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Abstract. Assume T is an ergodic measure preserving point transformation from a
probability space onto itself. Let {{nk, lk)}f=i be a sequence of pairs of positive
integers, and define the sequence of averaging operators Akf(x) =
(I/'*) Z/=o /(T"k+jx). Necessary and sufficient conditions are given forthis sequence
of averages to converge almost everywhere. Weighted versions are also considered.

Introduction
Let (X, X, m) denote a non-atomic probability space, and T an invertible ergodic
measure preserving point transformation of X onto itself. Let {(nk, lk)}t=i be a
sequence of pairs of positive integers, and define the sequence of averaging operators

lk j=O

A number of authors have considered these averages with specific sequences
{("k, 'n)}?=i- They studied the question of almost everywhere convergence for the
operators applied to functions in some V class. For example, in [1] it is shown
that if nk = k and lk = \fk then it is possible to find an / in L°° such that convergence
fails. In fact they show convergence fails even for / the characteristic function of
a measurable set. Later it was shown in [10] that if nk = p(k) where p(x) is any
polynomial with integer coefficients of degree at least one, and lk/nk->0, then
convergence fails for some / in L°°. It also follows from work in [3] that if nk = 4k

and lk = 2k then convergence fails. On the other hand it can be shown that if nk = 22t

and lk =yfn~k then almost everywhere convergence does occur for all / in L1. Thus
it becomes natural to investigate the question of convergence for general averages
of the form Akf. This is done in § 1. In § 2 these results are applied to give new
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proofs of the special cases mentioned above. In addition, the question of weighted
averages can be considered. In [8] it was shown that the operators

fail to converge even for / the characteristic function of a measurable set. However
in § 3 it will be shown that certain subsequences of these averages will converge
almost everywhere for all / i n L1. Other weighted averages are also considered.

If A is a subset of integers, |A| will denote the numbers of points in A. Throughout
the paper, c will denote a constant, but not necessarily the same constant from one
occurrence to the next. We will use the notation nk / oo to mean {nk}^=1 is a
nondecreasing unbounded sequence.

The assumption T ergodic can often be replaced by weaker assumptions. If the
conclusion of a theorem is that a maximal inequality holds, or that, a.e. convergence
holds, then by standard arguments, T ergodic can be replaced by T measure
preserving. If the conclusion of the theorem is that a maximal inequality fails, then
the assumption T ergodic can be replaced by T aperiodic. (The assumption T
aperiodic is needed to make use of the Kakutani-Rokhlin construction.) If we want
the stronger negative conclusion of'strong sweeping out', we maintain the hypothesis
T ergodic to insure the existence of a family of mixing transformations that commute
with T.

1.
Let il be an infinite collection of lattice points with positive second coordinate. Define

Qa = {(z, s)\\z-y\<a(s-r) for some (y, r) in ft, (z, s) a lattice point}.

Geometrically we visualize fta as the union of all solid cones with aperture a
and vertex in ft. However for technical reasons, we define ftQ to be only the lattice
points in these cones.

The cross section of fta at integer height s > 0 is denoted by ftQ(s) and defined by

Let T be an ergodic measure preserving point transformation from a probability
space (X, 2, m) to itself, and define the maximal function associated with the set
ft by

Mn/(x)= sup - "l \f(Tk+jx)\.
(k,n)E(l " j = 0

THEOREM 1. (a) Assume there exist constants A < oo and a >0 such that |fta(A)|< A\
for all integer A > 0; then Mn is weak type (1,1) and strong type (p,p) for 1 < p < oo.

(b) IfMn is weak type (p, p) for some finite p>0 then for every a > 0 there exists
Aa < oo such that for all integer A > 0 we have \ila(X )| s Aa\.

Theorem 1 is related to a generalization of Fatou's Theorem studied by Nagel
and Stein [7]. The following proof is based on ideas in a subsequent paper by Sueiro
[12], and the transfer principle of Calderon [4].
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Proof of part (a). In the context of the maximal function problem, the Calderon
transference principle allows us to transfer our considerations from (X, 2, m, T) to
the set of integers Z equipped with translation. Fix an x in X and a large integer
JV. For ease of notation, define

f(k)=f(Tkx)X[-N,N1(k)

and extend the definition of the maximal function Mn to this setting in the obvious
way. Let A >0 be given. We now decompose the domain of/ (which is now just
the integers) into a collection of disjoint blocks {B,} where the two sided Hardy-
Littlewood maximal function

/*(/>) = SUp y-Vr I \f(P+J)\>K
« \n +1 A

and the remainder where/* < A. By the usual Hardy-Littlewood maximal inequality
we have

B, = {fo,,/>i + l , . . . , b , + r1 - l}
and

|uB1-|=4||/||1=| I
A A J = -

If Mnf(p) > 2A then by definition
1 n - l

~X \f(p + k+j)\>2\ forsome (k, n) in ft.
n j=o

This implies that the interval (p + k, p + k + n -1) c Bt for some i. To see this, first
note that the point p + k is a place where / * is greater than 2A, hence greater than
A. We still need to show that p + k + n — 1 < 6f + r,-, — 1. If this were not true then there
would be two possible cases.

Case 1. p + k+n — 1 is not in one of the blocks where the maximal function is
greater than A. In this case we note that our maximal function / * looks both to the
left and the right. Looking at the average from p + k + n-1 back to p + k we get
less than or equal to A, but this is the same average we assumed was greater than
2A, a contradiction.

Case 2. p + k + n-\ is in some block other than B,. In that case there must be at
least one point q between p + k and p + k + n-l where f*(q)s A. Look from q left
to p + k, the average will be less than or equal to A, now look from q to the right
to p + k+n - 1 , the average is less than or equal to A. Thus we have

and

Adding these, we see that
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This implies
p+k+n-l

or
1 p+k+n-l M + 11 I L/U)|I L / U ) | .
n j=P+k n

a contradiction to the original assumption that the average was greater than 2A.
Thus we known that n < r,.

Let c = [l + a~'] + l. Then

\(bj - p) - k\<\bt - (p + k)\< r, (since p + k is in B;)

<a(cr,-/•,-)

s a(cr, - n) (since n < /•,-).

Therefore by definition (bj—p, crt) is contained in Oa, or fc,—/?ena(cr,). This
implies that

/>efc,-nQ(cr,).

Using this we see that

{p I Afn/(p)>2A}<=U{*i-«»(«•,)}.
i

Taking measures (counting measure on the integers) we have

s I Acr,

A j = -N

From this and the transfer principle, (i.e. divide both sides by 2N, return to the
original notation, and use the fact that T is measure preserving), we deduce the
weak type (1,1) conclusion of part a of the theorem. Note that the operator Mn is
trivially bounded from Lx to L°°. This and the weak type (1,1) estimate allow us
to use the Marcinkiewicz interpolation theorem (see [13] page 111) to prove the
operator Mn is strong type (p, p) for 1 <p<oo.

Proof of part (b). Assume that we are given a > 0 and an integer A > 0. First assume
that Oa(A) is bounded. Form a very tall Kakutani-Rohklin tower of height N larger
than

2(a + 1)A +sup {\z\ | z € Q,a(\)},

and with error less than 1/N. Let (z, A) be in Ou. Then by definition of fta we know
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that |z —fc|sa(A—M) for some (k, n)efl. Note that this implies \z — k\sa\ and
A>n. Define a function / to be 1 on the top 2[(a + l)A] steps of the tower, and
zero elsewhere. Let x be a point in the tower [(a + 1)A] steps below the top of the
tower. Note that each step in the tower has measure at least 1/2N. We have

Mn/(T-zx)>-"l f(T-*+k+Jx).
n j=o

Since \-z + k\<a\, the sum starts in the support of/ The sum also ends in the
support of/ because |-z + /c + n|< |-z + fc| + n< aA+A<(a + l)A. Thus the entire
sum is within the support of/ and we conclude that

This is true for all z such that (z,A)e£la, i.e. for all z in Ha(A). The number of
such z is no more than 27V times the measure of the set {Mnfz 1}. Using this fact,
and the assumption that the maximal function is weak type {p, p), we see that

c „ _,,p

< c

, p IIJ i \ p

[2(a +
TV

2(a + l)A
~° TV

Now multiply both sides by 2TV to conclude the proof of part (b) in the case where
OQ(A) is bounded. To see that this is in fact the general case, select B a large integer
and replace fMA) by Oa(A) n [-B, B] in the above construction. We then conclude
that |nQ(A)n[-B, B]|< c2(a + l)A. Note that the right hand side of the inequality
is bounded independent of the choice of B. Thus the set ila(X) must itself be
bounded, and the proof is complete.

We can also consider a related symmetrical maximal function,

MlJ(x)= sup ^ - j - £ \f(Tk+Jx)\.

Then Theorem 1 remains true with this maximal function. We state this as

THEOREM 2. (a) Assume there exist constants A < oo and a > 0 such that \fla (A )| £
AX. for all integer A >0; then Ms

n is weak type (1,1) and strong type (p, p) for

(b) IfMu is weak type (p, p) for some finite p>0 then for every a > 0 there exists
Aa < oo such that for all integer A > 0 we have |fia (A )| < AaX.
Proof. The proof is almost the same as the proof of Theorem 1. The following
outline of the proof uses the notation from the proof of Theorem 1.

For part (a), we find a pair (k, n)efl such that

1 "
In +1,=-„

k+j\>2\.
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By the same argument as before, we find that {p + k — n, p + k + n ) c Bt for some i.
In particular, this implies that p + k is in B{, and n < r,. From this we deduce that
p e 6,-fttt(cr,), and the result follows as before.

For part (b), note that M n / (x )<cMn/ (x ) . To see this note that for each fixed

j \ * £ \f(P + k+j\
j=0 j=-n

and hence

Consequently, if Ms
n is weak type (p, p) then so is the associated maximal function

M n , and hence by part (b) of Theorem 1, we see that there is a finite constant Aa

such that \Cla(k)\< Aak.

COROLLARY 1. For each p > l , the maximal functions Maf and Ms
nf are weak type

(p, P) if and only if the maximal functions MaJ and MSQafare weak type (p, p).

Proof. Note that the union of cones with aperture a and base in O is exactly the
same as the region formed by the union of cones with aperture a and base in (!„.
Hence the condition in the theorem is either satisfied by both regions or neither
region.

Let ft* ={(£, n)\(k, n) e ft and n 2: h}. We say the

lim -"£f(Tk+ix)

exists, (and equals/) if

lim sup ~l f(Tk+ix)~f(x) = 0,

for a.e. x. With this notion of limit we can state the following corollary to
Theorem 1.

COROLLARY 2. / /

"Hm - l f(Tk+Jx)
n

exists for all fin some V, 0<p<oo, then there exists an integer h such that for the
set Q,h we can find constants a and Aa such that for all integer A > 0, we have

Conversely if we can find an integer h and constants a and Aa such that for all
integer A >0 , |fl*(A)|^i4QA then the limit exists a.e. for all fin Ll.

Proof. Before proving the corollary we prove the following lemma which is really
just a special case.

LEMMA 1. / / Sl = {(nk, lk)\lk >0, /c = l ,2, . . .} with lk / oo, and

Hmf''I f(T'i+1x)
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exists a.e. for all f in some Lp, 0 < p < <x>, then there exist constants a and Aa such
that for all integer A > 0, we have |fia(A)| £ Aa\.

Proof. Suppose convergence holds for all fe If, for some Q<p <oo. If 1 < p <oo,
apply Stein's theorem in If [11] (as extended by Sawyer [9]) to conclude that the
maximal function M n is weak type (p, p). If 0</> < 1, since V <=• If, apply Sawyer's
theorem in V to conclude that the maximal function is weak type (1,1). In either
case, by Theorem 1, part (a), there exist constants a>0 and Aa<<x> such that

LEMMA 2. For each positive integer h define il(h) = {(k, h) \(k, h) e fl}. / /

"Hm - l f(Tk+Jx)

exists a.e. for all fe V for some 0</> <oo then \il{h)\ is finite for all h greater than
or equal to some integer h0.

Proof. If the limit exists then it must exist for each sequence of points from il with
second coordinate tending to infinity. Assume Lemma 2 is false. Then we can find
an increasing sequence of positive integers h ! , h 2 , . . . such that |fl(ft,)| = oo for
7 = 1 ,2 ,3 , . . . . We will now construct a 'bad' sequence {(nk, lk)}t=i- Let
(m\, /],), (m\, / ) , ) , . . . , (mj,,, /J,) be any set of points in il(h^). Let these be the first
/J, points in the sequence. Next let (m\, h2), {m\, h2),..., (m\hl, h2) be any collection
of 2/i2 points in il(h2). Let these be the next 2h2 points of the sequence. In general,
at level h, select ih{ points from fl(/i,-) and let these be the next iht points of the
sequence. Define il to consist of the points in this sequence. The cone condition is
obviously violated because at level A = hk we see that |fla(/i*)| a khk. Thus no finite
constants a and A will work. By Lemma 1 we cannot have convergence along the
sequence, and hence cannot have the more general convergence.

Proof of Corollary 2. By Lemma 2 we know that at a certain level h0 and above,
each level of il contains only a finite number of points. We will show that the linear
growth condition is satisfied by the set Cl = ilh°. Define an order on O as follows:
(ni,li)<(nj, lj) if lj<lj or /, =/, and n,<«, . With this order we are really only
considering a sequence with second coordinate tending to infinity. This puts us in
the case of Lemma 1, from which we conclude that the growth condition is satisfied
for some finite positive constants a and A.

To prove the converse, note that for functions in the dense class,

D = {(p\(p(x) = g(x)-g(Tx) + c, geLx, c a constant}

convergence is trivial, because if <p(x) = g(x)-g(Tx) + c then

'x)--Jl <p(T"+'x) ^ M x

j ,-o h '

and this clearly converges as h increases to infinity. Define

sup

K( / ) (x )= l im sup I
' ; - o

1 J~l

f(T"+lx)
-o
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Note that R(f)(x) = R(f- <p)(x) for each <p * D. Also note that R(f)(x) < 2Mfi/(x).
We would be done if we could show that m{x \ R{f){x) > e} = 0 for each choice of
e > 0. This follows from the fact that for each <p e D we have

m{x\R(f)(x)> e} = m{x\R(f-q>)(x)> e]

<m{x\2Mfl(f-<p)(x)>e}

We have used the growth condition and Theorem 1 to obtain the weak type inequality
used in the last step. Since \\f— <p ||, can be taken as small as desired, the result follows.

Actually, more is true. By proving a variant of Sawyer's theorem, it will be possible
to show that if convergence fails then it does so in a very strong way. We will show
that if the growth condition fails, then given e > 0, we can find a measurable set E
such that m(E)<e, but

1 '*-'
lim s u p - I XE(T"-+JX) = \ a.e.

'k j=0

and

liminff £'*!;(r"*+M = 0 a.e.
Ik j = 0

In this situation we will say that we have the 'strong sweeping out property'.
A family of measure preserving transformations {5a} is said to be mixing if for

each pair of sets A and B in 2, and p> 1, there exists Sa in the family such that
m(AnSZ\B))<p- m(A) • m(B).

The following variant of Sawyer's Theorem will be needed to study the 'strong
sweeping out property'.

THEOREM 3. Let (X, S, m) denote a probability space. Assume that {Tk} is a sequence
of linear operators, Tk: L

x -> V with the properties
(i) 7i>0.

(ii) Tkl = l.
(iii) The Tk's commute with a family {Sa} which is a mixing family of measure-

preserving transformations.
For each n define Mnf= supfcan|Tk/|. Assume that
(*) For each e > 0 and n e N, there exists a sequence of sets {Ap}, such that if

Ep = {MnxAp^i-e} then sup , A = +00-

Then the "strong sweeping out property' holds: given e > 0, we can find a set B, with
m(B)<e, such that

lim sup Tk\B — 1 a.e.

lim inf Tk\B =0 a.e.

Proof. By Theorem 1.3 in del Junco and Rosenblatt [6], it is enough to show that:
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(**) For each e > 0 and n e N, we can find a set B, m(B) < e such that

MnXB s= 1 - e a.e.

Now we argue as in Sawyer's proof. We may assume without loss of generality that
m(Ep)/m(Ap)>p2, otherwise we relabel the sequence. Let hp be a natural number
such that 1 :£ hpm(Ep) < 2 and hence

Take AP,A2
P,..., Ap" to be identical copies of Ap, i.e. Aj

p = Ap for j = 1,2,..., /ip.
Then E'p = £p for j = 1, 2 , . . . , hp. By Sawyer's auxiliary lemma, (see M. de Guz-
mann's book [5], p. 20), there are SJ

P e {Sjp = 1,2,... ,j = 1, 2 , . . . , hp such that
almost every x belongs to infinitely many (Si

p)~\EJ
p). (Here we use the fact that

I Z m(Ei
p)= I hpm(Ep) = oo.)

p = l 7 = 1 p=\

Choose p0 so that

Define

F ( x ) = sup S'PXA'P{X)

lsjshp

= XB(X).

(As the sup of a countable family of indicator functions this is again an indicator
function.) Then

s I if
psp0 7 = 1 J x

= I Z m(A^p
papo 7 = 1

= I hpm{Ap)

and
MnF(x)s:Mn{SJ

PXA0(x)
= Mn(xAp(SJ

px)
(because our operators Tk commute with the family Sa: Tk(Sg)(x) = S(Tkg)(x) =
(Tkg)(Sx), whence Mn(Sg)(x) = (Mng)(Sx)).

Now if xe(Sj
py

l(Ej
p), then Sj

pxeEJ
p and hence M n ( ^ ) ( S > ) s 1-e which

implies Mn^B(x)>l-e . Thus Mn^-B(x)>l-e for almost every xeX, and the
theorem is proved.

Remark. The assumptions on the sequence of operators {Tk} used in the above
theorem can be weakened and the conclusion can be strengthened. It is enough for
these operators to satisfy the assumptions used by del Junco and Rosenblatt [6].
They assume that {Tk} are monotone (E c F-» TkxE

 s TkxF) linear maps which are
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continuous in measure from 1 into the class of positive measurable functions and
that Tk\x = 1 for all k. The conclusion can be strengthened to show that an entire
dense Gs collection of subsets of 2 will work.

The following theorem applies Theorem 3 to the moving averages considered in
Theorem 1. We state this as Theorem 4.

THEOREM 4. Let il = {(nk, lk)\lk / oo}. If the linear growth condition on \Cla(\)\fails,
then we have the 'strong sweeping out property', i.e. given e > 0 there exists a set E
with m(E)< e, such that

and

l imsup - I XE(T""+JX) = 1 a.e.
'Ac j = 0

1 *
liminf- £ XE(,T""+JX) = 0 a.e.

Ik j=0

Proof Suppose that the set SI is such that the linear growth condition on the cones
fails. Take a = 1. Then given any positive integer p, we can find a positive integer
A = Ap such that p25\p£\Sl1(\p)\. Form a very tall Kakutani-Rohklin tower of height

N»5Ap + sup{z|zeO,(Ap)}

and error less than 1/7V. Define Ap to consist of the top 4AP + 1 steps of the tower.
Then m(Ap)-&{A\p+\)/N. Let x be in the tower, exactly 2AP + 1 steps from the
top. Now for zefi,(Ap) we have | z - fc|s(Ap-«)< Ap for some (k, n)eSl, so
Ap>n. Also then |z-(fc+n) |< |z-fc| + n< Ap + Ap = 2AP, so that | -z + fc|<Ap and
| -z + (fc + /i)|<2Ap. This means that T~z+kx&Ap,..., T-z+(k+n)xeAp and hence

1 n - l

M v (T~zx)>- Y v (T~z+k+jx)>-\

(The sum on the right starts and ends in Ap.) Thus for each zefl,(Ap), T~zxe
{MnXAp — !}• Since each step in the tower has measure at least 1/2N, we have

O,(AP

but

|O.(AP)L
2N '~P

m(i

25AP

2N 2

P2

and thus

m(Ap)~ 2 '

Note that if SI' is the set SI with the first few terms removed, then the above argument
also applies to SI'. Thus we showed that the condition (*) in Theorem 3 holds,
finishing the proof.

2. Applications
In this section we consider a number of applications of the results obtained in § 1.
We begin with a lemma which will prove useful in a number of the applications.
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LEMMA 3. (Sliding Lemma.) If ft = {(nk, 1^}^=,, and ft is obtained by increasing
some of the lk, then if ft fails to satisfy the linear growth condition, so does ft. Further
ifg(k) = r>k+i — nk, and we shift the nk in such a way that the new sequence nk has the
property that nk+x -nk< g(k) then if the sequence {(nk, lk)} fails to satisfy the linear
growth condition, so does the original sequence.

Proof. Note that increasing lk will decrease the cross section of the cone based at
("*, 4), and make it easier to satisfy the growth condition. Similarly, if we reduce
the gaps between the cones, then the cross section at level A will only decrease. If
the reduced cross section is too large then the original cross section must have been
too large also.

COROLLARY 3. / / {nk} and {lk} satisfy the growth conditions nk+l> nk + lk and for
some fixed j> 1, lk>c-nk^, then limk_x(l/lk) £h~* f(T"k+'x) exists a.e. for all
feL\
Remark. Note that a special case of this result is that if nk = 22 and lk = Vri^ then
we have convergence. This should be contrasted with the case considered in [1]
where nk-k, lk=yfn~k, and it is shown that convergence fails. Theorem 4 above
shows that in fact convergence fails in a very dramatic way.

Proof. In this case the set ft consists of points of the form (nk, lk). At level A above
the point (nk, lk) we see a contribution of c(A — lk) where c depends on the angle
chosen. Let m be the last integer from which there is a contribution. Assume first
that 7 = 1, and that the cone based at («m_i, /„,_,) is not contained in any earlier
cone. Then the total contribution from all the cones is dominated by

;£ ( A - c(A-/m)=£fcA

<AA.
(See figure 1.) If the cone based at {nm_x, lm^x) is contained in one or more earlier
cones, let (nk,lk) be the vertex of the earlier cone which contains (nm_t, /„,_,) and
intersects the line y = A the farthest to the right. Then

FIGURE 1.
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as above. If for example j = 2, and the cone at (nm_2, lm-2) is not contained in any
earlier cones, then we have

where the growth condition was used to estimate nm_2 by a constant times lm, and
hence by a constant times A. If the cone based at («m_2, /m_2) is contained in one
or more earlier cones, proceed as in the casey = 1. More generally, for any fixed j ,
we simply estimate the last 7 +1 terms by A and use the growth condition to estimate
the first m —j terms.

COROLLARY 4. [3] Let nk = rk and lk = ask with Ks<r, a and s positive integers.
Then for each choice ofp > 1, l i n u ^ (1/4) Y.'jkJo f(T"k+Jx) fails to exist a.e. for some

/ e V, and in fact the 'strong sweeping out property' holds.

Proof. Here the set £1 consists of points of the form (r", as"). The cone at (rk, ask)
at height as" has cross section c(as" - ask) = cask(s"~k - 1 ) > c's". These cones will
be disjoint at height as" at those k such that rk~x + cas" <rk - cas", i.e. for those k
such that 2cas" < rk-rk~\ or 2cas" <(r~l)rk[. (See figure 2.) Let fc0 denote the
smallest k such that 2cas" < (r-l)rk~\ The number of cones which are disjoint at
height as" is at least n-k0. Taking logs, we see that n-k0 grows at least linearly
with n. Thus the total contribution from these disjoint cross sections will be at least
nc"s" for some constant c". Since this is not dominated by As" we cannot have a
maximal inequality, and cannot have convergence.

COROLLARY 5. Assume r > 1, and let nk = [rk] and lk = o(nk), then for each choice

lim-W/CTT-'x)

fails to exist a.e. for some fin V and in fact we have the 'strong sweeping out property'.

Proof. Note that we can assume without loss of generality that lk are nondecreasing.
If not, simply increase lk's as necessary to achieve this. By Lemma 3 (the sliding
lemma) if we do not have convergence for this new sequence, we could not have
it for the original sequence. Note also that because of the rate of growth of the nk

and the non-decreasing nature of the lk, if the cross section at height A of two cones
are disjoint then all future cross sections at height A will also be disjoint. Let e > 0
be given.

A =as"

(r"

FIGURE 2.

(r",as")
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If there exists an infinite set S such that n e S implies that /„ — /„_, s: sln then we
can proceed as follows: For n e S let A = /„, and let kn be the largest k such that at
level A the cone at the point (nk,lk) intersects the cone at the point (nk_,, /k_,).
Then we have

|Oa(A)| >c(r*-+ I (/,,-/A
\ _/ = *„ + ! /

There are two cases.

Case 1. There is a constant c such that n - kn < c for all M in 5. In this case we have
kn>n-c and |fl»(/n)| == Crk- > Cr"~c = O(r") which implies we cannot have the
weak type inequality.

Case 2. We have H-fcn->oo. For these ne S we have | n a ( / J | > C(n - fcn)( / n - / n_ , )S :

C{n-kn)eln, but since «-fcn goes to infinity we do not have the necessary size
condition for a weak type inequality.

If the set 5 contains only a finite number of n, then we have /„- /„_,< eln for all
n large enough. This can be rewritten (l — e)ln<ln-l or /„//„_,< 1/(1 — e). This
leads to /„ < A[l/(1 - e ) ] " for some constant A If e is selected such that 1 / (1-e )<r
then we are in the case of Corollary 4, and hence do not have a weak type result.

COROLLARY 6. [10] Let L> 0 be given, and let nk = kL (or the greatest integer in kL

if L is not an integer), and lk = o(nk), then for each choice of p a 1,

fails to exist a.e. for some fin Lp and in fact we have the 'strong sweeping out property'.
Proof. Look at the subsequence with index 2k. We have l2

k = o(2k)L, but (2k)L =
(2L)k = rk. Therefore looking only at this subsequence, we see that we are in the
case of Corollary 5, and consequently cannot have convergence for this subsequence,
and hence not for the original sequence.

COROLLARY 7. Given any sequence {{nk, lk)}t=\ such that nk / oo and lk / oo, there
is a subsequence {(n'k, l'k)}t=\ such that convergence occurs along this subsequence.

Proof. The sequence {(n*,'L)}*°=i will be defined inductively. First let {n\,l\)~
(«,, /,). In general if (n'k, l'k) have been selected, select the pair (n'k+l, l'k+}) from
the sequence {(nk, lk)}T=i such that l'k+l>n'k. The resulting subsequence satisfies
the growth condition of Corollary 3 which is sufficient for convergence.

COROLLARY 8. There is no universal strictly increasing subsequence {MJJA°=I such that
for every sequence {(k, 4)}*°=!, with lk / oo, convergence occurs along the subsequence
{(nk,lj}?=:.

Proof. Given the proposed universally good sequence {nk}^=i, let lnk =,rln jfc]. Define
the remaining lk so that the resulting sequence of lk is non-decreasing. This sequence
will be the required counter example. To see this, note that by the sliding lemma
(Lemma 3) and the fact that (fc+l)-fc< nk+l-nk, |Oa(A)| is only decreased by
'sliding' the points (nk, lnj to the left, resulting in the sequence {(k, lnk)}t=i- Since
the /„, = [In k] = o(k), convergence fails by Corollary 6.
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3. Weighted averages
There are many cases where the results of § 1 can be applied to problems involving
weighted moving averages. Theorems 5 and 6 below show how this can be done.
Further problems involving weights will be considered in a subsequent paper.

THEOREM 5. Given any continuous function <p with the properties that
(a) <p(x)>Oforallx,
(b) J?(x)dx = l,
(c) (p(x) is radial decreasing, (i.e. <p(\x\) = tp{x) and <p is a decreasing function of

(d)
define <pn(t) = n~]<p(t/n). Then the maximal function

Nnf(x)= sup Z <Pn(j)\f(Tk+Jx)\
(k, n)e(l j = -oc

is weak type (1,1) if and only if the region Q is a good region for the operator Mn.

Proof We can decompose the operator Nnf into the sum of pieces, each of which
we can control by the maximal function Ms

nf. By Theorem 2 we know that the
operator Ms

n is weak type if and only if the linear growth condition on O(A) is
satisfied, and by Theorem 1 the same is true for the operator M n .

Assume t h a t / i s non-negative. (If not replace/by | / | . ) For all (k, n ) e f iwe have

ijnU)f{Tk+iX)

= z <pnurnTk+j
X)+ z m z m+ <pnu)f(Tk+jx)

j = — n m=0 2"'n<|yj^2'" n

Z f(Tk+Jx)+ Z n2m+'<pn(n2m)—^ __ Z ^f(Tk+'x)

s c - 1 - Z f(Tk+jx) + c Z n2m+2<pn{n2m)—^ " z f(Tk+Jx)
2n + lj = ~n m=0 n2 + l j = -n2'"+l

^cMlif(x) + c Z 2m+2n<pn(2
mn)MhJ(x)

m =0

< CMUJ(x).
To see that the last sum is finite we argue as follows:

/•« roc

<p(y) dy= <pn(y) dy
Jo Jo

f» co Pn2"I + l

Jo m=0 Jn2'"
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^ I <pn(n2k) • (n2k+2)

*i I ("2k+2) • <pn(n2k).

The proof is completed by recalling that by Corollary 1,
weak type estimates as cMs

n.
To prove the converse, note that

I <P»U)f(Tk+ix)> I <pn(n)f{Tk+Jx)

satisfies the same

since <pn(n) = n~}(p(n/n) = n~1<p(\). Hence Nnf(x)s Ms
nf(x).

Remark 1. A similar theorem can be proved if we assume for example that <p is a
non-negative function which is supported on the non-negative reals, decreasing for
postive x, } (p(x) dx=l, and <p(0) = A < oo. The only change in the proof is to use
the one-sided maximal function rather than the symmetric two sided one used above.

Remark 2. Let t{n) be a function from the positive integers to the integers. Then
the region ft is a good region for the maximal function

N'nf(x) = «ipn 1^ <p,UJ)\f( Tk+ix)\,

i.e. the maximal function is weak type (p, p), if and only if the region ft =
{(k, t(n))\(k, n)eft} is a region which yields a weak type (p, p) inequality for the
maximal function Msaaf(x). To see this simply repeat the proof of Theorem 5,
replacing n by t(n). See the proof of Theorem 6 for an example of this idea.

Remark 3. More general weight functions can also be shown to work. For example
if we have a sequence of probability measures pn on the integers, which are
non-decreasing on their support, and such that s\xpkpn{k) converges to zero as
n-»oo, then there is a subsequence pnm such that for all feL1, pnii/{x) =
Xr=-oo Pn,,,(k)f(Tkx) converges for a.e. x. This will be considered further in a
forthcoming paper.

Define the maximal function

= sup ~ I ( 2")|/(T*+'x)|.
(i,»)en I j = -n \n+]/

Let Cl = {(k,[\fn])\(k,n)eQ.}, where [x] denotes the greatest integer function.
Fix a and define fta to be the collection of lattice points in the union of cones with
vertex in ft and aperture a. We can now state the following theorem.

THEOREM 6. For each p a l , the operator N^fis weak type (p, p) if and only if the
operator M^fis weak type (p, p). In other words the region ft is a good region for
the operator N^ if and only if the region ft is a good region for the operator Mf,.

Proof. Note that by Corollary 1 looking, at the set fta gives the same result as
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looking at ft from the point of view of the associated maximal functions being weak
type (p, p). Therefore it suffices to compare the operator N^f to the operator M^f.

Using Stirling's formula, it is easy to see that (l/22")(2
n") is well approximated by

1/yfn-sfn. Further,
i - l ) - - -(n-k+l)( In \ I2n\ n(n

\n + k) ~\n) (n + -(n + k)
Dividing top and bottom by nk, and using the fact that

1+j/n
it follows that

e-2(l/n>e-2(2/n).

(In fact the inequality can be reversed if | k/ n \ < \. This follows by the same argument
and the fact that

Consequently, to study the maximal function N^f we will use the fact that
1 / 2n \ _J_( 2n

22" \n-k) ~ 22" \n + k

= c • where
1

IT

can be dominated by
1 1

y/v vn
and <p,{x) = Cl(p{x/1). In the following assume that/ is non-negative. Thus we will
actually study

NfJ{x) = sup^ £ ^ <p^,(j)f( Tk+jx).

The operator can be decomposed into a sum of pieces, each of which will then
be related to the operator Mnaf. We have

s I <PV2t(j)f(Tk+Jx)+ <P^U)f(Tk+ix)

I f{Tk+Jx)

m=0
f{Tk+'x)

I f(Tk+jx)

https://doi.org/10.1017/S0143385700005381 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005381


Convergence for moving averages 59

c I
m=0

We have used the fact that if a point (fe, [ \ /H]) is in Cla then so is (k,j) for any
j >[•/«]. This is true because if a point is in a cone, so is every point above that
point, and Ha was defined to be a union of cones. We also need the fact that
Z^=02

m+2[\/n]<pv'2n(2m[\/n]) is finite independent of n. To see this we argue as
follows:

JO JO m=0 J2'"[yn
dy

0 J2'"[yn]

X 2
m=0

1 °°
-» v i"t+2r rz.
s ^ 5 1 2 K«

and for each choice of t,
f°° f°°i

<P,(y)dy= ~<p(y/t)dy
Jo Jo «

f°°
Jo
foe «

Jo V7T

Consequently if Msaaf is weak type (/>, p) then so is the operator N
To prove the converse note that

i I ( 2" )\f(Tk+Jx)\>c "f <p^(J)f(Tk+jx)
I j = -n\n-r)l j = -n/2

s c I tpjr»U)f{Tk+jx)

and (fc, «) €Cl implies (k, [\fn]) e fta. (Note that in the first inequality we have used
the reverse inequality between the binomial coefficients and the function (p.) By the
above, we have Nnf(x) > cMfiaf(x). Thus if O is not a good region for the maximal
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function Msa, then ila is not a good region for the maximal function
hence fl is not a good region for the maximal function N^.

COROLLARY 9. The operator

no and]

n>0 2- 7=0 \J

fails to be weak type (1, 1). Consequently the associated limit operator

> 2 j = 0\J/
f(TJx)

fails toexist a.e. for some fe V, and in fact we have the "strong sweeping out property'.

Proof. It suffices to look only at the even integers and to show that the maximal
operator

j = o \ J
-t £ 2"

fails to be weak type (1.1). But this is just N^f for ft = {(«, n) \ n e N} and hence
^ = {(", [>/*>]) I" e N}. Because the second coordinate grows more slowly than the
first, by Corollary 6, H is not a good region for M&. Consequently by Theorem 6,
fl is not a good region for the maximal function N^.

To see that we have the 'strong sweeping out property', note that by the Central
Limit Theorem, given e > 0 there exists a constant b = b(e) such that for all n large
enough,

J [*v?o ( 2n

For the set

O = {(n-[bVn], 2[bVh~]) | n > 0}

it is not difficult to see that the growth condition on the cones is not satisfied. Thus
by Theorem 4, the ordinary averages along this sequence have the strong sweeping
out property. Hence given e'>0, there exist sets E with arbitrarily small measure
such that for almost every x there are infinitely many n with the property that

1 [bs/~n]-\ 1 ~~

This implies that if k e [n -[bVn], n + [bVn]), then XE(Tkx) = 1 except for at most
2[b'/n]e' terms. From this and the fact that the largest weight in the binomial
average is dominated by I/VTTVW, we can see that the binomial average is at least

1-e

Since e and e' are arbitrary, we are done.

COROLLARY 10. Let S = {22 | n > 0}, then the operator

is weak type (1,1).
= O \J
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Proof. In this case n = {(22", 22")|n>0}, A = {(22",72^)|n >0}. Note that 22"~' =
22"(1/2) = [22"]l/2. Hence by Theorem 6, and the fact that Ct satisfies the growth
condition of Corollary 3, the maximal inequality holds.

COROLLARY 11. Let S = {22" | n > 0}, then for all f e V the operator

exists for a.e. x, and the limit is the integral off.

Proof. Consider the usual dense class of functions,

For functions in this class convergence is true even without passing to a subsequence.
Let f(x) = g(x)-g(Tx), and assume geV°. For this f we must show we have
convergence to zero. This follows because

i
j = 0 \J

- i I (n){g(Px)-g(P+1x)}

~2"\[n/2]y

+ similar terms for the second sum.

Consequently,

+ similar terms for the second sum.

Because the sum Z^,21
 { ( " ) - ( , - I ) } telescopes, we have

+ similar terms for the second sum.

This converges to zero as n -* oo, completing the proof of convergence for a dense
class of functions. The corollary then follows by recalling the fact that we have a
maximal inequality and using Banach's principle.
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