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We simulated laminar flow through a hexagonal sphere pack driven by a sinusoidal volume
force using direct numerical simulation. We vary two independent parameters, the Hagen
and Womersley numbers, representing the amplitude and frequency of the forcing. First,
we determine for which regions in the parameter space nonlinear effects have to be
considered. We judge the presence of nonlinear effects from the departure of the superficial
velocity and kinetic energy from a linear behaviour as well as from the presence of higher
harmonics in the discrete Fourier transform of the velocity field. We discuss the asymptotic
behaviour of the onset of nonlinearity in the limits of low and high Womersley number,
and we delineate approximately the parameter region that can be described using the linear
theory. Second, we document the changes of instantaneous velocity fields with Hagen and
Womersley numbers. We show that the onset of nonlinearity is accompanied by a loss
of fore—aft symmetry of the flow, and subsequently, we employ the deviation from this
symmetry to quantify the strength of nonlinear effects in the instantaneous velocity fields.
Based on this analysis, we demonstrate that for higher Womersley numbers, the strongest
nonlinear effects occur during the deceleration of the superficial velocity; consequently,
the development of the nonlinearity is not in phase with the superficial velocity. Finally,
we describe the leading-order nonlinear effects in the frequency domain and the interaction
among the nonlinear Fourier modes that leads to a temporal variation in the strength of
nonlinear effects.

Key words: porous media

1. Introduction

The study of oscillatory flow in porous media has applications in acoustics, seismology,
coastal engineering and marine sciences, and possibly in the engineering of thermal and
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chemical processes. When a pressure wave with a wavelength significantly larger than
the pore scale propagates through a porous medium, the pore fluid can be considered
to be driven by an oscillatory pressure gradient (Johnson, Koplik & Dashen 1987). The
propagation of sound through porous materials as well as of seismic waves through the
Earth’s crust can be described using the theory of Biot (1956a,b 1962). The coefficients
of this theory can be determined from the solution of the flow problem on the pore
scale (Burridge & Keller 1981). In coastal engineering, oscillatory porous media flow is
of interest in describing the interaction of water waves with rubble-mound breakwaters.
To this end, several experimental investigations of oscillatory flow through sphere packs
and rock samples have been undertaken by van Gent (1993) and Hall, Smith & Turcke
(1995). Further applications of oscillatory porous media flow in the context of marine
sciences include the water wave interaction with porous seabeds (Gu & Wang 1991)
or modelling flow in coral communities (Lowe et al. 2008). For technical applications,
oscillatory porous media flow can be of interest due to the increased heat transfer (Jin
& Leong 2006) or dispersion (Crittenden et al. 2005) when compared to steady flow.
Graham & Higdon (2002) performed a broad investigation of oscillatory flow through
two-dimensional porous media. They explored the effect of various types of oscillatory
forcing, and demonstrated that a mean flow can be induced opposed to the mean pressure
gradient. Moreover, they suggested that oscillatory flow could be applied as a filter
to separate fluids of different viscosities. Thereby, an appropriately designed temporal
waveform of the pressure gradient induces a mean flow in each fluid that points in opposite
directions. Finally, the study of oscillatory flow is also a good starting point for the
understanding and modelling of general unsteady flow.

Porous media are characterised by the presence of a macroscale L that is of the order
of magnitude of the extent of the porous medium, and a microscale [ that is of the
order of magnitude of the pore size. When [/ <« L, the flow through porous media is
described commonly in terms of aggregated quantities on the macroscale, for example,
the filter velocity that represents the volume flow rate per cross-sectional unit area of
the porous medium, and pressure differences over distances of the order O(L). In the
simplest case, Darcy’s law relates these macroscopic quantities by the permeability K;
however, it is applicable only to steady linear flow. For more general configurations,
methods have been proposed to derive governing equations for the macroscale flow
from first principles, i.e. the conservation laws for mass and momentum. Examples are
the volume-averaging approach (Whitaker 1986) or the homogenisation method (Ene &
Sanchez-Palencia 1975; Bensoussan, Lions & Papanicolaou 1978; Lévy 1987; Hornung
et al. 1997). In the volume-averaging approach, the differential equations are averaged
locally over a so-called representative elementary volume of the porous medium. Different
weighting functions can be used in the definition of the volume average, e.g. a top-hat or
Gaussian kernel. The resulting volume-averaged Navier—Stokes equations are unclosed,
as they contain microscale quantities describing the flow resistance and dispersion in the
pore space. Formally, the equations can be closed by solving a boundary value problem
on the representative elementary volume (Whitaker 1986 1996; Lasseux, Valdés-Parada
& Bellet 2019). For periodic porous media, the theory of homogenisation presents an
alternative to the volume-averaging approach. An artificial spatial coordinate y = (L/l)x
is introduced in addition to the spatial coordinate x. Using a perturbation series approach
with the small variable //L, the flow problem can be separated into a y-dependent boundary
problem on the unit cell for which the x-dependent terms act as source terms, and a
macroscale problem dependent on x and y. In conclusion, both the volume-averaging and
the homogenisation approach lead to the question of how the flow on a representative
elementary volume or unit cell of the porous medium and its integral properties are related
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to the macroscopic pressure gradient. In the present work, we investigate this dependency
for laminar oscillatory flow in the linear and weakly nonlinear regime.

In the following, we review models that have been used to relate the macroscopic
velocity to the macroscopic pressure gradient. The macroscale quantities are expressed
in terms of the superficial volume average

1
Wis=y | ¥dV, (1.1)
Vi
and the intrinsic volume average
1
Whi=-- vav, (1.2)
Vy 7

where Vy is the fluid volume, and V is the combined fluid and solid volume of the unit cell.
The averages are linked by the porosity € = Vy/V as (Y1), = € (¥);.

For steady flow, a widely accepted description of the resistance behaviour is given
through the Forchheimer equation (Forchheimer 1901)

fe=alu)g+bw?, (1.3)

where f, represents the macroscopic pressure gradient —V (p);, and (u), is the superficial
velocity. The coefficients ¢ and b are usually determined experimentally. Ergun
(1952) proposed porosity-dependent correlations for these coefficients, resulting in the
Ergun equation, which have been confirmed in later studies (Macdonald et al. 1979).
Whitaker (1996) presented a theoretical derivation of the Forchheimer equation from
the volume-averaged Navier—Stokes equations. A comprehensive review of the resistance
behaviour in stationary porous media flow was given by Wood, He & Apte (2020). One can
assume that in oscillatory flow at very low frequencies, there exists a quasi-steady regime
in which the resistance behaviour can be described appropriately by the Forchheimer
equation and its steady-state coefficients.

Oscillatory flow at small amplitudes is well understood theoretically and can be
described accurately by the so-called equivalent fluid model based on the work of Johnson
et al. (1987) and Champoux & Allard (1991). A comprehensive review of the theory
was given by Lafarge (2009). Chapman & Higdon (1992) verified the model of Johnson
et al. (1987) with highly accurate numerical solutions of the unsteady Stokes equations for
oscillatory flow through sphere packs. Turo & Umnova (2013) proposed a model similar
to the model of Johnson ef al. (1987) that is formulated in the time domain and features
a Forchheimer-type nonlinearity. They compared their model to data from a shock tube
experiment, and obtained ‘satisfactory agreement’.

Sollitt & Cross (1972) extended the Forchheimer equation (1.3) with an acceleration
term to describe unsteady nonlinear flow in porous media. The unsteady Forchheimer
equation possesses a sensible low-frequency limit — the steady Forchheimer equation —
but it does not comply with the theoretical high-frequency limit derived by Johnson et al.
(1987). Furthermore, there does not seem to be a general agreement in the literature on
the choice of coefficients; based on an extensive experimental investigation of oscillatory
porous media flow, van Gent (1993) suggested correlations for the coefficients in the
unsteady Forchheimer equation. Notably, both the coefficient of the acceleration term
and of the nonlinear term depend on the frequency of oscillation. Burcharth & Andersen
(1995) noted that the coefficients of the unsteady Forchheimer equations are in principle
time-dependent. This can be seen in the study of Hall et al. (1995), who applied a least
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squares fit to determine average values for the coefficients of the linear and nonlinear
terms, and obtained a temporally varying and sometimes even negative acceleration
coefficient. For strongly accelerated flow, a further arguable point is that the nonlinearity in
the unsteady Forchheimer equation depends only on the instantaneous superficial velocity
(u)s. To the best of our knowledge, this assumption has yet to be examined. Hence, in
the absence of a generally valid model, it would be interesting to know under which
circumstances oscillatory flow can be considered as linear and thus be described reliably
by the equivalent fluid model, and when by contrast we have to resort to nonlinear models.

In this work, we consider laminar oscillatory flow through a periodic sphere pack.
First, we seek to address the question of for which values of amplitude and frequency
of the oscillatory forcing (represented by the Hagen number Hg and the Womersley
number Wo) nonlinear effects have to be considered. We establish a boundary between
linear and nonlinear flow in the Hg—Wo?> parameter space based on the scaling of the
volume-averaged velocity and kinetic energy with the Hagen number, and we use the
magnitude of the Fourier series coefficients of the velocity field to assess the importance
of nonlinear effects.

Second, we investigate how the nonlinearity affects the instantaneous velocity fields at
maximum superficial velocity. We find that a key effect is the loss of fore—aft symmetry of
the flow. We look into the temporal evolution of this loss of symmetry in order to determine
when nonlinear effects occur during the cycle. We observe a phase shift between the
superficial velocity and the nonlinear effects at higher frequencies that raises doubts as to
whether the modelling of the nonlinearity with a Forchheimer-type closure is appropriate
in unsteady flow.

Third, we provide a consistent description of the flow in the frequency domain. We
explain the emergence of a time-averaged velocity field, and we discuss the interaction
among the Fourier modes that results in a variation of the strength of nonlinear effects
throughout the cycle.

2. Problem statement
2.1. Geometry of the sphere pack

We consider a hexagonal close-packed arrangement of spheres as a porous medium. The
centre coordinates of the spheres (i, j, k) in hexagonal close-packed arrangement are

2i + (j + k) mod 2

Xe d
= ﬁ[j+§(kmod2)] . @.1)

and the sphere pack has the periodicities d, v/3 d and Z*Tfﬁ d in the x-, y- and z-directions,
respectively. The hexagonal sphere pack has a 60° rotational symmetry in the x—y plane,
and a reflection symmetry in the z-direction. The porosity of the sphere pack is € =

1 - %ﬁ = 0.26. Figure 1(a) shows the part of the sphere pack that is contained in the

simulation domain. A peculiarity of the hexagonal sphere pack geometry is that there exist
straight channels along the x-direction with contact points in the centres of the channels.
This can be seen in figure 1(b), which shows a section through the sphere pack along the

plane {y — iz = 0. This plane is parallel to the cut plane used in the analysis of Sakai
& Manhart (2020) and results in shifted, but otherwise equivalent, flow fields.
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()

Figure 1. (a) Hexagonal sphere pack in the simulation domain. (b) Section through the hexagonal sphere pack

along the plane éy — éz = 0. The contact points are marked by red dots. The area highlighted in blue is the
region for which velocity fields are shown in figures 10-15.

2.2. Governing equations

The flow in the pore space is governed by the incompressible Navier—Stokes equations

V.ou=0, (2.2q)

9 1 I
a—‘: YV W®u =——VptvAut—f, with f=fisin(@)e,  (2.2b)
P p

satisfies no-slip and triple periodic boundary conditions, and is at rest at = O:

ulx,t)=0 for x on the surface of the spheres, (2.3a)
u(x,t) =u(x+L,1) forLe{LyeLyey, L e}, (2.3b)
px,n) =p(x+L,1) forLe{LceLyey, L e}, (2.3¢)
u(x,0) = 0. (2.3d)

The periods Ly, Ly and L, denote the size of the simulation domain in the x-, y- and
z-directions, respectively.

The sinusoidally oscillating force f is constant in space and represents a macroscopic
pressure gradient. In inviscid flow, this configuration would lead to a potential flow
proportional to 1 — cos(£2t) and therefore an oscillation with non-zero mean; however, in
viscous flow, the influence of the initial condition decays with time, and the flow reaches
a steady oscillation with zero mean. We did not investigate a cosinusoidal forcing, as the
starting flow would resemble closely the flow of a fluid at rest subject to a constant force,
which was studied by Sakai & Manhart (2020), and the flow after the decay of the transient
would be the same as with the sinusoidal force (albeit shifted in time).

2.3. Dimensional analysis
In this subsection, we derive and discuss the independent parameters that determine the
flow uniquely. The problem as stated in §§ 2.1 and 2.2 is to determine the velocity field u
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as a function of the position x, the time ¢, the fluid density p, the kinematic viscosity v,
and the amplitude and frequency of the forcing f; and §2. We deliberately do not consider
the porosity € and the permeability K in the dimensional analysis as they depend solely
on the geometry and the sphere diameter d. A systematic study of the effects of the pore
geometry is beyond the scope of our present work because adding additional parameters
would increase significantly the cost of this study.

We now perform a dimensional analysis (Buckingham 1914). Choosing the density p,
the kinematic viscosity v and the sphere diameter d as reference variables, we obtain the
dimensionless ratios
X vt fud? Qd°

H2 = —, H3 ="~"—— and H4 = — (2.4a—d)
d? pv2 v
We can identify 73 as the Hagen number Hg =fxd3/(pv2) (Martin 2010; Awad 2013),
which represents a dimensionless pressure gradient in viscous units, and /T14 as the
Womersley number Wo = /$2d? /v (Womersley 1955), which represents the ratio of the
sphere diameter d to the thickness of Stokes’ oscillatory boundary layer. Alternatively,
Wo? can be interpreted (up to a constant) as the ratio of the viscous time scale d*/v to the
period of excitation 7' = 271 /S2.

From the IT theorem (Buckingham 1914), we infer that the velocity field can be
represented as a function

ud X vt

~=0 <E’ i Hg, Wo) , (2.5)
with Hg and Wo as two independent parameters. A dimensionless form of the
Navier—Stokes equations follows as

A

0 - ~ A .
a—l; +V-(a®a)=-Vp+ Au+Hg sin(Wo??) ey, (2.6)

where & = ud/v, X = x/d, 1 = vt/d*> and p = pd*/(pv?). While this is not the only
possible way to non-dimensionalise the equations, the present form illustrates the
meanings of the Hagen and Womersley numbers. Generally, different dimensionless forms
are appropriate for different flow regimes.

A Reynolds number can be obtained by taking a suitable point value or average of the
dimensionless velocity field (2.5). Here, we define the Reynolds number based on the
sphere diameter and the maximum superficial volume-averaged velocity after the transient
has decayed:

Re = lim sup (u)sd.
t— 00 v

Since the volume-averaging and the maximum suppress the spatial and temporal
dependencies, the Reynolds number can then be expressed as a function of two
independent parameters Wo and Hg. Note that this Reynolds number is related to the
pore Reynolds number defined, for example, by Wood et al. (2020) via the porosity
as Re = € Re,. The Hagen number has been employed occasionally in other works in
the guise of a pressure-gradient-based Reynolds number (Ene & Sanchez-Palencia 1975;
Firdaouss, Guermond & Le Quéré 1997; lervolino, Manna & Vacca 2010; Lasseux
et al. 2019) or a dimensionless body force (Graham & Higdon 2002). As the Reynolds
number expresses the ratio of the characteristic magnitude of the convective and viscous
terms in the Navier—Stokes equations, whereas the dimensionless group IT3 = f,d>/(pv?)
represents the ratio of the body force to the viscous term, we refrained from calling this a
Reynolds number and used the definition of Martin (2010) and Awad (2013) instead.
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3. Methodology
3.1. Description of numerical methods

We performed direct numerical simulation of the incompressible Navier—Stokes equations
(2.2) with our in-house code MGLET (Manhart, Tremblay & Friedrich 2001; Manhart
2004; Peller et al. 2006; Peller 2010; Sakai et al. 2019). For spatial discretisation, MGLET
uses an energy-conserving central second-order finite volume method based on a Cartesian
grid with a staggered arrangement of variables (Harlow & Welsh 1965; Patankar 1980). For
time integration, we employ an explicit three-stage third-order low-storage Runge—Kutta
method (Williamson 1980). We employ a variant of the fractional-step method (Chorin
1968) in which in every substep of the Runge—Kutta scheme the stage velocities are made
divergence-free by a pressure update. The pressure update is obtained by solving a Poisson
equation that is constructed by applying the discrete divergence operator to the stage
velocity and the gradient of the pressure update; see e.g. Ferziger & Peri¢ (2002).

Complex geometries are treated using an embedded boundary approach (Peller et al.
2006). We now give a brief overview of the employed algorithm. The simulation geometry
is determined as a piecewise planar description based on the intersection points of the
Cartesian grid with the specified body geometry. The momentum equation is solved
only on cells that lie completely within the fluid domain. The interface cells are used
to enforce the no-slip boundary condition using a ghost-cell approach (Peller et al. 2006).
The velocities in the interface cells are computed using two kinds of interpolation (Peller
2010). To evaluate velocity gradients and the convected velocities, we set a second-order
accurate point value computed by linear least squares interpolation (extrapolation). To
compute the convecting velocities and the divergence, we set an approximation to the mass
fluxes through the respective pressure cell face. An iterative flux correction procedure that
is coupled to the pressure correction ensures conservation of mass for the interface cells
(Peller 2010). In this scheme, no boundary conditions are needed for the pressure at the
embedded boundary.

3.2. Verification of the numerical method

In order to verify the convergence of our code with spatial grid refinement, we simulated
steady flow in a simple cubic lattice of spheres at porosity € = 0.875 driven by a
constant-volume force with Hg = 10~*. This configuration was investigated previously
by Chapman & Higdon (1992), who obtained permeability K = 0.103554> by solving
the Stokes equations with a solid harmonics collocation method. Since their method is
based on a harmonic expansion that satisfies exactly the no-slip boundary condition on the
spheres, we consider their method as very accurate and we use their results to verify our
scheme.

We computed the flow around a sphere centred in a cubic domain of side length 1.612d
with periodic boundary conditions at grid resolutions 12.4, 24.8, 49.6, 99.3, 198.5 and
397 cells per sphere diameter (cpd). On the finest grid, we obtained permeability K397 =
0.103584°. For this value, we estimated the relative error with the grid convergence
index (Roache 1994; Celik et al. 2008), which resulted in a value GClje = 2.8 X 103
at apparent order p = 1.8. Our value differs from the result of Chapman & Higdon
(1992) only in the last reported digit, when their value is renormalised to the sphere
diameter instead of the domain length. At 24.8 cpd, the computed permeability error is
well below 1 %. Furthermore, we evaluated the superficial average of the kinetic energy

(k) = <% pu2> and the u-velocity at the point P = (0.8d, 0.8d, 0.8d) relative to the centre
S
944 A30-7
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Figure 2. Grid convergence for steady Stokes flow in a simple cubic lattice of spheres at porosity € = 0.875.
The permeability K, the velocity at the probe point P = (0.8, 0.8d, 0.84) and the kinetic energy (k)¢ of the
flow field are compared to their respective values at the finest grid resolution d/Ax = 397.

of the sphere. These values are plotted as a function of the grid spacing in figure 2. It can be
seen that the relative error decreases at approximately second order with the grid spacing
Ax over three orders of magnitude.

Thus we have demonstrated that for the given test case, the embedded boundary method
achieves the theoretical second-order convergence and converges to a result close to the
reference value.

3.3. Simulation set-up

The objective of this study is to investigate the boundary between the linear and nonlinear
regimes in the Hg—Wo parameter space for oscillating flow in a hexagonal sphere pack.
Therefore, we tried to cover unknown and computationally affordable regions in this
parameter space beyond the linear regime, which for this particular geometry had already
been investigated by Zhu & Manhart (2016).

In a first step, we could assume that nonlinear effects appear if the maximum Reynolds
number within a cycle exceeds a certain threshold. Based on the results of Sakai &
Manhart (2020), who observed linear behaviour for Re < 1 in steady flow through
a hexagonal sphere pack, we chose a threshold value Re = 1. For linear flow, two
asymptotes exist for the maximum velocity in a cycle as a function of the Womersley
number. At the low-frequency limit, the oscillation amplitude reaches the values of the
steady state — this is the quasi-steady regime. Here, the end of the linear regime could
be estimated at Hg = d*/K ~ 5776 using Darcy’s law (which reads Re = (K/d*) Hg
in non-dimensional form) and permeability value K = 1.731 x 1074 d? (Sakai &
Manhart 2020). In the high-frequency limit, the amplitude decays with Wo~2 for
constant Hg. The transition between the low- and high-frequency regimes occurs close

to Womersley number Wog = /€d?/(aooK) = 30.5; this value marks the intersection
944 A30-8


https://doi.org/10.1017/jfm.2022.496

https://doi.org/10.1017/jfm.2022.496 Published online by Cambridge University Press

Onset of nonlinearity in oscillatory flow in a sphere pack

®)

(a) 10°

0 d
1 / HF1 HF2  HF3HF4
p &S f [ [ o0

X

104

L i 1
- ;)k .
5 - . E
W0210 :777777777.:,. ,,,,, . _ . . @  _ — ——____ \ |
: A

|
: A
LF1  LF2 LF3 LE4 AT
[ ] [ ] [ ] [ ]

102

0] Ll I \Him\ Ll Ll Ll [
102 103 104 10° 100 107
Hg
Figure 3. Study design. (a) Simulations at low (LF), medium (MF) and high frequency (HF) in the Hg—Wo2
parameter space. The dotted line indicates the condition Re = 1 in quasi-steady Darcy flow. The dashed

line indicates the Womersley number Wo( that represents the intersection of the low- and high-frequency
asymptotes in the linear regime. The arrows indicate the changes in the dimensionless numbers if the respective

parameters are doubled. (b) Top view of the sphere pack cut in the symmetry plane z = é d. The red frame
represents the simulation domain that consists of two unit cells (indicated by the dashed red line). The coloured
areas and arrows represent shift invariances of the geometry in the x-direction and at a 60° angle to the
x-direction. Consequently, the simulation domain contains eight repetitions of the minimum box represented
by the coloured areas.

of the low- and high-frequency asymptotes of linear flow (Pride, Morgan & Gangi
1993). To cover the range departing from the quasi-steady behaviour, we therefore
performed simulations at three different Womersley numbers, Wo = 10, 31.62 and 100.
The simulation parameters were chosen to lie on a logarithmic grid, leading to equispaced
points in the log-log plot and thus a uniform point density over the orders of magnitudes.
For each of the three Womersley numbers, we selected various Hagen numbers lying above
the linear limit in the quasi-steady regime Hg = 5776. Figure 3(a) shows the simulations
in the Hg—Wo2 parameter space.

We chose a domain size L, = 2d, L, = +/3d and L, = %ﬁ d with periodic boundary
conditions for u and p in the x-, y- and z-directions. This domain represents one unit
cell in the y- and z-directions, but includes two periodic repetitions of the unit cell in
the x-direction. In the following, we motivate this particular choice for the size of the
simulation domain. On the one hand, linear flow has the same symmetries and periodicity
as the sphere pack and it can be fully represented with a domain consisting of one unit
cell. On the other hand, nonlinear flow does not have to adhere to the symmetries of the
sphere pack and also admits solutions that are not periodic on the unit cell. Then the
periodic boundary conditions prevent the formation of structures larger than the simulation
domain. The selected simulation domain contains two spheres in every lattice direction
and possesses multiple symmetries: the sphere pack has a reflection symmetry about the
midplane in the z-direction, and two shift invariances in the x-direction and at a 60° angle
to the x-direction (see figure 3b). For all simulations presented in this work, we have
verified numerically that the velocity field satisfies these symmetries. We expect that the
above symmetries of the flow in directly adjacent pores would have to be broken before a
breaking of the periodicity in the y- and z-direction — symmetries between second-order
neighbours — could be observed. Therefore, we limit the domain size to one period in the

944 A30-9
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y- and z-directions. The relatively compact simulation domain allows us to employ high
grid resolutions in order to obtain accurate solutions.

For all cases, we employed a uniform Cartesian grid of nearly cubical cells with
aspect ratio 1.00:0.99:0.98 due to the incommensurate periodicities of the domain.
The simulations were performed at grid resolutions 48, 96, 192 and 384 cpd. For the
simulation HF4, an additional simulation was performed at grid resolution 768 cpd. These
resolutions were chosen based on the convergence of the volume-averaged velocity (u),
and the volume-averaged kinetic energy (k)4 (see § 3.4). For comparison, Sakai & Manhart
(2020) used grid resolution 320 cpd to simulate transient nonlinear and turbulent flow in a
hexagonal sphere pack using the same code, and He et al. (2019) used resolution 250 cpd
to simulate turbulent flow at Re = 750 in a face-centred cubic sphere pack of the same
porosity.

The time step was chosen to meet the stability limits for the explicit Runge—Kutta
scheme; the Courant-Friedrich-Lewy number was always below 0.33, and the diffusion
number was always below 0.35. This resulted in at least 40000 time steps per cycle
of oscillation. We applied a uniform body force f = f; sin(§2¢) ex in the x-direction to
drive the flow. As the flow starts from rest, this forcing causes a transient oscillation. The
transient establishes a net superficial velocity within a cycle, and leads to differences in
the peak values of (u), and (k)¢ within one cycle as well as from one cycle to the next. We
ran our simulations until these differences were below 1 % of the peak values. Thus the
transient has decayed sufficiently to show a periodic solution in time.

For post-processing the simulations, we collected the following data: time-resolved
data were obtained for volume-averaged quantities (u),, U?)s, (v2)s and (W3)s. Complete
three-dimensional fields of u and p have been collected at a sampling rate between 25 and
100 snapshots per cycle, depending on the simulation.

3.4. Grid convergence

In this subsection, we discuss the dependency of our simulation results on the grid
resolution. We choose two quantities for assessing the quality of the simulations: first, the
Reynolds number Re based on the maximum of (u), in steady oscillatory flow as defined
in (2.7); and second, the space—time L>-norm of the velocity field over the last period of

each simulation, as
||u||§2=/ /|u|2dth. (3.1)
Vf T

This quantity can be interpreted as the signal energy of the velocity field. It was
calculated as the sum of the quantities (u?)s, (v%)s and (w?)s, which were collected in
every time step. Therefore, the square of every velocity value in every time step of the last
period contributes to ||u||22. Due to reasons explained below, we observe non-monotonic
convergence of these quantities. Thus the grid convergence index (Roache 1994) does not
give meaningful results, and we report explicitly the errors observed at the various grid
resolutions.

Table 1 contains the relative differences of ||u||i2 with respect to their solutions at
384 cpd and the Reynolds number Re within the last cycle for the different resolutions.
Generally, the errors increase with Womersley and Hagen numbers. For a Womersley
number of 10, an error in ||u||i2 below 0.2 % has been achieved with 192 cpd, and at
Wo = 31.62, the maximum error is below 1.65 %. At Wo = 100, the differences between
192 and 384 cpd remain larger. The maximum error is —4.60 % for simulation HF4 at
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Case Sim. periods eqs €96 e19 esgs  Ress  Regs  Reyoy  Resss  Repes
LF1 1.5 —4.00 % 1.87% —0.13% — 0.1628 0.1719 0.1703 0.1705 —
LF2 2.25 —4.00 % 1.86% —0.13% — 1.624  1.715 1.699 1.701 —
LF3 1.404 —3.89 % 1.68% —0.10% — 14.13 1494 1482 14.84 —
LF4 1.25 —5.37% 2.43 % 0.14 % — 70.87 7749 76.77 76.71 —
MF1 3 —6.59 % 0.03% —0.23% — 0.8031 0.8559 0.8554 0.857 —
MF2 3 —6.75 % 0.04% —0.24% — 8.022 8561 8556 8.571 —
MF3 3 —7.11 % 022% —0.22% — 25.05 26.9 2687 2692 —
MF4 3 —-9.32% 0.81% —0.09% — 66.37 73.17 73 73.07 —
HF1 20.45 —17.09% —4.16% —0.87% — 1.11 1.255 1.289 1.297 —
HF2 19.9 —17.00% —4.16% —0.87% — 11.1 12,55 12.89 1297 —
HF3 6.32 —12.64% —489% —1.22% — 111.6 1269 1309 131.7 —
HF4 8 —11.08% —-10.15% —4.60% 0.17% 213 2394 248.6 2511 251.8

Table 1. Grid convergence of the velocity field u(x, f) in steady oscillation. The relative error in ||u||i2 is
defined as eres = (|pesl|?, — lussall?,)/llussallZ,, and as ees = (lpesl|?, — llurss12,)/ lluzesl|?, for HF4. The
Reynolds number Re is dléﬁned according to (2.7).

Wo = 100 and Hg = 1073 To assess the error of the simulation at 384 cpd for this case,
we performed an additional grid refinement to 768 cpd. The error at the resolution 384 cpd
with respect to the more finely resolved simulation is 0.17 %.

The Reynolds number computed according to (2.7) ranges from values below 1.0 to
values around 73 at the lower Womersley numbers, and Re = 251.8 at Wo = 100. From
table 1, we see that the simulations have relative errors in Re below 0.5 % at Wo = 10,
below 0.2 % at Wo = 31.62, and below 0.7 % at Wo = 100.

In contrast to the test case of § 3.2, we do not achieve the theoretical order of accuracy
of our code. We explain this decrease of accuracy order by the presence of contact points
between the spheres. These degrade the convergence of the pore volume represented
in the Cartesian grid by the embedded boundary method. The representation of the
spheres by a plane segment in each Cartesian cell intersecting the sphere surface leads
to an overestimation of the pore volume, so the local pore volume decreases with grid
refinement. The blocking of the thin gap between spheres in contact, however, leads to a
local underestimation of the pore volume, so the pore volume around the contact points
increases with grid refinement. These two effects taken together lead to a non-monotonic
convergence of the porosity. At the finest grid resolution, 384 cpd, the relative error in the
pore volume is —0.16 %.

The influence of blocked pore space around the contact points increases with the
Womersley number and could explain the increase in error with Wo. At higher frequencies,
the flow has a boundary structure (Schlichting & Gersten 2006). With increasing Wo,
the boundary layer thickness along the surface of the spheres decreases, and the velocity
field approaches the potential flow solution. Cox & Cooker (2000) showed for the case of
potential flow around a sphere touching an infinite plate that the velocity potential behaves
as r¥2~! close to the contact point, leading to a singularity in the velocity. As the boundary
condition on the plate is identical to a symmetry boundary condition, we expect the same
behaviour at the contact point of two spheres. Hence for increasing Womersley number, the
velocity magnitude and gradients in the immediate vicinity of the contact points increase
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Figure 4. Comparison of the amplitude of the superficial velocity in our simulations (black symbols) with Re
observed in (a) steady and (b) linear flow. The values are normalised with the amplitude predicted by Darcy’s
law. (a) Blue line, Ergun equation (Macdonald et al. 1979); red dashed line, Sakai & Manhart (2020). (b) Blue
line, model of Pride er al. (1993); red squares, Chapman & Higdon (1992); green circles, Zhu & Manhart
(2016).

and become asymptotically singular. For high Womersley numbers, this behaviour leads
to prohibitive resolution requirements.

In summary, all simulations possess a relative difference below 1.2 % in the Reynolds
number as well as in the L?-norm of the velocity field between the second-finest and finest
grids. However, due to the presence of contact points, we do not observe the theoretical
order of accuracy of our code. We observed an increase in error with the Hagen and
Womersley numbers that we explain by the reduction of the boundary layer thickness on
the spheres and the consequently increasing importance of the area close to the contact
points.

3.5. Validation for quasi-steady flow and for linear flow

In this subsection, we validate our simulation results against data from the literature for
the steady and linear flow regimes. In the low-frequency limit (Wo — 0), the flow can be
considered as a steady flow at every instant. The amplitude in steady flow can be described
by the Ergun equation (Ergun 1952) made dimensionless with p, d and v:

1 —¢)? 1—
=AQR6+B—6

5 = Reé. (3.2)

Hg
Based on ample experimental data, the coefficients have the values A = 180 and B = 1.8
for porous media consisting of smooth particles (Macdonald et al. 1979). For the hexagonal
sphere pack, Sakai & Manhart (2020) have given a similar correlation based on direct
numerical simulation results. In figure 4(a), the Reynolds number based on the amplitude
of the superficial velocity in our simulations is compared with the Reynolds number
observed in steady flow at the same Hagen number. For small Hg, the amplitude is
proportional to the Hagen number, as indicated by the horizontal asymptote. For larger
Hg, the amplitude increases sublinearly with Hg due to additional nonlinear drag. As
expected, the simulations LF1-LF4 at Wo = 10 (+ symbols) show good agreement with
the steady flow, whereas the amplitudes of the simulations at Wo = 31.62 and Wo = 100
are significantly smaller than in the steady flow.
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In the linear regime, the flow is described accurately by the dynamic permeability
model of Pride et al. (1993). We determined the model parameters from the potential
flow calculations by Chapman & Higdon (1992) for the face-centred cubic sphere pack
at the same porosity and from the low-frequency behaviour described by Zhu & Manhart
(2016). We would expect that at low Hg, our simulation cases remain linear and therefore
follow this behaviour. Figure 4(b) compares the Reynolds number based on amplitude of
the superficial velocity in all our simulations with the predictions of the model of Pride
et al. (1993) depending on the Womersley number and the simulation datasets of Chapman
& Higdon (1992) and Zhu & Manhart (2016) for linear flow through the face-centred cubic
and the hexagonal sphere pack, respectively. The simulations LF1, LF2, MF1, MF2, HF1
and HF2 show excellent agreement with the model predictions as well as with the reference
data. The amplitudes of simulations LF3 and LF4 (4 symbols) are significantly lower than
the reference data; this can be explained with the nonlinear drag (figure 4a). At higher
Womersley numbers, the deviation from the linear flow data decreases.

4. Onset of nonlinearity in volume-averaged quantities

In this section, we investigate the onset of nonlinearity in the volume-averaged velocity,
kinetic energy and Fourier series coefficients. Our goal is to establish an approximate
boundary between linear and nonlinear flow in the Hg-Wo parameter space. Our
hypothesis is that the nonlinearity does not occur suddenly when a parameter is changed,
but that nonlinear effects change gradually with the Hagen and Womersley numbers.
Nevertheless, we try to differentiate between regions that show effectively linear behaviour
and regions, in which nonlinear effects are significant. In a first step, we identify nonlinear
behaviour in the volume-averaged velocity and kinetic energy. Then we apply a discrete
Fourier transform (DFT) to instantaneous velocity fields to characterise the frequency
spectrum in response to a sinusoidal excitation. On this basis, we quantify the level of
nonlinearity for each simulation conducted, and extrapolate the nonlinear behaviour to
larger Womersley and Hagen numbers.

4.1. Volume-averaged velocity and kinetic energy

From the definition of linear flow, the velocity is directly proportional to the amplitude of
the excitation. The non-dimensional relation (2.5) takes the form

I
Wo), where W = —— . 4.1)
d(Hg) Hg=0

Therefore, the volume-averaged velocity (u); and the volume-averaged kinetic energy

ud_H .Il(x vt
y CER g

(kys = <%pu2> are proportional to Hg and Hg?, respectively. After the decay of the
S

transient, the average of the function ¥ determines the small-amplitude behaviour
displayed in figure 4(b). We use this scaling to assess the importance of nonlinear effects
in the flow. In figures 5, 6 and 7, we compare the superficial volume-averaged velocity
(u)s and kinetic energy (k)¢ in this normalisation for different Womersley numbers.
The start of the period is chosen as an integer multiple of 27w, and the excitation is
therefore proportional to sin ¢, with ¢ € [0, 27t]. For Wo = 10 (figure 5), the curves for the
simulations at Hg = 103 (LF1) and Hg = 10* (LF2) collapse, indicating that both belong
to the linear regime. On the other hand, the simulations at Hg = 10° (LF3) and Hg = 10°
(LF4) are clearly nonlinear. For Wo = 31.62 (figure 6), the simulations at Hg = 10*
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Figure 5. Superficial volume-averaged velocity and kinetic energy at Wo = 10 (LF1- LF4), normalised with
the Hagen number in steady oscillation. The Reynolds numbers are in the range Re = 0.17-77.
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Figure 6. Superficial volume-averaged velocity and kinetic energy at Wo = 31.62 (MF1- MF4), normalised
with the Hagen number in steady oscillation. The Reynolds numbers are in the range Re = 0.86-73.

(MF1) and Hg = 10° (MF2) are linear, whereas the simulations at Hg = 107 (MF3) and

Hg = 10° (MF4) show nonlinear effects. Finally, for Wo = 100 (figure 7), the simulations
at Hg = 107 (HF1) and Hg = 10° (HF2) are linear, whereas the simulations at Hg = 107
(HF3) and Hg = 107%> (HF4) are not.

It is important to note that the curves of the volume-averaged velocity (u), are
antisymmetric, and the curves of the volume-averaged kinetic energy (k) are symmetric,
with respect to a half-period shift in time. This indicates that forward and backward flow
are the same, regardless of whether the flow is linear or nonlinear.

We observe a phase delay between excitation and (u), that increases with Womersley
number. This behaviour is in line with numerical solutions of the unsteady Stokes and
Navier—Stokes equations (Chapman & Higdon 1992; Zhu & Manhart 2016) as well as the
theory of Johnson ef al. (1987) and the unsteady Darcy equation (Zhu & Manhart 2016).

The nonlinearity leads to a reduction in the peak amplitudes of (u), and (k) as well as to
a reduction of the phase delay to the excitation. However, for the cases MF3 and HF4, we
observe a notable increase in the normalised kinetic energy. The reason for this effect is
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Figure 7. Superficial volume-averaged velocity and kinetic energy at Wo = 100 (HF1- HF4), normalised
with the Hagen number in steady oscillation. The Reynolds numbers are in the range Re = 0.13-252.

that the reduction of the phase lag between the excitation and the volume-averaged velocity
increases the power f - (u), that is fed into the flow.

Based on the deviation of the superficial velocity and kinetic energy from the linear
behaviour, we can now find the approximate boundary between linear and nonlinear
behaviour. The maximum Reynolds numbers that exhibit linear behaviour are Re = 1.7,
8.6 and 13 for Wo = 10, 31.62 and 100, respectively. The minimum Reynolds numbers
that exhibit apparent nonlinear behaviour are Re = 14.8, 26.9 and 132, respectively. We
conclude that the onset of nonlinear effects cannot be described solely in terms of the
Reynolds number.

4.2. Fourier series coefficients

All our cases became periodic in time once the transient had decayed. This is an indicator
that the simulated flows are not yet turbulent. Consequently, we can expand the velocity in
the last computed cycle in a Fourier series

o

u(x, 1) = Z () ekt (4.2)

k=—o0

using the complex-valued Fourier coefficients cx(x) = ¢* (x) that represent the modes of
oscillation of the flow.

As the excitation is monochromatic, in linear flow there are only two non-zero
modes that correspond to a sinusoidal and a cosinusoidal oscillation at the frequency
of excitation §2 (the fundamental frequency), and only c¢1; are non-zero. In nonlinear
flow, the convective term in the Navier—Stokes equations leads to interactions between
the modes (see Appendix A for the differential equations of the modes c¢y). First, the
(self-)interactions of the modes at the fundamental frequency excite the frequencies k = 0
and |k| = 2. Further integer frequencies are excited by secondary interactions.

We computed the Fourier series coefficients of the velocity field with a DFT of our
snapshot data. Due to the large file size of the instantaneous three-dimensional fields, we
have only a low sampling rate between 25 and 100 snapshots per cycle. Aliasing leads
to mirroring of high-frequency content into the sampled frequency range, thereby also
polluting the low frequencies. However, as we are investigating weakly nonlinear flow,
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Case {leol?), 2{je1 ) 2{e2l?) 2{jes ),
Yiewllal)y  Tinlal)  Tiionllel?), Xy (lel?),
LF2 0.06 % 99.91 % 0.03 % 0.00 %
LF3 2.82% 95.84 % 1.15% 0.16 %
LF4 (100 samples) 10.06 % 85.61 % 2.45% 1.21%
LF4 (50 samples) 10.07 % 85.61 % 2.45% 1.21%
LF4 (25 samples) 10.07 % 85.61 % 2.45% 1.21 %
MF1 0.01 % 99.99 % 0.00 % 0.00 %
MF2 0.89 % 98.93 % 0.18 % 0.00 %
MF3 430% 94.15 % 1.31% 0.21 %
MF4 8.99 % 85.64 % 3.28% 1.17 %
HFI 0.00 % 100.00 % 0.00 % 0.00 %
HF2 0.03% 99.97 % 0.00 % 0.00 %
HF3 2.78% 96.64 % 0.52% 0.05 %
HF4 8.59% 85.47 % 3.50% 1.22%

Table 2. Contribution of the Fourier coefficients at the frequencies k = 0, |k| = 1, |k| = 2 and |k| = 3 to the
L2-norm of velocity.

most of the energy is concentrated at and near the fundamental frequency. The energy
content near and beyond the Nyquist frequency is therefore several orders of magnitude
below the fundamental frequency, and we do not expect significant aliasing effects in the
dominant modes k = 0, |k| = 1 and |k| = 2 that are the focus of our analysis. In order to
assess quantitatively the effect of aliasing on our results, we computed the DFT of the
nonlinear case LF4 using 25, 50 and 100 samples, and we documented the coefficients in
table 2. The dominant coefficients as well as the total energy (not shown) are robust with
respect to the sample size, and we see only a marginal effect of aliasing.

By Plancherel’s theorem, the sum of the squared moduli of the Fourier coefficients
corresponds to the L2-norm of the velocity field over one period of oscillation 7. Hence
we have

o0 o0
lulf, =7v 3 (lel?) =7V 3" fex- i), 43)
k=—o00 s k=—00

where ||u||i2 is defined in (3.1), and V = 44/2d> denotes the volume of the simulation
domain. The values <|ck|2)s correspond to a volume-averaged power spectral density of
the velocity field. As ¢y and c1o are excited directly by the (self-)interaction of the
fundamental frequency, they can be regarded as key indicators for the appearance of
a nonlinear effect. We can thus quantify the importance of nonlinear effects from the
contributions of the Fourier coefficients to the L2-norm of the velocity.

Figure 8 shows the volume average of the squared modulus of the Fourier series
coefficients ( |ck|2>S (marked with blue circles) as a function of the frequency k. This
volume average represents the cycle-integrated energy at the specific frequency. We can
see that most of the energy is concentrated at the fundamental frequency (|k| = 1). In a
linear flow, all the energy would be concentrated at this frequency. The contributions of
the first four frequencies to the cycle-integrated energy are given in table 2. For every
Womersley number, there is at least one simulation (LF2, MF1 and HF2) for which the
fundamental frequency contains more than 99.9 % of the energy, and the energies at k = 0
and |k| = 2 are smaller than at |k| = 1 by at least three orders of magnitude. These cases
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Figure 8. Volume average of the squared modulus of Fourier series coefficients <|ck|2>S (blue circles) and
squared modulus of volume-averaged Fourier coefficients (|ck|2)s (red triangles). The contributions of (lck|2)s
and (|c_k|2)S for k £0, as well as of | (¢x)s |2 and | (c—k)s |2, are added together. The values are normalised by
the sum of all coefficients. (a) LF2 (25 samples). (b) LF3 (100 samples). (¢) LF4 (100 samples). (d) MF2 (50
samples). (¢) MF3 (50 samples). (f) MF4 (25 samples). (g) HF2 (25 samples). (k) HF3 (25 samples). (i) HF4
(50 samples).

are effectively linear. With increasing Hg, the energy contributions of the constant mode
(k = 0) and the overtones (|k| > 1) increase. This is clear evidence of nonlinear behaviour
because the frequencies |k| #=1 can be excited only by frequency interactions within the
nonlinear term.

The simulations LF3, MF3 and HF3 have a comparable distribution of energy among the
modes. Therefore, we consider these simulations to have a similar degree of nonlinearity.
The same is apparent for the simulations LF4, MF4 and HF4, which have a higher degree
of nonlinearity than the former ones.

Figure 8 also shows the squared modulus of the volume average of the Fourier series
coefficients | (ck)s |2 (marked by red triangles). These correspond to the Fourier series
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coefficients of the superficial velocity (u)g:

o0

(s = > (a), . (4.4)

k=—00

This equation can be derived by volume-averaging the decomposition (4.2). We observe
that in general, only the Fourier coefficients of the odd frequency components are
non-zero. The reason for this is that the superficial velocity is antisymmetric with respect
to a half-period shift in time. This will be discussed in detail in §5.3. In some cases,
small non-zero values occur for even frequency components, too. We consider these
values to be the footprint of a transient that has not completely decayed. Interestingly,
the modes at k = 0 and |k| = 2 that seem to be the dominant nonlinear effect in the
coefficients (lcklz)s do not contribute to the coefficients | (ck)s |2 (hence these modes
have zero volume-averaged velocity). Furthermore, we see that in all cases, the relative
importance of the higher harmonics for the volume-averaged velocity is lower than for
the complete velocity field. This is particularly visible for the simulation HF4: while
the volume-averaged square moduli of the Fourier coefficients indicate strong nonlinear
effects, the volume-averaged velocity is perfectly sinusoidal. Consequently, a virtually
sinusoidal superficial velocity in response to a sinusoidal forcing does not necessarily
imply a linear flow.

4.3. Boundary in parameter space

In the preceding subsections, we have established approximate regions of linearity and
nonlinearity for Wo = 10, Wo = 31.62 and Wo = 100. Assuming a smooth dependency
of the nonlinearity onset on the frequency, we can determine approximate boundaries in
the range of Womersley numbers from 10 to 100 using interpolation. However, this raises
the question of how the onset of nonlinearity behaves for Womersley numbers outside this
interval.

For low frequencies (Wo — 0), the flow becomes quasi-stationary, and as for the steady
regime, the onset of nonlinearity depends only on the Reynolds number, or equivalently,
the Hagen number, and is independent of the Womersley number.

On the other hand, for the high-frequency limit, we can derive the scaling of the onset
of nonlinearity from the Navier—Stokes equations. We introduce the non-dimensional
variables X =x/d, 1= 2t, u=up2/f, and p =p/(fid) into the Navier-Stokes
equations (2.2):

W H G @iy = —Vp + —— Aii+sind 45

ai+W04 -(u®u) = erWO2 i+ sintey. (4.5)
In this normalisation, the unsteady term, the pressure gradient and the forcing are all
O(1). At the limit Wo — oo, the solution exhibits a boundary layer structure with an
inviscid core flow and a viscous boundary layer. The importance of the convective term is
determined by the ratio Hg/Wo®* = f,/(p§22d) — the larger the frequency, the higher the
force that needs to be applied to create nonlinear effects. Therefore, we expect that the
ratio Hg/Wo* governs the onset of nonlinearity at the high-frequency limit. Recognising
that Re oc Hg/Wo? at the high-frequency limit where the flow is linear, the ratio Re/Wo?
can also be used to quantify the strength of nonlinear effects.

Our proposed scaling is consistent with the results of Gu & Wang (1991): they discussed
the relative importance of drag components in a porous medium in the Re—Wo* parameter
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Figure 9. Levels of nonlinearity in the hexagonal sphere pack, where e indicates a simulation performed in this
study. Dark blue: linear (>99 % of the energy in the first harmonic). Medium blue: weakly nonlinear (>95 %
of the energy in the first harmonic). Light blue and white: strongly nonlinear (>85 % and <85 % of the energy
in the first harmonic, respectively). The dashed and dash-dotted lines represent the low- and high-frequency
asymptotes that were used to extrapolate the behaviour of the flow, respectively.

space based on the unsteady Forchheimer equation (Sollitt & Cross 1972). They predicted
that for low frequencies, the nonlinear drag force would be negligible below a certain
Reynolds number, and for high frequencies, the nonlinear drag force would be negligible

below a certain value of the ratio Re/ Wo?.

As the simulations at Wo = 100 already exhibit thin boundary layers, we expect that
we can extrapolate the onset of nonlinearity to higher Womersley numbers by keeping
Hg/Wo* constant. A different development of the onset of nonlinearity would be expected
if the boundary layers become turbulent. However the following estimation demonstrates
that this transition does not become relevant for another two orders of magnitude in Re
and Wo? beyond the range covered in this study. For low values of Hg/Wo* and high
Womersley numbers, the boundary layers are locally identical to the Stokes boundary
layer; see e.g. Schlichting & Gersten (2006, p. 354f)). It has been shown that the
Stokes boundary layer becomes turbulent at Res ..y = Up/v/2v/S2 ~ 600, where Uy
is the velocity of the outer potential flow (Carstensen, Sumer & Fredsge 2010). We
approximate Uy as equal to 5 (u);, which is a characteristic velocity in the high-frequency

regime (see figure 12); hence we can express Res & (5\/5/6) Re/Wo ~ 27Re/Wo. The
transition of the boundary layer thus defines the line 27Re/Wo = 600. Intersecting this
with Re/Wo? = 0.013 for simulation HF3, we obtain Re &~ 37000 and Wo ~ 1700 (Wo* =
2.9 x 10°).

Based on the asymptotic behaviour, we extrapolate our results approximately
from the previous subsection. Figure 9 shows the simulations and the 99 %,
95% and 85 % contours of the relative magnitude of the fundamental harmonic,
2(|01|2>S/Z§€V:_N(|ck|2)s, in the Hg-Wo®> and Re-Wo> parameter spaces. The
interpolation was performed over logHg and logRe for each Womersley number
with the piecewise cubic Hermite interpolating polynomial method in MATLAB
(Fritsch & Carlson 1980). We extrapolated the contours with lines Hg = const.
for low Womersley numbers, and lines Hg/Wo* = const. for high Womersley
numbers.
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Figure 10. Velocity u in the x-direction in the plane ‘/Tgy - @z = 0 at the maximum superficial velocity

for Wo = 10. The range of colours is set depending on the intrinsically volume-averaged velocity, and the
lines indicate the contour u = 0: (a) Hg = 10*, Re = 1.7 (LF2); (b) Hg = 10°, Re = 15 (LF3); (c) Hg = 10°,
Re =77 (LF4).

In conclusion, figure 9 summarises the results of the preceding sections and shows for
which values of the parameters Hg, Re and Wo the flow can be considered effectively
linear, weakly nonlinear or strongly nonlinear.

5. Manifestations of nonlinearity in the velocity field

In this section, we investigate how the velocity field in the pore is modified by the
nonlinearity. We observe that the nonlinearity leads to a breaking of a fore—aft symmetry
in the flow, and we employ the violation of this symmetry to quantify the strength of
nonlinearity in the instantaneous velocity fields. On this basis, we investigate the question
of whether the nonlinearity occurs in phase with the instantaneous superficial velocity.
Finally, we combine our previous findings in a comprehensive and consistent description
of nonlinear effects in the frequency domain.

5.1. Velocity field at maximum superficial velocity

In order to understand which changes in the flow accompany the appearance of
nonlinearity, we investigate how representative instantaneous velocity fields vary with
respect to the Hagen and Womersley numbers. As the nonlinearity depends strongly on
the velocity magnitude, we consider instantaneous fields close to the maximum superficial

velocity. We visualise the local symmetry plane ‘/Tgy — ‘/ng = 0, which is highlighted in
figure 1(b). This plane contains open channels in the x-direction that are constricted by
spheres touching the plane from above and below. Consequently, high velocities are found
near the contact points in this plane. Figures 10, 11 and 12 show the spatial distribution
of the velocity component in the x-direction in this section for Wo = 10, 31.62 and 100,
respectively.

The flow enters the simulation domain on the left through the maximum flow
cross-section. The flow is divided by the contact point in the centre of the section and
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s44

Figure 11. Velocity u in the x-direction in the plane 5 y -3 z = 0 at the maximum superficial velocity for
Wo = 31.62. The range of colours is set depending on the intrinsically volume-averaged velocity, and the lines
indicate the contour u = 0: (a) Hg = 10°, Re = 8.6 (MF2); (b) Hg = 10°, Re = 27 (MF3); (¢) Hg = 10°,
Re =73 (MF4).

see

Figure 12. Velocity u in the x-direction in the plane 3 y - —z = 0 at the maximum superficial velocity for
Wo = 100. The range of colours is set depending on the 1ntr1ns1cally volume-averaged velocity, and the lines
indicate the contour u = 0: (a) Hg = 10°, Re = 13 (HF2); (b) Hg = 107, Re = 132 (HF3); (c) Hg = 1073,
Re =252 (HF4).

diverted through two adjacent smaller pores. Then the flow merges as it enters the next
repetition of the domain.

For small Hagen numbers, the velocity field exhibits a fore—aft symmetry (see
figures 10a, 11a and 12a):

u(x,y, z,t) u2d — x,y,z, 1)
ux,nH = | v, y,z,0) | = —vQRd—x,v,21 | = Su(x,1). (5.1)
w(x,y,z,1) —w@d —x,y,2,1)

With increasing Hagen number, the distribution becomes asymmetric, and flow separation
appears behind the contact points and along the spheres on the side of the pores. This is
consistent with the observations of Sakai & Manhart (2020). The fore—aft symmetry is
characteristic of the (unsteady) Stokes flow regime (Batchelor 2000); the deviation from
this symmetry indicates the presence of nonlinear effects in the flow. We can see that at
Wo = 10, the velocity field is still symmetric at Hg = 10* (LF2) while it is asymmetric
at Hg = 107 (LF2). At Wo = 31.62, the velocity field at Hg = 10° (MF2) is almost
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symmetric, whereas a more pronounced asymmetry can be observed at Hg = 10> (MF3).
Finally, at Wo = 100, the symmetry remains up to Hg = 10° (HF2) while the velocity
field at Hg = 107 (HF3) is asymmetric. Notably, the symmetric cases were classified as
linear and the asymmetric cases were classified as nonlinear in the analyses of the previous
section.

For the simulations LF4, MF4, HF3 and HF4, we observe a region of negative velocity in
the x-direction behind the contact point, indicating a local backflow and a flow separation
at the contact point. These recirculation regions have already been observed in steady flow
by Maier et al. (1998). The length of the recirculation region decreases from Wo = 10
to Wo = 100. Additional regions of negative velocity can also be observed in simulation
HF4 (figure 12¢). Consideration of the temporal evolution of the flow suggests that these
regions are the residuals of velocity minima in the previous half-cycle.

We observe that with increasing Womersley numbers, the high velocity regions move
closer to the contact point. The reason for this is that the region affected by diffusion
becomes smaller as Wo increases and recedes into the contact point region. A more
detailed discussion of this behaviour can be found at the end of § 3.4.

In summary, the onset of nonlinearity leads to a fore—aft asymmetry in the velocity field.
The parameters for which such an asymmetry is noticeable are in good agreement with the
previous analyses based on global quantities. For larger Hagen numbers, a flow separation

S, _ /6

develops at the contact points in the centre of the plane T3y — %5°z = 0, which becomes
less pronounced with increasing Womersley number. It is conceivable that the asymmetry
and flow separation lead to a higher concentration of the flow into a smaller cross-section,
which could result in a higher instantaneous drag. This could explain the decline of the
superficial velocity with increasing Hg observed in the LF and MF cases.

5.2. Temporal evolution of the strength of nonlinearity

In this subsection, we seek to answer the question of how the asymmetry of the
velocity field, and consequently the nonlinearity, evolves over the course of the cycle.
In particular, we aim to investigate whether the nonlinear effects develop in phase with
the volume-averaged velocity, as this has important implications for the modelling of
nonlinear oscillatory flow.

In order to quantify the asymmetry of the instantaneous velocity fields, we decompose
the fields into a component that satisfies the fore—aft symmetry (5.1) and a component that
satisfies the corresponding antisymmetry:

Ugym (x, 1) = % (u(x, 1) + Su(x, 1), (5.2a)
Uanii (X, 1) = 3 (u(x, 1) — Su(x, 1)). (5.2b)

This additive decomposition of the velocity is also a decomposition of kinetic energy: the
total kinetic energy can be written as

0 = 1 (o + tan)”) = 1 | (1) + 2000 - wana) + (1) | 53)

where we have dropped the arguments of the velocity field for notational simplicity. The
cross-term can be written further as

2 (s tani], = 3 @+ Sw) - = Sw)g = [ )y = (Sw)| =0, (5.4
which is equal to zero since the symmetry operation does not change the kinetic energy of
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Figure 13. Kinetic energy of symmetric and antisymmetric parts of the velocity field. Red triangles, (Ksym)s.

Blue circles, (kgui)s. Grey solid line, (k). Grey dash-dotted line, %(p/e) (u)g. (a) LF1, (b) LF3, (¢), LF4,
(d) MF1, (e) MF3, (f) MF4, (g) HF1, (h) HF3, (i) HF4.

the flow. Hence we have the decomposition of the kinetic energy:
<k>s = (ksym)s + (kami>s . (55)

Figure 13 shows the temporal evolution of the kinetic energy of the symmetric and
antisymmetric components over the course of one period. The quantities (kgyn)s and
(kanti)s (symbols) are computed from instantaneous velocity fields; the total kinetic energy
(k) as well as the energy of the volume-averaged velocity %(,0 /€) (u)g (lines) are known
in every time step. We can see in figures 13(a,d,g) that for simulations LF1, MF1 and HF1,
which we have identified as linear cases, no kinetic energy is present in the antisymmetric
component. With increasing Hagen number, the relative importance of the antisymmetric
component increases. This is consistent with our expectation that the kinetic energy of the
antisymmetric part (kqus)s can be used as measure of the intensity of nonlinear effects.
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Figure 13 also shows the squared superficial velocity (dash-dotted line). At Wo = 10,
the peaks of %(p /€) (u)g, (ksym)s and (kgnsi)s occur almost at the same time. On the other
hand, for Wo = 31.62 and 100, the peak of the kinetic energy of the symmetric component
is slightly delayed and the peak of the kinetic energy of the antisymmetric component is
significantly delayed with respect to the peak of the squared superficial velocity. At higher
Womersley numbers, the maximum strength of nonlinear effects is thus attained during
the deceleration phase of the cycle. The delay between (ky,)s and %(,0/ €) (u)g occurs for
both linear and nonlinear cases. We explain this with the phase difference between the
bulk flow and the boundary layers that is a well-known feature of oscillatory flow at high
Womersley numbers (Schlichting & Gersten 2006). On the other hand, the additional delay
between the symmetric and the antisymmetric components can be seen as the time that is
required for the nonlinear flow structures to form by inertia.

In summary, we found that for Wo = 31.62 and 100, the maximum intensity of nonlinear
effects can be found during deceleration of the bulk flow, while for Wo = 10, the nonlinear
effects are almost in phase with the bulk flow. Interestingly, the kinetic energy of the
antisymmetric part of the velocity field is delayed with respect to the squared superficial
velocity. This observation is important for the modelling of nonlinear unsteady porous
media flow because current models based on the unsteady Forchheimer equation (Sollitt
& Cross 1972) assume that the nonlinear drag is proportional to |{u)¢| (u)s and thus in
phase with the squared superficial velocity. Our data suggest that this assumption does not
hold for higher Womersley numbers.

5.3. Analysis of the nonlinear Fourier modes
In the analysis of the Fourier coefficients presented in §4.2, we demonstrated that the
modes ¢y, c_» and ¢, are the leading-order nonlinear effects in weakly nonlinear flow. In
this subsection, we investigate the properties of these modes in detail, and we establish a
link to the time domain analysis in the preceding subsection.

A surprising result of the Fourier decomposition of the flow is a non-zero constant
contribution ¢g. This implies the existence of a non-zero time-averaged velocity field.
At the onset of nonlinear effects, this mode is the most dominant mode other than the
fundamental frequency. As illustrated in figure 14, the time-averaged velocity field is a
consequence of the antisymmetry of forward and backward flow during the cycle. By
averaging the velocity fields from the forward and backward phase, an antisymmetric
time-averaged velocity field with zero superficial velocity is obtained. In linear flow,
velocity fields that are half a period apart are completely symmetric, therefore no
time-averaged flow occurs. Thus the presence of a time-averaged velocity field is indeed a
nonlinear effect.

A different interpretation can be obtained from the Fourier approach: for weakly
nonlinear flow, the flow is dominated by the modes ¢_; and ¢y, and their interaction in the
convective term is the principal source of the time-averaged velocity field ¢p. This effect
is known commonly as acoustic streaming (Schlichting & Gersten 2006, pp. 363—-366).
Lighthill (1978) discussed this phenomenon comprehensively, and Manor (2021) has
investigated recently acoustic streaming in porous media.

Figure 15 shows the time-averaged velocity field in the sectioned plane for the
simulations LF3, MF3 and HF3 (all of which have approximately 95 % of their signal
energy concentrated at the fundamental frequency). We can see that all fields have an
antisymmetric distribution of velocity. As the frequency increases, the regions of large
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(@) (®) (©)

Figure 14. Velocity in the x-direction for LF3. The fields (a,b) are taken at the cycle maximum and minimum
of the volume-averaged velocity (u);. The colours range from —5 (u); (blue) to 5 (u); (red) in (a,b), and
from — (u); to (u); in (¢). (a) Forward flow ({u)s > 0). (b) Backward flow ((u#)s < 0). (¢) Time-averaged flow
({u)s = 0).

(a) (b) (©)

Figure 15. Time-averaged velocity in the x-direction and LIC visualisation of the velocity field for Wo = 10,
31.62 and 100 in weakly nonlinear flow. The colours range from — (u); (blue) to (u); (red). (a) LF3, (b) MF3,
(c) HF3.

velocity magnitude of the time-averaged flow move closer to the contact point, and
the velocity magnitude in the bulk flow goes to zero. In the line integral convolution
(LIC) visualisation (Cabral & Leedom 1993; Laramee, Jobard & Hauser 2003) of the
time-averaged velocity field, we can observe two pairs of counter-rotating vortices in the

plane gy - @z = 0. Note that the LIC for the case HF3 does not result in a symmetric
pattern; deviations occur in regions of small velocity magnitude. We ascribe this to the
low number of samples (25 samples) that were used to perform the time average.

The time-averaged vortices have several effects. On the one hand, it can be shown that
they contribute to the asymmetry of the forward and reverse flows. On the other hand,
it is evident that they cause additional mixing in the streamwise and cross-streamwise
directions, which obviously has to be taken into account when volume-averaged scalar

transport models are designed. This additional scalar transport can be effective even in
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cases in which the change in the superficial velocity was marginal (as in the cases HF3
and HF4).

We now direct our attention to the other nonlinear modes, |k| > 2. First, we show that
these modes also possess a defined symmetry; second, we investigate the interaction of
these modes with the constant mode cy. We notice that in laminar flow, the velocity
field satisfies a spatiotemporal symmetry (half-period symmetry): due to the sinusoidal
excitation, in steady oscillation the velocity fields at two instants with a time difference of
half a period are mirrored with the symmetry S (defined in (5.1)):

ulx,t+T/2) = —Su(x,1). (5.6)

This means that the velocity fields in forward and backward flow are mirror images of
each other (reflections in the x-direction). Direct consequences of this symmetry are the
half-period symmetries of the superficial velocity and kinetic energy:

()t + T/2) = — (u) (1), (5.7a)
(K)s(t + T/2) = (k) (@). (5.7b)

This behaviour can be observed in figures 5, 6 and 7. Another consequence of the
half-period symmetry is that the Fourier coefficients can be written as

1T ;
cp = —/ - (u(x, N — (- Su(x, t)) ekt gy (5.8)
T /)y 2
(see Appendix B for the derivation). The even-k Fourier coefficients satisfy ¢y = —Se¢x and

therefore possess a fore—aft antisymmetry, whereas the odd-k Fourier coefficients satisfy
¢ = Sci and have a fore—aft symmetry. The antisymmetric fields have a zero superficial
volume-averaged velocity in the x-direction. This is consistent with the spectra of (u),
presented in figure 8, which contain only odd-frequency components. Consequently, the
modes ¢y, c—» and ¢p, which are dominant at the onset of nonlinearity, cannot be observed
directly with the superficial velocity (u),.

In the following, we aim to understand how the time-averaged velocity field ¢ interacts
with the modes c_» and ¢; to produce the oscillating strength of nonlinear effects that we
observed in § 5.2. In a first step, we recognise that the antisymmetric part of the velocity
field can be expressed solely in terms of even Fourier components as

Ui, 1) = Y a(®) e = () + c2(x) e + @) e -, (5.9)

k even

where we have omitted the coefficients ci4, c+g, and so on, which, as we have seen
in §4.2, are small at the onset of nonlinearity. As we have discussed previously in
§4.2, all Fourier coefficients in this series are generated by the nonlinear term in the
Navier—Stokes equations. From this series, we obtain the volume-averaged kinetic energy
of the antisymmetric component as

ani)s = 30[ () + (e-2 - e2)y + (e - e-2) ™2 (g - c2), &2

S

+<c2_2> e_i4m+<cg> ei49f+...], (5.10)
S

S
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which we can reformulate using ¢ = ¢o and ¢5 = ¢ as
anids = | (Ieol?) +({1e2?) + (eo - -2}y €227 4 (e - e2) 2"
+ <c2,2> e 4 <c§>
S

We first consider just the first line of this equation. These terms make up a harmonic
oscillation at frequency 2£2. The terms (lc()|2>s + (Iczlz)S represent the constant mean
value of the oscillation; their value can be read from table 2. The terms oscillating at
frequency 2£2 represent interference between the modes ¢y, c—» and c¢p. They depend
on the spatial correlations (cp - c—2)¢ and (cp + c2)s. Hence if the spatial distributions
of ¢p, c_7 and ¢y are very similar, then the oscillation extends from zero to twice the
mean value. For example, this is the case for simulation LF3 (see figure 135). On the
other hand, if the spatial distribution of the modes differs substantially, the extrema of
the oscillation approach the base level (see, for example, figure 13i). Consequently, these
interference terms represent the variation of the nonlinearity throughout the cycle. Finally,
we consider the terms at the higher frequency 4£2. These terms modify the harmonic
oscillation described above by changing the steepness of the rising and falling parts of
the curve. This can be interpreted as different formation and destruction times for the
asymmetry. The effect of these terms is visible in figures 13(c) and 13(f), where the curve
of (kansi)s 1s no longer sinusoidal.

In conclusion, we arrive at the following picture of the flow in terms of the Fourier
modes. The linear flow is represented by the modes ¢_; and c1, and satisfies the fore—aft
symmetry (5.1). Interactions of these modes via the convective term of the Navier—Stokes
equations result in the antisymmetric modes ¢p, c—> and ¢;. As a consequence of the
antisymmetry, these modes do not contribute directly to the superficial velocity (u)s.
However, these modes represent secondary flow structures (see figure 15) which cause
additional mixing and dissipation. The kinetic energy stored in these modes seems to be
related to a phase shift of the bulk flow (see § 4.1), therefore these effects should be taken
into account in the modelling of such flow.

ei49f+---]. (5.11)

S

6. Conclusion
6.1. Summary

We performed direct numerical simulations of laminar oscillatory flow through a
hexagonal sphere pack driven by a sinusoidal force. We varied the Hagen number and
the Womersley number, which represent the amplitude and frequency of the forcing,
respectively.

We verified our solver with a highly accurate numerical solution of Stokes flow in a
simple cubic sphere pack taken from the literature (Chapman & Higdon 1992). We checked
the discretisation error of our hexagonal sphere pack simulations by comparing numerical
solutions at grid resolutions of 48, 96, 192 and 384 cells per sphere diameter for each case.
This resulted in errors below 1.2 % in the Reynolds number as well as in the space—time
L?-norm of the velocity.

Our first objective was to analyse for which regions in the Hg—Wo?> or Re—Wo? parameter
spaces the flow can be considered as linear. As a first indicator of linearity, we selected
the scaling of the superficial volume-averaged velocity with the Hagen number and of the
superficial volume-averaged kinetic energy with the square of the Hagen number. As a
second indicator of linearity, we chose the magnitude of the Fourier series coefficients
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of the velocity field other than the fundamental harmonic. For low Womersley numbers,
the onset of nonlinear effects depends solely on the Reynolds number based on the
cycle-maximum of the superficial velocity. For high Womersley numbers, it depends
on the ratio of the Reynolds number to the square of the Womersley number. Other
than quantifying the amount of nonlinearity in the flow, the Fourier analysis showed
that for weakly nonlinear flow, the zeroth and second harmonics are the dominant
nonlinear effects. Interestingly, these harmonics are not contained in the spectrum of
the superficial velocity; the superficial velocity is therefore not a suitable indicator of
nonlinearity.

Our second objective was to investigate how the onset of nonlinearity affects the
instantaneous velocity fields. We showed that nonlinearity leads to a loss of fore—aft
symmetry in the instantaneous velocity field, and that the loss of symmetry agrees with our
previous definitions of nonlinearity. We use the departure from this symmetry to quantify
the instantaneous strength of nonlinear effects. We found that at Wo = 10, the nonlinear
effects are almost in phase with the bulk flow. On the other hand, for Wo = 31.62 and
100, the nonlinear effects are strongest during the deceleration phase of the bulk flow; we
therefore observe a phase delay of between the superficial velocity and the kinetic energy
of the antisymmetric part of the velocity field. This delay raises doubts about the general
applicability of the unsteady Forchheimer equation, which is based on the assumption that
the nonlinear drag is proportional to |(u)| (#), and therefore is in phase with the superficial
velocity.

Finally, we investigated flow in the frequency domain. The onset of nonlinearity
manifests through the appearance of Fourier modes at zero and two times the frequency
of excitation. The zero frequency mode represents a time-averaged velocity field that is
caused by the asymmetry of the velocity fields. This time-averaged velocity field causes
a secondary flow that increases mixing in cross-streamwise direction. A closer look at
the symmetry properties of the Fourier modes revealed that the modes ¢y, c—> and ¢z,
which represent the most dominant nonlinear effects, possess a fore—aft antisymmetry.
Therefore, these modes have zero superficial velocity, raising further doubts about whether
the superficial velocity provides sufficient information to model nonlinear effects. Finally,
we discussed the interaction among the nonlinear Fourier modes that leads to a harmonic
oscillation of the magnitude of nonlinearity over the cycle.

6.2. Future issues

Further research should be conducted to confirm the high-frequency asymptote Hg/Wo* =
const. for the onset of nonlinearity that was postulated based on the non-dimensional
Navier—Stokes equations in the high-frequency limit. An outstanding question in the
present study is how the delay time between the maximum superficial velocity and the
maximum kinetic energy of the antisymmetric part of the velocity field scales with Hg,
Wo and Re. Moreover, it would be interesting to study the behaviour of the drag force at
the onset of nonlinearity, and to determine the instigating processes. Finally, an attempt to
understand the relation of the present results to the flow structure development reported by
Sakai & Manhart (2020) for nonlinear transient flow would be worthwhile.

As a generalisation of this study, it would be interesting to apply the forcing in different
directions and thus break the symmetry between forward and backward flow. Furthermore,
one could investigate different, possibly random, arrangements of spheres or other porous
media. For steady flow, Firdaouss et al. (1997) showed that the resistance law in weakly
nonlinear flow has the same form for both isotropic and a large class of periodic porous
media with certain reflectional symmetries of the unit cell. Therefore, it might be expected

944 A30-28


https://doi.org/10.1017/jfm.2022.496

https://doi.org/10.1017/jfm.2022.496 Published online by Cambridge University Press

Onset of nonlinearity in oscillatory flow in a sphere pack

that the observations made in our present study about the Fourier coefficients of the
velocity field and the superficial velocity would generalise to isotropic porous media.

Finally, it has been observed that oscillation can enhance the scalar transport in linear
and nonlinear porous media flow (Crittenden et al. 2005). It would thus be of great interest
to look more closely at how the nonlinear secondary motion in oscillatory flow modifies
the scalar transport properties. This would have implications for the design of chemical
reactors and the understanding of mass and heat transfer in environmental flows, for
example in coral reefs.

Supplementary material. Time-resolved data of the superficial volume-averaged velocity and kinetic energy
are available at https://doi.org/10.1017/jfm.2022.496.
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Appendix A. Governing equation for Fourier series coefficients

We insert the Fourier series representations

ue, ) = Y alx) e, (Ala)
k=—00

pe =Y dilx)e (AlD)
k=—o00

of velocity and pressure into the Navier—Stokes equations (2.2) and thus obtain the
governing equations for the Fourier modes ¢ (x), k € Z:

V . Ck = O’ (A2a)
o0

. 1 1
ke + Y Vel(en®chom) = —— Vi +v Ack + —f}, (A2b)

m=—00 P P
where f are the Fourier coefficients of the excitation. For the sinusoidal excitation,
only the coefficients of the fundamental frequency are non-zero: f_; =ify/2e, and

S1=—1f/2ex

Hence energy is fed into the system at k = £1 and redistributed to the other modes
via the convective term. For small Hg, the fundamental harmonics are dominant with
c+1 « Hg. The Fourier modes ¢y, c—» and ¢, are then created from an interaction of the
Fourier modes c_; and ¢y, resulting in ¢p & ng, Cc_y) X ng and ¢ ng.
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Appendix B. Symmetries of the Fourier coefficients
The Fourier modes are defined as

1 T
= ?/ u(x, r) exp(ik$2t) dz. (B1)
0
Dividing the period into halves, we can write, with the substitution t =t — 7'/2,
1 T/2 T/2
o= f u(x, t) exp(ik$2t) dt + exp(ik$2T/2) / u(x,t +T/2)exp(ik27)dr |,
0 0
(B2)
and using the half-period symmetry (5.6), we obtain
1 T/2 T/2
cr = T / u(x, t) exp(ik$2t) dt — exp(ik$2T/2) Su(x, t) exp(ik2r)de | . (B3)
0 0

On the other hand, we can use the substitution 7 = ¢ + 7/2 instead:

T T
= l |:exp(—ikQT/2)/ ulx, 7 —T/2)exp(ik27t)dr + / u(x, t) exp(ik$2t) dt:| .
T T/2 T/2
(B4)

Using the periodicity of the flow, u(x, T — 7/2) = u(x, t + T/2), and the symmetry (5.6),
we arrive at

T T
cr = l [— exp(—ik$2T/2) Su(x, t) exp(ik§21) dt + / u(x, 1) exp(ik$2t) dt} .
T T/2 T/2
(BS)

Adding (B3) and (BS) with weights % and noting that exp(ik$27/2) = exp(—ik§2T/2) =
(—1)*, we obtain

. /Tl (e.0) — (~1)*Sucx. ) expik20) di B6)
ck_TO 2(ux, u(x, exp(1 . (

Comparing this with the decomposition (5.2), we see that for even k, the coefficients ¢
depend only on the antisymmetric part of the velocity and are thus antisymmetric, whereas
for odd k, the coefficients ¢x depend only on the symmetric part of the velocity and are
thus symmetric.
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