces! Furthermore, the effects of radius of curvature, elastic strains, and ionic 
impurities are not independent and cannot be simply added to correct the triple point for 
each effect (this is illustrated by Dufour and Defay (1963), equation 10.24); rather, it is 
necessary to account directly for effects like elastic strains in the first law of thermodynamics 
(Gibbs, 1928, equation 386). 

DRY-SNOW METAMORPHISM 

Temperature usually varies within a snow cover on a time scale of hours to days and thus 
"equi-temperature metamorphism" or metamorphism driven by radius of curvature effects 
alone cannot dominate long-term changes occurring in a seasonal snow cover. Radius of 
curvature is important in firnification of cold ice sheets and could dominate the metamorphism 
offresh snow during brief periods of isothermal conditions. Thus it is important to understand 
that metamorphism which is due to radius of curvature effects. 

Hobbs and Mason (1964) and Hobbs and Radke ( 1967), examined the sintering of ice 
spheres and found that mass transfer through the vapor is more important than transfer by 
surface or volume diffusion. Accordingly, it is most important to consider vapor transfer. 
We begin by deriving the basic equations, state the assumptions and limitations on the use of 
the equations, and analyze the relative size ofvapor pressure and temperature gradients. 

If we ignore the air phase (or fix its pressure), Gibb's phase rule requires that the variance 
or number of degrees offreedom be two. Thus, we must specify two variables before the system 
is invariant at equilibrium. We consider three simple cases and then decide which is most 
applicable for dry snow: 

(1) For a constant geometry Tsg is constant and Laplace's equation requires that d(Ps-pg) 
is zero. From Equation (2), 

dfLg = Vg dpg-Sg d T, (6) 
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dfLs = Vs dPs-Ss d T. 

When the solid and vapor phases are in equilibrium, d (fLg-fLs) is zero so 

(Sg-Ss) d T = Vg dpg-vs dps. 

Using the definition of entropy for a reversible process between states A and B, 
B 

SA-SB = I d;?, 
A 

and we find that 

(8) 

(9) 

(10) 

where Ls is the latent heat of sublimation at a temperature T. An expansion of the right-hand 
side of Equation (8) together with Equation ( ID) gives 

dT 
Ls T = Vg dpg-vs dps+vs dpg-vs dpg. (I I) 

The approximation that the specific volume of air is much greater than the specific volume of 
ice (Vg,?> vs ) and the knowledge that d (Ps-pg) is zero yields 

dT 
Ls T ~ Vg dpg. (12) 

U sing the ideal gas law, 

pgVg = RT, 
then Equation (12) integrates to 

Ls ( ~o - ~) = R In (pg/Po), 

where Po and To are the reference pressure and temperature for the geometry specified (usually 
taken as the triple point of water). Note that this is only the ordinary triple point if we are 
working with a flat surface, otherwise Po and To vary with the particular geometry considered. 
While this equation might be a useful approximation for "temperature-gradient meta­
morphism" it cannot be used when metamorphism is dominated by radius of curvature effects. 

(2) For a system at constant temperature, Equations (6) and (7) reduce to 

Vg dpg = Vs dps. (15) 
One of Laplace's equations is 

2crgs 
ps-Pg = --, 

rsg 

and this equation can be used with Equation (13) to obtain 

Vs 20'gs 
In (pg/Po) = RT -, rsg 

(16) 

which is the form of Kelvin's equation for a small crystal. Hobbs and Mason (1964) used 
this equation to describe the sintering of small ice spheres. As we will see later, it is the most 
nearly correct description of dry-snow metamorphism in the absence of imposed temperature 
gradients. Perla ( I 978[ a]) used a similar equation but his equations (5) and (8) are not 
correct expressions of the first law or Kelvin's equation. 

(3) For a system with a constant vapor pressure, Equations (6) and (7) reduce to 

(Sg-Ss) dT +vs dps = o. (18) 
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With Equations (10) and (16), this integrates to 

In (~) = _~ 2Cl"sg . 
To Ls TSg 

This can be converted to the Celsius temperature scale by 

Te(°C) = T(K) - To(K), 

so that, with the approximation 

In (~) 
we find 

295 

where the reference temperature To is the temperature at which the specified vapor pressure 
exists over a flat surface. 

It is not obvious a priori that Equations (14), (17), or (22) are good approximations for 
"radius of curvature metamorphism". The assumptions behind their derivations are very 
different and hence we must examine the temperature and pressure gradients closely to see 
which, if any, of these equations is close to the situation in the absence of imposed temperature 
gradients. Since large changes in radius of curvature occur, Equation (14) is of no value here 
although Giddings and LaChapelle (1962) and de Quervain (1963) used this approach in 
their analyses of "temperature-gradient metamorphism". In their case, radius of curvature 
was the least important effect whereas here we are concerned primarily with changes caused 
by variations in radius of curvature. 

The group of ice grains (or branches of grains) with smaller mean radii of curvature are 
vapor sources and the group with larger radii of curvature are sinks. As metamorphism 
proceeds some grains (or branches of grains) move from one group to the other but, at any 
given instant, all ice surfaces fall into one category or the other. The vapor flux q is given by 

dpg 
q = -DAgTx , 

where D is the coefficient of diffusion of water vapor in air (it is weakly dependent on tempera­
ture (Dorsey, 1940, p. 772)). The area through which the vapor diffuses is A g and the vapor­
density gradient (dpg/dx) drives the flux. 

The heat flux Q is given by 

dT 
Q = -kAh dx' 

where k is the thermal conductivity (a weak function of temperature and vapor pressure), Ah 
is the area through which the vapor moves, and d T /dx is the temperature gradient. Using 
average gradients between the source and sink, we find by conservation of energy and mass, 

dpg dT 
DAgLs -d:;+ kA h dx = o. (25) 

For the typical case of "destructive metamorphism" where the extremities of snow-flakes are 
disappearing (de Quervain, 1963), the path length, and areas of heat and mass flow are about 
equal. Equation (25) then reduces to 
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It must be noted that this equation would be a poor approximation to the sintering of spherical 
grains as analyzed by Hobbs and Mason (1964). It is only intended for application to the 
destruction of stellar snow-flakes. The more advanced stages of sintering require a more 
rigorous treatment of the geometry. 

From Equation (13) we find that 

dpg _ dT + dpg 
pg - T pg' 

where d T and dpg have opposite signs. Using Equation (26), 

dpg ( 1 k T) dT 
-- 1---- -
pg - Ls D pg T' 

or 

dT 
-560 -T' 

for characteristic values of k, D, T, pg, and Ls. 
Clearly the relative change in vapor pressure is much larger than the relative change in 

temperature and therefore the constant-temperature Kelvin's equation (Equation (17)) is a 
good approximation for metamorphism dominated by radius of curvature effects (hence the 
term "equi-temperature metamorphism"). 

The rate of mass transfer (dmJdt) between a source and sink is obtained from Equations 
(13), (1 7), and (23), 

dm = Dpo (Ag)( {~ 2ags} _ {~ 2ags}) 
dt RT D.l exp RT Ta exp RT Tb ' 

(30 ) 

where (AgJ D.l) is the ratio of the area to the path length between the source and sink, Ta and Tb 

are the mean radii of curvature of the source and sink, and T is the average temperature of 
the system. This equation depends on the particular geometry considered. 

For one snow-flake undergoing destructive metamorphism in an isolated environment 
such as the case studied by de Quervain (1945, fig. I), tens of days are required for the loss of the 
snow-flake's characteristic shape. Estimates of the rate of mass loss from a particular arm of a 
dendrite made with Equation (30) account for the slow transfer observed by Bader and 
Kuroiwa ( 1962) and de Quervain (1945). Perla (1978[a]) made similar estimates. 

Since destructive metamorphism occurs mostly near the snow-pack surface where "equi­
temperature metamorphism" for tens of days is essentially impossible, an accurate treatment 
of the geometry of this process would not be particularly useful. The correct principles are 
expressed in the development of Equation (30) and so a complete treatment of the geometry 
of a snow-flake undergoing metamorphism in the absence of imposed temperature gradients is 
possible. It is useful to define the conditions where either metamorphism due to variations in 
radius of curvature or metamorphism due to temperature gradients imposed by environmental 
conditions dominate. From Equations (13) and (28) we find that vapor pressure and tem­
perature gradients arising from radius of curvature metamorphism are related by 

dpg ( 1 k ) dT 
dz = pgR-LsDRT dz' 

Using Equation (31) and Kelvin's equation in the absence of an imposed temperature or 
vapor-pressure gradient (for mass exchanges on the scale of 1 mm from surfaces of mean 
radius of curvature equal 0.1 mm), the local temperature gradient due to differences in radii 
of curvature is about 10-2 degJm. It is very unlikely that such a small temperature gradient 
could prevail in a snow· cover for tens of days and so it is very unlikely that radius of curvature 
effects alone could account for the metamorphism of snow grains with mean radius of curva-
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ture equal to or greater than 0.1 mm. Radius of curvature effects would be relatively more 
important in a layer of fresh snow with some dendrite branches of mean radius of curvature 
ofless than 10- 3 mm if the imposed temperature gradient were less than 1 degjm (see Fig. I). 

Thus it is possible that variations in radius of curvature initially control the metamorphism of 
fresh snow but, once the smaller parts of the dendrites disappear, the temperatures imposed on 
the bottom and top of the snow cover control the distributions of temperature and water 
vapor as well as the metamorphism. 

E 
"­
'" '" ~ 
~ 

'" 'ii 

1.0 

~ 0.5 

'" 

o 

I 

0.05 0 .1 

Mean RadiUS of Vopor Source (mm) 

Fig. T. The temperature gradient arising from the sublimation of a branch of a snow-flake of given mean radius (the vapor sink 
is a flat surface a distance of T mm from the sources ). 

Radius of curvature effects are of diminishing importance as metamorphism proceeds. 
The relative balance between the radius of curvature effects and the imposed temperature 
effects depends upon the relative sizes of the smallest dendrites and the magnitude of the 
imposed gradients. Figure 1 shows a rapid decrease of the temperature gradient arising from 
radius of curvature metamorphism with increasing radius of curvature. This suggests a rapid 
shift from radius of curvature to temperature-gradient metamorphism as the smaller parts of 
the dendrites disappear in a layer of fresh snow. 

LIQUID-SATURATED SNOW 

In liquid-saturated snow, the pore space is filled with liquid so that only the solid and 
liquid phases are present. Saturated snow is characterized by grain-boundary melting, rapid 
grain rounding, and rapid grain growth. In the absence of an applied load, grain rounding 
takes only a few hours and grain growth requires only a few days in marked contrast to the 
case of dry snow where the same amount of grain growth take years (Gow, [1975]). Since both 
are two-phase systems at temperatures only a few degrees apart, we would not expect a priori 
such a radical difference. 

In the case of dry snow we found that vapor diffusion was the rate-limiting process and 
that the temperature- radius-of-curvature relation (Equation (22)) greatly overestimated the 
actual temperature differences between grains. In liquid-saturated snow there is virtually no 
pressure gradient because the pore space is filled with the melt, and pressure disturbances 
propagate instantaneously between neighboring particles. Thus, heat flow is the rate­
limiting process and the actual temperature distribution is closely approximated by a relation 
analogous to Equation (22), 

Vs To 20"s1 
Tm = -- - (32) 

L rsl 

where the T m is the melting temperature (QC), L is the specific latent heat offusion, and To is 
273. I 3 K. Experimental confirmation of this equation has been obtained for ice by Berry 
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(1959) and for metals by Peppiatt and Sambles (1975) and Couchman and Jesser (1977). 
Although an equation relating liquid pressure and radius of curvature could also be derived, 
it would be meaningless in this case just as Equation (22) was meaningless in the case of dry 
snow undergoing "radius of curvature metamorphism". 

Since the grains round off quickly, the geometry is much simpler than that of snow-flakes 
and the grain-growth process can be modeled readily. Colbeck (1973) constructed a simple 
model of heat flow between two grains which predicted accurately the life expectancy and 
accelerating rate of decay observed by Wakahama (1968, [1975]). Raymond and Tusima 
(1979) have recently analyzed and observed this process in more detail, including the effects 
of dissolved impurities. 

WET SNOW WITH A LOW LIQUID CONTENT 

Snow covers are highly permeable and water drains readily through them with a charac­
teristic liquid content of two to five per cent by volume. In most granular porous materials 
with a low liquid content, the liquid is held between spherical grains in individual liquid 
menisci. Spherical grains are inherently unstable in wet snow with low liquid contents 
(Colbeck, 1979). The grains tend to regroup themselves into grain clusters around liquid­
filled veins (Fig. 2) and "compressed", two-grain contacts (Fig. 3). Perla (1978[bJ) has 
incorrectly attributed these clusters to melt-freeze cycles alone. In fact they form just as 
rapidly where no freezing occurs (Colbeck, 1979). 

20· , / 
/' 

Fig. 2. The basic unit of a three-grain cluster. The siz.e of the liquid vein is determined by the siz.e of the particle rp and the 
liquid-water content (after Colbeck (1979 )) ' 

20' 

" 

Fig. 3. The basic unit of a two-grain bond. The radius of curvature of the shoulder rJ is about one-fifth that of the particle rp 
(after Colbeck (1979)). 
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As shown in Figures 2 and 3, each grain has solid-solid, solid- liquid, solid-vapor, and 
liquid- vapor interfaces. The radius of curvature of the solid- vapor interface controls the 
rate of grain growth while the radius of curvature of the liquid- vapor interface controls the 
liquid-water content. The presence of a stable grain boundary gives wet snow a considerable 
cohesive strength at low liquid contents (a low cohesive strength due to grain boundary 
melting is a distinguishing characteristic of wet snow at high liquid content). 

The liquid content in a porous medium is generally related to the pressure deficiency in 
the liquid as dictated by Laplace's equation. This is usually expressed as "liquid tension" or 
capillary pressure defined as (Scheidegger, 1974, p. 56) 

pc = pg-PI-
In snow, capillary pressure increases during liquid withdrawal (Colbeck, 1973) in a manner 
characteristic of large-grained porous media except that, after grain clusters form, changes in 
capillary pressure can be restricted by the geometry of the cluster (Colbeck, 1979). 

The temperature at which the three phases are in equilibrium T m is the triple-point 
temperature for the particular geometry in question. Col beck (1973) derived this using 
Equations (2) and (4), 

To To crsg 
Tm= -Vl-pc- 2Vs--, (34) 

L L rSg 

where rsg is the radius of the solid- vapor interface shown on Figures 2 and 3. The mean 
radius of the liquid vein enters Equation (34) implicitly through the Laplace equations (4); 
its geometry is partly determined by the dihedral angle of a grain-boundary groove in ice. 

Although Equation (34) is an accurate description of the triple-point temperature in 
unsaturated wet snow with a uniform grain size, it is unlikely that this relation is valid for each 
grain in an unsaturated snow of varying grain sizes. As in dry snow, the process of grain 
growth in unsaturated wet snow is dominated by mass exchange through vapor diffusion, and 
so the same arguments about the relative sizes of pressure and temperature gradients leading 
to Equation (29) are valid here (the difference between dpgfpg and d Tf T is even larger for wet 
snow than for dry snow since we replace the latent heat of sublimation in Equation (28) with 
the smaller latent heat of fusion). Accordingly, a special case of Kelvin's equation is a good 
approximation to the vapor pressure over the ice surface, 

In (pg) = ~ 2crSg , (35) 
Po RTo rSg 

where Po and To are the ordinary triple-point pressure and temperature for a flat surface and 
rSg is the mean radius of the ice-vapor surface. 

As shown by Equation (35), the vapor pressure is higher over small grains and grain 
growth is dominated by the same process as in dry snow. Grain growth dominated by vapor 
flux is much slower than grain growth dominated by heat flux which explains why Wakahama 
(1968) observed much slower grain growth at low liquid contents than at high liquid contents. 
Since the air in the pore space is no longer interconnected at liquid saturations above about 
14% of the pore volume (Colbeck, 1973), this degree of liquid saturation should mark the 
transition from vapor-flux dominated to heat-flux dominated metamorphism in wet snow. 

CONCLUSION 

It has long been recognized that dry-snow metamorphism in the absence of imposed 
temperature gradients is a very slow process (e.g. de Quervain, 1945). Vapor diffusion from 
surface to surface is the rate-limiting process and the necessary heat transfer occurs with a 
relatively small temperature gradient. The Kelvin equation relating the vapor pressure to the 
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mean radius of curvature at a constant temperature is a good approximation and can be used 
to construct a model of metamorphism dominated by differences in radii of curvature. 
Calculations with our very simple model of the geometry and using direct observations (de 
Quervain, 1945; Bader, 1962) show very slow rates of mass transfer by this process so it is 
unlikely that radius of curvature effects can contribute significantly to the metamorphism of a 
subfreezing, seasonal snow cover. When imposed temperature gradients are less than I degjm, 
the smallest branches (radius less than IO-3 mm) will sublimate because of their high vapor 
pressure but the imposed temperature gradient in the snow cover generally dominates over 
differences in radius of curvature. 

In contrast to vapor-saturated dry snow in the absence of imposed temperature gradients, 
liquid-saturated snow experiences very rapid grain growth due to relatively large temperature 
differences among the grains. Mass transfer between grains occurs instantaneously because 
the pore space is filled with the melt so the process is rate limited by heat flow at a constant 
liquid pressure. In dry snow the vapor pressure varies with the radius of curvature whereas 
in liquid-saturated snow the temperature varies with the radius of curvature. 

In wet snow with liquid contents in the usual range of two to five per cent of the total 
volume the air is interconnected between the pores, and grain growth occurs predominantly 
by vapor diffusion. In this case grain growth is much slower than in liquid-saturated snow. 
It has often been suggested (e.g. Perla, 1978[b]) that melt-refreeze cycles are responsible for 
grain growth in wet snow because "as the temperature approaches o°C, crystals with the 
smallest radii are the first to melt". However, we show here that the triple-point temperature 
is not sensitive to radius of curvature in wet snow with a low liquid content and therefore this 
mechanism must be rejected. In fact grain growth in both dry snow and wet snow at a low 
liquid content is controlled by vapor diffusion between surfaces of different radii of curvature. 
Only wet snow with a high liquid content (where the air in the pore space is discontinuous) 
experiences large temperature differences among grains and rapid grain growth by heat flow. 
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