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Dispersive mixing: within or between pores?
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We review some of the processes leading to dispersion and mixing in porous media,
exploring the differences between the travel time distribution of fluid particles within a
pore throat and between pore throats of different size within the porous layer. A recent
paper of Liu et al. (2024) has combined a model of these travel time distributions with a
continuous time random walk to quantify the dispersion as a function of the Peclet number.
We describe some further problems relating to dispersive mixing of tracer which may be
amenable to this approach, including dispersion caused by macroscopic lenses of different
permeability, dispersion of tracer which partitions between the fluid and matrix and the
effects of buoyancy on mixing.
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1. Introduction
When fluids move through porous media, the detailed flow field is complex owing to the
intricate topology of the pore spaces between the solid matrix and the no slip condition
on the matrix surface. This leads to a wide range of travel times of fluid particles as
they follow different streamlines from one plane to a second parallel plane downstream.
This process forms a progressively more convoluted interface when one fluid displaces a
second miscible fluid through the porous layer. When the effects of molecular diffusion
are included, the interaction with the mechanical dispersion leads to a gradually growing
zone across which the average concentration of fluid varies from the upstream to the
downstream value.

Experiments and numerical simulations suggest that the mixing depends on the Peclet
number of the flow, Pe = Uδ/D, defined in terms of the mean Darcy speed U , the
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molecular diffusivity D and the typical length scale of the flow δ, often taken to scale with
the mean pore size. The Peclet number can be understood as the ratio of the molecular
diffusion time to the advection time across the pore-spaces. High Pe corresponds to
relatively fast flow, and it has been argued that the effective dispersion coefficient scales
linearly with Pe, whereas for smaller Pe the dispersion coefficient follows a more complex
set of power law scalings (Saffman 1959; Koch & Brady 1988).

In the paper by Liu et al. (2024), an argument is made that both the fluctuations in
the fluid speed within individual pore spaces and also the fluctuations in the flow speed
between different pore spaces, of different size, may both play a role in determining the
dispersive mixing, and the authors propose that a continuous time random walk can be
used to model these processes (cf. Berkowitz, Scher & Silliman 2000). In quantifying this
dispersion, they build on the idealised model that porous media consists of a series of pore
throats with a range of radii and lengths, which connect at junctions. The fluid particles
arriving at a junction from one pore throat may separate into different pore throats as they
move downstream.

Within a single pore throat, the low-Reynolds-number flow develops a Pouseille type of
shear flow, with a characteristic mean travel time across the pore, as well as a travel time
distribution for the fluid particles on different streamlines. With low flow rates, and hence
low Pe, the fluid concentration diffuses so as to be uniform at each point along the pore
throat. The travel time for the upstream fluid parcels and any associated tracer to migrate
along a pore throat therefore depends inversely on the average speed along the pore throat,
unless the flow is so slow that diffusion along the pore throat dominates. At higher flow
rates, and hence higher Pe, the travel time distribution associated with the Pouseille flow
controls the advance of the upstream flow along the pore throat. By combining the travel
time distribution for the pore throats of a given size and hence Pe, with the distribution
of pore throat sizes, the rate of dispersion of the fluid–fluid front can be calculated. If
there is a wide range of pore throat sizes, then both the advective and diffusive limits may
apply in the larger and smaller pore throats, respectively, whereas with a smaller range of
sizes, one or other Pe number limit typically pertains. Liu et al. (2024) have explored the
predictions of this model with an idealised series of distributions for the pore throat sizes,
and they obtain results for the dispersion in good accordance with published experimental
and numerical results. As well as providing an elegant idealised model which is able to
characterise these asymptotic dispersion regimes, and which suggests that at larger Pe
the dispersion scales as Dm Pe ln(Pe), the model presented by the authors promises to
uncover the transient adjustment to these regimes.

2. Future directions
It would be of great interest to explore whether the approach can be developed for
application to a number of more complex mixing problems in porous media. Presently
the model relies on the matrix being statistically homogeneous and unbounded. In
many geological formations, especially in sedimentary rocks, gradients of grain size and
macroscopic layering reflect the time-dependence of the depositional processes forming
the rock (Phillips 1991; Woods 2015) (figure 1a). As the scale of the fluid flow increases,
progressively larger scale heterogeneities may be encountered as suggested by field-scale
tracer dispersion data (Cala & Greenkorn 1986). If there are systematic vertical gradients
of grain size or multiple layers formed of grains with different size distributions, this
may lead to an effective vertical shear and spreading of the fluid–fluid interface at a rate
proportional to time (Matheron & de Marsily 1980; Woods 2015). In addition, Eames
& Bush (1999) have illustrated that if there are localised but large-scale heterogeneities of
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Figure 1. (a) Photograph of the Bridport Sandstone, a typical porous rock, with multiple layers. (b) Image of a
line of tracer (brown) moving from left to right, from a layer of uniform permeability, through a cross-bedded
layer, and back to a layer of uniform permeability, illustrating the distortion of the flow in passing between the
different regions of rock, and the generation of shear (Bhamidipati & Woods 2020). (c) False colour image of
the growth of buoyancy-driven fingers as a dense fluid migrates downwards through a bead pack, displacing a
less-dense fluid (image courtesy of N. Mingotti). (d) Image of a bead-pack experiment, including a lens of high
permeability. A band of red dye migrates along the pack, then rapidly moves through the lens and back into the
pack, leading to large distortion of the band of dye (Woods 2015).

scale d and permeability ratio k1/k2 compared with the far-field distributed randomly in an
unbounded layer, then a macro-dispersion of order (ud/D) f (k1/k2) develops owing to the
fluctuations of the flow field with mean Darcy speed u and where f (k1/k2) is a function
which depends on the permeability ratio, which they calculate. It would be interesting to
see if this can be accommodated in Liu et al.’s (2024) framework with a multi-peak pore
size distribution. Also, if the layer is bounded above and below by impermeable rock, such
heterogeneities can in fact lead to large-scale shear and anomalous spreading of the front
(figure 1b,d) again proportional to time (Bhamidipati & Woods 2020, 2021). It would be
interesting to extend the Liu et al. (2024) model to accommodate such effects.

In some natural systems, tracers partition between the solid and the fluid. With rapid
molecular diffusion across the pore spaces, this leads to tracer concentration gradients
developing in the direction of the flow (Zhang, Hesse & Wang 2017). Physically, one
may anticipate that as the Pe number increases, the mechanical dispersion of tracer will
lead to the leading part of the tracer being carried by streamlines which are further from
the matrix boundaries, thereby suppressing adsorption onto the matrix. The modelling
approach of Liu et al. (2024) may provide a fruitful approach to explore such effects,
perhaps by including a source or sink term in the model.

In other cases, there may be density differences across a migrating fluid-fluid interface,
for example in geological carbon storage, where an aqueous solution saturated in CO2
may form through dissolution of pure CO2. CO2-saturated solutions are more dense than
an equivalent undersaturated solution, and the associated stabilising buoyancy force may
act to regulate the mixing if the CO2-saturated solution migrates through the aquifer
(Menand & Woods 2005; Unwin et al. 2016). It would again be interesting to evolve
the present pore–throat model (Liu et al. 2024) to explore these buoyancy regulated
flow regimes especially for higher Pe flows. This may also open up new approaches for
modelling the effect of high Pe on the mixing of fingers formed in the Rayleigh Taylor
instability in a porous media (figure 1c; Clarke et al. 2025; De Paoli, Howland & Verzichio
2024).
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