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There is renewed interest in direct-drive inertial confinement fusion, following the
milestone December 2022 3.15 MJ ignition result on the National Ignition Facility. A
key obstacle is the control of the two-plasmon decay instability. Here, recent advances
in inhomogeneous turbulence theory are applied to the broadband parametric instability
problem for the first time. A novel dispersion relation is derived for the two-plasmon
decay in a uniform plasma valid under broad-bandwidth laser fields with arbitrary power
spectra. The effects of temporal incoherence on the instability are then studied. In the limit
of large bandwidth, the well-known scaling relations for the growth rate are recovered, but
it is shown that the result is more sensitive to the spectral shape of the laser pulse rather
than to its coherence time. The range of wavenumbers of the excited plasma waves is
shown to be substantially broadened, suggesting that the absolute instability is favoured
in regions further away from the quarter critical density. The intermediate-bandwidth
regime is explored numerically – the growth rate is reduced to half its monochromatic
value for laser intensities of 1015 W cm−2 and relatively modest bandwidths of 5 THz.
The instability-quenching properties of a spectrum of discrete lines spread over some
bandwidth have also been studied. The reduction in the growth rate is found to be
somewhat lower compared with the continuous case but is still significant, despite the
fact that, formally, the coherence time of such a laser pulse is infinite.
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1. Introduction

Very significant progress has recently been made at the Lawrence Livermore National
Laboratory in the generation of high-energy-density conditions required for fusion energy
gain. The August 2021 experiment, where a fusion yield of 1.3 MJ was obtained on the
National Ignition Facility, confirmed that the Lawson criterion had been satisfied for the
first time (Abu-Shawareb et al. 2022; Zylstra et al. 2022). Subsequently, in December
2022, more energy was released in fusion products than was delivered to target, with
exquisite measurements of a 3.12 MJ yield (Abu-Shawareb et al. 2024). These results
mark a major milestone in the progress of inertial confinement fusion (ICF) research,
which have reinvigorated worldwide efforts to explore routes to higher fusion gain for
applications such as nuclear stockpile stewardship and inertial fusion energy.

One of the leading contenders for higher gains at current laser facility energy levels is
the direct-drive ICF approach, principally due to the significantly larger energy coupling
to the target that results in higher hydrodynamic efficiency of the implosions (Craxton
et al. 2015; Campbell et al. 2021). A major problem for direct-drive ICF is the generation
of highly energetic (hot) electrons which can prematurely raise the temperature of the
fusion fuel and subsequently degrade the implosion performance. The source of these hot
electrons are parametric instabilities that are driven as the laser beams propagate through
the coronal plasma surrounding the target. When one of the decay products of a parametric
instability is an electron plasma wave – as is the case for the two-plasmon decay (TPD)
instability – hot electrons are generated (Vu et al. 2012a,b). The fraction of laser energy
converted into hot electrons has to be limited to about 0.1 % for a successful implosion
(Craxton et al. 2015).

Progress in the understanding of the impact of TPD on ICF experiments has been
considerable in the recent years. The TPD instability is a three-wave instability in which
an electromagnetic wave decays into a pair of electron plasma waves. Frequency matching
between the waves is possible only in a spatially localised region near the quarter critical
density (figure 1a). Hot electron generation typically occurs when the instability is in
the so-called absolute regime in which wave amplitudes grow exponentially at a fixed
point in space; saturation therefore only occurs through nonlinear processes, resulting in a
plasma in a highly turbulent state, which accelerates the electrons stochastically (DuBois,
Russell & Rose 1995; DuBois, Rose & Russell 1996; Vu et al. 2012a,b). When multiple
laser beams are arranged in a cone (as is the case in real experimental facilities) they can
cooperatively drive the instability by sharing a common plasma wave along the axis of
symmetry (DuBois, Bezzerides & Rose 1992) (see figure 1b). This results in substantial
TPD growth even when the single beam thresholds are far from exceeded (Michel et al.
2013; Myatt et al. 2014). While the shared plasma wave along the cone axis is high-k and
grows convectively, it has been shown recently that multiple laser beams can drive a low-k
absolute mode cooperatively, with a lower threshold compared with the high-k one (Zhang
et al. 2014). Simulations and experiments of hot electrons driven by the multi-beam TPD
instability show that the fraction of laser energy converted into hot electrons is near 0.1 %
at overlapped intensities of about 1015 W cm−2, rising to about 1 % at 1.5× 1015 W cm−2

(Follett et al. 2017). In addition to generating hot electrons, TPD has been recently shown
to be responsible for a large amount of anomalous absorption of laser energy (up to�30 %)
near the quarter critical density region (Seka et al. 2014; Turnbull et al. 2020). This is
likely to be problematic as it increases the distance over which thermal energy needs to be
conducted through in order to reach the ablation surface. Taming laser plasma instabilities
at high intensities is therefore highly beneficial for direct-drive target designs (Paddock
et al. 2021, 2022; Schmitt & Obenschain 2023a,b; Trickey et al. 2024).

https://doi.org/10.1017/S0022377824000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000953


Statistical theory of broadband two-plasmon decay instability 3

(a) (b)

FIGURE 1. (a) An illustration of an imploding ICF pellet, together with its surrounding coronal
plasma. The plot shows an illustration of the density gradient in the corona and the region near
the quarter critical density where the TPD instability is excited. (b) An illustration of a set of
six laser beams arranged in a cone, as well as a wavevector diagram showing how, due to the
cone geometry, a pair of electromagnetic waves (k0,1 and k0,2) can share a plasma wave along
the cone axis (KEPW,c, in blue). The wavenumber matching condition due to the jth beam in the
cone is k0,j = KEPW,c + KEPWj, where KEPWj (in red) is the second plasma wave involved in
TPD which is distinct for each beam.

It has been known for some time that increasing the temporal bandwidth of the driving
laser pulse significantly reduces the growth rates and increases the thresholds for the onset
of parametric instabilities (Thomson & Karush 1974; Thomson 1975; Laval, Pellat &
Pesme 1976; Obenschain, Luhmann & Greiling 1976; Laval et al. 1977; Lu 1988, 1989;
DuBois et al. 1992; Pesme et al. 1992). The Omega Laser Facility at the Laboratory
for Laser Energetics is currently undergoing the FLUX upgrade (Dorrer, Hill & Zuegel
2020; Dorrer et al. 2021) in which fractional bandwidths of up to �ω/ω0 = 1–2 % will
be generated in order to experimentally test these ideas (Turnbull et al. 2023). Bandwidths
of such order are expected to mitigate all laser plasma instabilities in Omega experiments
(Follett et al. 2021; Bates et al. 2023). Here �ω is the full width at half maximum of the
laser power spectrum, and ω0 the frequency around which it is centred. The thresholds
for the onset of parametric instabilities are typically set by inhomogeneity, and calculating
them is of great importance. Follett et al. (2019) recently compared the analytic model
of Lu (1989) based on their effective Hamiltonian method against simulations utilising
the Laser Plasma Simulation Environment (LPSE) code (Myatt et al. 2017), and found
disagreements as large as a factor of∼20 times in the case of the TPD threshold. Given the
great promise of controlling laser plasma instabilities with laser bandwidth, it is crucial
that theoretical models describe the results of experiments and simulations well, and in
some of the most important cases (absolute TPD and Raman scattering) the reliability of
current models is somewhat uncertain.

The broadband parametric instability problem suffers from complications similar to
those involved in the study of turbulence. Laser bandwidth introduces fluctuations in the
laser pulse electric field whose minute details are unknown or too difficult to describe.
Hence a statistical approach to the problem must be pursued, only seeking to model
some small set of averaged properties of the fluctuations – for example their spectra.
But difficulties arise as one attempts to carry out statistical predictions about a system’s
evolution, and one is frequently faced with the statistical closure problem (Krommes
2002, 2015; Krommes & Parker 2019). Most statistical closures such as the commonly
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used random phase approximation (Nazarenko 2011; Connaughton, Nazarenko & Quinn
2015) assume homogeneous statistics – meaning that the statistical properties of the fields
of interest do not vary in space. This immediately causes trouble if one is interested
in analysing convective growth or non-uniform plasmas – both of which are crucially
important for understanding parametric instabilities (Michel 2023). As discussed below it
is also problematic even in a uniform plasma, when a zero-order perturbation is present.

Lately there has been some significant progress in moving beyond homogeneous
statistical closures. For example, the quasi-linear interaction of inhomogeneous turbulence
with plasma has been a long-standing problem where only recently a definitive theory was
put forward (Dodin 2022). Similarly substantial developments in the theory of drift-wave
turbulence interacting with zonal flows in tokamaks have been enabled by new insights
about how to properly model the inhomogeneous statistics of the turbulent fields (Parker
2014; Krommes 2015; Parker 2016; Ruiz et al. 2016; Krommes & Parker 2019; Ruiz,
Glinsky & Dodin 2019; Zhu 2020; Zhu, Zhou & Dodin 2020; Zhu & Dodin 2021),
improving upon initial work based on the traditional wave-kinetic approach (Smolyakov,
Diamond & Shevchenko 2000; Trines et al. 2005, 2007, 2009). This drift-wave zonal-flow
(DW-ZF) problem which is thought important in regulating turbulent transport in
tokamaks, also bears resemblance to that of the broadband parametric instabilities in
the sense that both seek to describe instabilities of some broad spectrum of waves – the
drift-wave turbulence on the one hand, and the broad spectrum of electromagnetic waves
on the other.

Here a statistical theory of the broadband TPD instability in a homogeneous plasma
is presented for the first time, valid under laser fields with arbitrary power spectra.
The same closure procedure as that used to study the DW-ZF problem is applied,
namely the second-order cumulant expansion, also known as CE2, which allows for
inhomogeneous statistics. Despite the fact that here one does not impose a density
gradient, this is still crucial as inhomogeneity in statistics arises due the strong partially
incoherent electromagnetic mode, i.e. the broadband laser pulse which is considered a
zero-order perturbation (DuBois & Bezzerides 1976; DuBois 2000). The CE2 closure
captures the exact coupling of the stochastic fluctuations to the mean field, and ignores
all cumulants of order ≥3.1 This implies that the stochastic fluctuations follow (jointly)
normal distributions, and that they interact quasi-linearly with the mean field. The Weyl
symbol calculus (McDonald 1988; Tracy et al. 2014; Dodin 2022) is employed in this
article, which greatly facilitates the derivation of the equations governing the correlation
functions. This new work is a generalisation of the approach of Santos, Silva & Bingham
(2007), which considered the broadband Raman scattering instability.2 Their key insight
was that extending the Wigner–Moyal formalism of quantum mechanics provides a natural
statistical framework for describing laser pulse propagation inside the plasma, resulting
in their generalised photon kinetics model (Santos & Silva 2005; Silva & Bingham
2013). Generalised photon kinetics is, in essence, the Wigner–Moyal representation of
the Klein–Gordon equation which describes laser pulse propagation in a plasma. They did
not face a closure problem as they assumed the electrostatic fluctuations associated with
electron plasma waves to be non-random. In the case of the TPD this is not possible, and
one has to provide a statistical description of the plasma as well. It should be noted that

1The first- and second-order cumulants of a distribution are given by its first and second moments. The cumulants
of order n ≥ 3 are the difference between the nth moment and the value it would have had if the distribution were a
Gaussian with the mean and variance implied by the first- and second-order cumulants. This implies that, for a Gaussian
distribution, all cumulants of order n ≥ 3 vanish.

2With slight modifications of the same model, the stimulated Brillouin scattering instability has also been studied
by Brandão et al. (2021).
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were they to allow for stochasticity of the plasma, then they would effectively use the same
closure as the one described here, and their model would have the same statistical content
as the new one presented here.

The paper is organised as follows. In § 2 the dispersion relation for the TPD instability is
derived, one that is valid for laser fields with arbitrary power spectra in a uniform plasma.
Emphasis is made on the details of the statistical closure. In § 3 the broadband dispersion
relation is applied to some cases of interest – namely, it is shown that it reduces to the
well-known dispersion relation for a single monochromatic beam, as well as multiple
monochromatic non-interfering ones; following that, the effects of temporal incoherence
on the instability as driven by a single broadband laser beam are considered; and lastly the
extent to which a laser power spectrum consisting of multiple discrete spectral lines spread
over a bandwidth �ω approximates the instability-quenching properties of a continuous
spectrum is explored. To conclude the article, a summary and a discussion of the new
results are presented in § 4.

2. Model

The TPD instability is a three-wave parametric instability in which an electromagnetic
wave decays into a pair of plasma waves. Due to the Manley–Rowe relations, the
frequencies and wavenumbers of the interacting waves must be matched (Michel 2023).
This localises the instability spatially near the quarter critical density – the point where the
laser frequency is equal to twice the local plasma frequency (see figure 1a). Furthermore,
since all of the waves are high in frequency, the ion motion can be neglected in the
linear stage of the instability. The response of the electrons in the presence of the laser
field can be analysed using non-relativistic fluid equations. Kinetic effects can be ignored
provided kλDe � 1. Relativistic effects are negligible under conventional hot-spot ignition
ICF where the laser intensity is of order IL ∼ 1015 W cm−2 and the laser wavelength is
λL ∼ 350 μm. This is because the quiver velocity of the electrons vos(t, x) = eA0/me
in the presence of an electromagentic wave described by the vector potential A0(t, x) is
vos/c ∼ 0.01 under such conditions. Finally, for the motion of the ions to be neglected, we
need the amplitude of electrostatic waves to be low enough such that

√
We � kλDe, where

We = 1
2ε0|∇ϕ|2/neTe. This ensures that the nonlinear terms which couple the electron and

ion motion are of higher order and negligible. So, the following ordering will be assumed
from now on: √

ε0|∇ϕ|2
2neTe

� vos

c
∼ kλDe � 1. (2.1)

Assuming a purely electrostatic perturbation, linearising the continuity and momentum
equations for the electron fluid gives (Liu & Rosenbluth 1976; Simon et al. 1983)

∂n
∂t
= −∇2ψ − vos·∇n,

∂ψ

∂t
= ω2

pe∇−2n− 3v2
then− vos·∇ψ.

⎫⎪⎬⎪⎭ (2.2)

Here n(t, x) is the electron density perturbation normalised to the equilibrium density
n0 which will be assumed uniform for simplicity, ψ(t, x) is the velocity potential of the
electrons meaning u = ∇ψ , where u is the electron fluid velocity, ω2

pe = e2n0/ε0me is the
equilibrium plasma frequency and v2

the = Te/me is the electron thermal velocity. Since the
goal is to develop a description of the instability under broad-bandwidth (stochastic) laser
fields, n, ψ and vos are assumed to be random variables.
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The wave equation governing the electron plasma waves is(
∂2

∂t2
+ ω2

pe − 3v2
the∇2

)
n = ∇2(vos·∇ψ)− ∂

∂t
(vos·∇n), (2.3)

where the right-hand side contains the TPD driving terms. One can express the driving
terms through the Wigner functions describing the correlations between the pump field
vos and the plasma waves, as has been done in the case of inhomogeneous Navier–Stokes
turbulence (Tsiolis, Zhou & Dodin 2020) (see Appendix B):

vos·∇ψ = i

ˆ
dk
(2π)3

k� 	W�ψv. (2.4)

Here Wψv(x,k) = W [|ψ〉 〈vos|], with W being the Wigner transform, and the bra-ket
notation is used as in Dodin (2022); Wᵀ

ψv denotes the transpose of Wψv. The Wigner
transform W [Â] of some generic operator Â is called the Weyl symbol of Â, and is defined
as

A(x,k) ≡ W [Â] .=
ˆ

ds e−ik·s
〈
x+ s

2

∣∣∣ Â
∣∣∣x− s

2

〉
. (2.5)

The Moyal star product 	 between two symbols is defined as A 	 B
.= W [ÂB̂]; it is

given by A(x,k) 	 B(x,k) = A(x,k) eiP̂/2B(x,k), with P̂ being the Poisson bracket P̂ =
←
∂x·

→
∂k −

←
∂k·

→
∂x, and the arrows indicating the directions in which the derivatives are acting.

Element-wise application of the Moyal star product 	 and the usual matrix multiplication
rules are assumed, meaning that for any two matrix symbols A and B one applies the Moyal
product as follows: (A 	 B)ij =

∑
k(A)ik 	 (B)kj. A brief introduction to the Weyl symbol

calculus can be found in Appendix A. With these definitions, one can see that the quantity
Wψv(x,k) is given by

Wψv(x,k) =
ˆ

ds e−ik·sψ(x+ s/2)v†
os(x− s/2). (2.6)

After ensemble averaging, Wψv(x,k) will represent the correlations of the laser pulse field
vos with the the velocity potential ψ . The second driving term is rewritten in a completely
analogous manner leading to the quantity Wnv(x,k) which will represent the correlations
between vos and the density perturbation n.

Taking the Fourier transform of the wave equation, and ensemble averaging, leads to

De(Ω,K)
◦
n̄(Ω,K) =

ˆ
dk
(2π)3

(
k− 1

2 K
) ·
(

iK2
◦

W̄ψv −Ω
◦

W̄nv

)
, (2.7)

where De(Ω,K) = Ω2 − ω2
pe − 3v2

theK
2 = Ω2 − ω2

eK is the dispersion function for the
electron plasma waves, and the Fourier transformed quantities are denoted as follows:
◦n(Ω,K) = ´

dtdx n(t, x) eiΩt−iK ·x. The overline represents ensemble averaging. Here one
now faces the closure problem – to calculate the mean field n̄, knowledge is needed of
second-order quantities: W̄ψv and W̄nv. The powerful toolbox of the Weyl symbol calculus
is now applied to derive and solve the equations governing these quantities.

The basic idea is as follows: if one writes down the governing equations of the system in
Schrödinger form, then all of the second-order correlation functions describing the system
will be governed by the Wigner–Moyal equation (see Appendix A). A similar procedure
was carried out for the case of inhomogeneous fluid turbulence by Tsiolis et al. (2020).
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The TPD equations (2.2) are first order in time and are readily put in Schrödinger form.
The vector potential A0 describing the propagation of an electromagnetic mode in a plasma
obeys a Klein–Gordon equation and therefore (∂2

t − c2∇2 + ω2
pe)vos = 0, since vos differs

from A0 only by a constant factor (Kruer 2019; Michel 2023). There are no source or
sink terms in this equation since the linear stage of the instability is considered and hence
pump depletion is ignored. This second-order-in-time equation can be decomposed into
two first-order ones by defining the auxiliary fields φ,χ = 1

2(vos ± iω−1
pe ∂tvos) (Santos &

Silva 2005).
The system of the decomposed Klein–Gordon equation, together with the two TPD

equations are then written as a Schrödinger equation, i∂tΨ = ĤΨ , with the following
matrix Hamiltonian and state vector:

Ĥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i∇2 −iη� −iη�

i(ω2
pe∇−2 − 3v2

the) 0 −iu� −iu�

0 0 − c2

2ωpe
∇2 + ωpe − c2

2ωpe
∇2

0 0
c2

2ωpe
∇2 c2

2ωpe
∇2 − ωpe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ψ =

⎛⎜⎜⎜⎜⎝
n

ψ

φ

χ

⎞⎟⎟⎟⎟⎠ ,

(2.8a,b)

where η
.= ∇n and u .= ∇ψ . The Wigner matrix W = W [|Ψ 〉 〈Ψ |] satisfies the

Wigner–Moyal equation:
i∂tW = H 	W−W 	 H†, (2.9)

with H
.= W [Ĥ] being the symbol of the matrix Hamiltonian. It is useful to write out the

contents of the Wigner matrix and the symbol of the matrix Hamiltonian explicitly:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ik2 −iη� −iη�

−ik−2ω2
ek 0 −iu� −iu�

0 0
c2

2ωpe
k2 + ωpe

c2

2ωpe
k2

0 0 − c2

2ωpe
k2 − c2

2ωpe
k2 − ωpe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10)

W =

⎛⎜⎜⎜⎜⎝
Wnn Wnψ Wnφ Wnχ

Wψn Wψψ Wψφ Wψχ

Wφn Wφψ Wφφ Wφχ

Wχn Wχψ Wχφ Wχχ

⎞⎟⎟⎟⎟⎠ , (2.11)

where the quantities which have a vector index in the second slot such as Wnφ are row
vectors; similarly Wφn is a column vector; and quantities such as Wφφ with two vector
indices are matrices.

Note that the relevant Wigner functions in (2.7) are related to the components of this
Wigner matrix above through Wnv = Wnφ +Wnχ and Wψv = Wψφ +Wψχ , and so one
needs only to compute the evolution equations of the upper right 2× 2 corner of W.
Doing so and taking sums and differences of the equations in the resulting system, one
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gets equations for Wnv and Wψv, which upon ensemble averaging results in the following
system:

i∂tW̄nv = ik2 	 W̄ψv − iη̄� 	 W̄vv − ωpeB̄nv,

i∂tB̄nv = ik2 	 B̄ψv − iη̄� 	 B̄vv − ω−1
pe W̄nv 	 ω

2
k,

i∂tW̄ψv = −ik−2ω2
ek 	 W̄nv − iū� 	 W̄vv − ωpeB̄ψv,

i∂tB̄ψv = −ik−2ω2
ek 	 B̄nv − iū� 	 B̄vv − ω−1

pe W̄ψv 	 ω
2
k.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.12)

Here ω2
k = ω2

pe + k2c2 is the electromagnetic wave frequency. All of the B quantities
are not of interest and simply facilitate the calculation; they are defined as follows:
Bnv

.= Wnφ −Wnχ ,Bψv
.= Wψφ −Wψχ ,Bvv

.= Wφφ +Wχφ −Wφχ −Wχχ . Here, the fact
that Wvv = Wφφ +Wχφ +Wφχ +Wχχ is used, which follows from the linearity of the
Wigner transform.

The crucial step, which is the essence of the CE2 closure, is the splitting of the average
of the product, into the product of the averages, for the third-order quantities: η� 	W =
η̄� 	 W̄. This effectively assumes the third-order cumulant η̃� 	 W̃ to be negligible (the
tilde denotes the fluctuating part of the quantity) (Krommes & Parker 2019). It is exactly
zero for fields obeying jointly normal (Gaussian multivariate) statistics. In contrast to
turbulence, here this assumption is easier to justify. One does not expect the interactions
between the fluctuations to be of interest, which is what is being neglected when one
discards higher-order cumulants and assumes Gaussianity. They would not be of interest
since such effects are what leads to fluctuation intermittency, or are responsible for the
typical turbulent energy cascades, neither of which is assumed here to be of relevance in
the linear stage of the instability. The fluctuations in the electric field of the laser pulse
are prescribed in a sense (their power spectrum W̄vv is given), and are expected to be
normal for both temporally incoherent pulses (Goodman 2015), as well as transversely
incoherent fields produced by a random phase plate for example (Rose & DuBois 1993;
Garnier 1999), where in both cases this is a consequence of the central limit theorem.
Hence the driving field vos is safely assumed a Gaussian random process. It should be
noted that the Wigner–Moyal formalism is also very useful in deriving more sophisticated
closures such as the quasi-normal one as shown by Ruiz et al. (2019).

The Wigner function is bilinear and therefore Bvv = W(φ+χ)(φ−χ). If the laser field
vos is statistically stationary, it is shown in Appendix C that the ensemble-averaged
Wigner function W̄vv and the associated quantity B̄vv are related as follows: B̄vv(k) =
ω−1

pe ωkW̄vv(k). This is an important step in the derivation as it makes all symbol products
in (2.12) have one of the quantities being a function of x or k only. Taking the Fourier
transform of the system results in

−Ω
◦

W̄nv = ik2
−
◦

W̄ψv − i
◦
η̄
�

W̄+vv − ωpe

◦
B̄nv,

−Ω
◦
B̄nv = ik2

−
◦
B̄ψv − iω−1

pe ωk+

◦
η̄
�

W̄+vv − ω−1
pe ω

2
k+

◦
W̄nv,

−Ω
◦

W̄ψv = −ik−2
− ω

2
ek−

◦
W̄nv − i

◦
ū
�

W̄+vv − ωpe

◦
B̄ψv,

−Ω
◦
B̄ψv = −ik−2

− ω
2
ek−

◦
B̄nv − iω−1

pe ωk+

◦
ū
�

W̄+vv − ω−1
pe ω

2
k+

◦
W̄ψv,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

where the quantities with superscripts ± are evaluated at k± = k± 1
2 K ,

◦
η̄ and

◦
ū are

functions of K only (the Fourier image of x) and all other quantities are functions of
both k and K .

https://doi.org/10.1017/S0022377824000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000953


Statistical theory of broadband two-plasmon decay instability 9

In order to keep the model self-consistent under the assumed ordering, the growth rate
of the instability can be calculated only up to order vos/c and higher-order terms need to
be discarded (Kruer 2019). The way this works in the present case is as follows. To close
the system (2.13), ◦u can be expressed in terms of ◦

η and
◦

Wψv through the second equation
in the TPD system (2.2). Then the equations containing ◦u will involve terms which are
∝ ◦

Wψv

◦
Wvv. As in the standard derivation in Kruer (2019), this introduces terms of order

(vos/c)2 � 1 in the growth rate which are ignored, and therefore in (2.13) one uses the
approximation ◦u = i(Ω/K2)

◦
η.

Solving the system for the quantities of interest,
◦

W̄ψv and
◦

W̄nv, in terms of the laser
field W̄vv and substituting them into (2.7) results in the homogeneous broadband TPD
dispersion relation:

De(Ω,K) =
ˆ

dk
(2π)3

(k2
−Ω − K2Ω−)2

K2k2−De(Ω−,k−)
k−K� : W̄vv(k), (2.14)

where Ω− = ωk −Ω , the integral is to be taken along the Landau contour, k−
.= k− K

has been redefined and the colon denotes double matrix contraction.3 This is the main
result of the new model. For a statistically stationary random process, the two-point
correlation function and the power spectrum form a Fourier pair (Wiener–Khinchin
theorem) (Goodman 2015). So one can notice that the expression has a familiar form and
a simple physical interpretation: the broadband dispersion relation is the monochromatic
one integrated over the laser field power spectrum W̄vv(k), given by

W̄vv(k) =
ˆ

ds e−ik·svos(x+ s/2)v†
os(x− s/2). (2.15)

This dispersion relation allows one to study the homogeneous TPD under laser fields with
arbitrary power spectra.

3. Applications
3.1. Monochromatic beams

The broadband TPD dispersion relation (2.14) reduces to the well-known result for a
monochromatic plane wave. Consider a pump of the form vos(t, x) = 1

2vosσ eik0·x−iω0t +
c.c., where ω0 ≡ ωk0 is the laser frequency and σ is the laser polarisation. The polarisation
σ is allowed to be complex to take into account circularly polarised laser beams as well.
The Wigner function of this field is4

W̄vv(k) = 1
4(2π)

3v2
os[σσ †δ(k− k0)+ σ ∗σ�δ(k+ k0)]. (3.1)

Substituting this in (2.14), and as usual ignoring the anti-Stokes term for being
off-resonant, reduces to the familiar expression (see Kruer 2019):

De(Ω,K)De(ω0 −Ω,K − k0) =
ω2

pev
2
os|K ·σ |2

4

(
K2 − |K − k0|2

K|K − k0|
)2

, (3.2)

3The double matrix contraction is defined as A : B =∑
ij AijBji. For matrices which can be written as A = a1a�2

and B = b1b�2 one has A : B = (a1·b2)(a2·b1).
4This is derived by assuming the wave has some random initial phase which is averaged over. This averaging is

equivalent to the mode truncation procedure which appears in the usual derivation (Kruer 2019), in which the coupling
of the laser to plasma oscillations at ω ± 2ω0, ω ± 3ω0 etc. is ignored. The validity of this approximation was studied by
Machacek & Wark (2001). There is an exactly equivalent issue in the DW-ZF problem which concerns the modulational
instability of a single drift-wave mode, and the derivation of the growth rate from the generalised zonostrophic instability
dispersion relation. For details, see Parker (2014). Other kinds of averaging which produce the same result are also
possible (Dodin 2022).
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10 R.T. Ruskov and others

where one has used the approximation Ω � Ω− � ωpe in the numerator.
In the case of multiple monochromatic non-interfering laser beams, the Wigner function

is (ignoring the anti-Stokes terms)

W̄vv(k) =
∑

i

1
4(2π)

3v2
os,iσ iσ

†
i δ(k− k0i). (3.3)

The dispersion relation in this case becomes

De(Ω,K) =
∑

i

∣∣∣∣ |K − k0i|2 − K2

2K|K − k0i| (K ·σ i)vos,i

∣∣∣∣2 ω2
pe

De(ω0 −Ω,K − k0i)
. (3.4)

This agrees with the result of Michel et al. (2013).

3.2. Single temporally incoherent beam
Next, consider a single temporally incoherent laser beam. The Wigner function describing
such a field is of the form (again ignoring the anti-Stokes term)

W̄vv(k) = 1
4(2π)

3v2
osσσ †G(k‖)δ(k⊥), (3.5)

where G(k‖) is the power spectrum centred around k0 and normalised such that it
integrates to unity. Also, k‖

.= k·κ̂,k⊥
.= k− k‖κ̂ with κ̂

.= k0/k0 being the unit vector
in the direction of propagation. For �ω/ω0 � 1, the wavenumber spread �k is related
to the frequency bandwidth through �ω = vg0�k, where vg0 = ∂ωk/∂k|k0 is the group
velocity of electromagnetic waves at the peak of the power spectrum. Most commonly
one considers broadband lasers with top-hat (flat), Lorentzian or Gaussian power spectra
(Follett et al. 2019). Upon substitution of (3.5) in (2.14), the dispersion relation has the
form

De(Ω,K) = K2
⊥v

2
os

4
I . (3.6)

Here, in the same way as before K⊥
.= K − K ·κ̂ . The integral I is given by

I =
ˆ

CL

dωk‖

vg(ωk‖)

C(ωk‖)G(ωk‖)

(ωk‖ −Ω)2 − ω2
ek−

, (3.7)

in which the integration variables have been changed from k to ωk in order to deal with
the pole in the integrand more easily; note that the integral should be taken along the
Landau contour CL. The function C has been defined as C(k‖)

.= (K2Ω− − k2
−Ω)

2/(Kk−)2.
Note that C is a function of Ω and K as well, but those have been dropped for brevity.
Of course here by k− one means k− = |K − k‖κ̂ |. In order not to make the notation too
cumbersome, functions such as C, the spectrum G, or ωek− which are defined as functions
of k‖, one evaluates in terms of the frequency implicitly as follows: C(ωk‖) ≡ C[K(ωk‖)],

where K(ωk)
.= c−1

√
ω2

k − ω2
pe = k allows one to go from the laser frequency to the laser

wavenumber.
In the monochromatic case, the TPD growth rate maximises to a value of γ0 = 1

4 k0vos.
This tells one that γ0/ωpe � 1 since γ0/ωpe ∼ k0vos/ωpe ∼ vos/c� 1. The right-hand side
of (3.6) is of order γ 2

0 � ω2
pe. Therefore it is possible to assume that the real part of the
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frequency satisfies the linear dispersion relation:Ω = ωeK + iγ . With this the growth rate
becomes

γ = K2
⊥v

2
os

4
1

2ωeK
Im[I ], (3.8)

and the integral I is

I =
ˆ

CL

dωk‖

vg(ωk‖)

C(ωk‖)G(ωk‖)

(ωk‖ − ωeK − iγ − ωek−)(ωk‖ − ωeK − iγ + ωek−)
. (3.9)

The integrand of I has one pole of interest which occurs at a wavenumber kp(K) such
that ωkp − ωeK − ωek− = 0. This is the frequency-matching condition which for a given
kp defines a circle in K -space centred around (K‖,K⊥) = (k0/2, 0). In the limit of large
bandwidth �ω � γ one evaluates I using Plemelj’s formula:

lim
ε→0+

ˆ ∞
−∞

f (x)
x− ζ ∓ iε

dx =P

 ∞
−∞

f (x)
x− ζ dx± iπ f (ζ ), (3.10)

with P

 
denoting the principal value integral and ζ, ε ∈ R. Physically this is due to the

fact that for small growth rates, the resonance is very sharp and the instability is driven
only by the part of the power spectrum which can perfectly satisfy the matching conditions.
Evaluating the imaginary part at the pole:

Im[I ] = π C(kp)G(kp)

vg(kp)(ωkp − ωeK + ωek−)
� π C(kp)G(kp)

vg0 ω0
. (3.11)

This gives the growth rate of the TPD instability in a uniform plasma in the case of a single
temporally incoherent laser beam:

γK = πG(kp)

vg0
γ 2

0K , (3.12)

where one uses the fact that (K2
⊥v

2
os/8ωeKω0)C(kp,K) � (K2

⊥v
2
os/16)((K2 − |K − kpκ̂ |2)2/

K2|K − kpκ̂ |2) = γ 2
0K , and γ0K is the monochromatic growth rate. The reader is reminded

here that the wavenumber at which the resonance occurs kp is a function of K and is
determined from the frequency-matching condition: ωkp − ωeK − ωek− = 0.

Consider next the maximum value that γK attains over all wavenumbers K .
Evaluating that for the top-hat and Lorentzian power spectra: for the top hat
G(k0) = 1/�k and so the growth rate is γTH = πγ 2

0 /�ω. For the Lorentzian G(k) =
(1/π)(�k/2/((k − k0)

2 + (�k/2)2)) one has G(k0) = 2/π�k and so γL = 2γ 2
0 /�ω.

Here γ0 = 1
4 k0vos is the value at which γ0K maximises. These results agree with the

well-known scaling of the growth rate as γ ∼ γ 2
0 /�ω, but also include the dependence

of the result on the laser spectral shape. It is interesting to note that while the coherence
times for the two power spectra are (for the top hat and Lorentzian, respectively) τc =
2π/�ω, 2/�ω (see also § 3.3 for a definition of τc) (Goodman 2015; Follett et al.
2019), the growth rates differ by less than a factor of π . This shows that at least in the
homogeneous case, it is not the coherence time per se which is the most relevant metric,
but rather the fraction of laser energy which satisfies the resonance conditions. At first
glance this is somewhat at odds with the results of Follett et al. (2019), which found
that the coherence time provides a universal scaling for the absolute Raman and TPD
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FIGURE 2. Effect of laser bandwidth on the range of unstable wavenumbers excited by the
TPD instability as driven by a single broadband laser beam. The laser has a Lorentzian power
spectrum, an intensity of IL = 1015 W cm−2 and wavelength λ = 350 nm; the plasma conditions
are Te = 2 keV and ne = 0.23nc (nc being the critical density). The growth rates are normalised
to the maximal growth rate corresponding to each configuration. The left-hand panel represents
the monochromatic case by solving (3.2) so it is normalised to γmax = γ0 = 1

4 k0vos. The middle
and right-hand panels show the analytical broadband solution γK and are thus normalised to
γmax = γL = 2γ 2

0 /�ω.

thresholds, meaning that the thresholds were the same for fields with the same coherence
times but different spectral shapes. More formally, it appears that the peak growth rates of
the instability scale with G(k0), and the absolute thresholds with

´ |G(k)|2 dk. The reason
for this difference in behaviour is unknown but the problem of an absolute instability near
the quarter critical density in an inhomogeneous plasma is significantly more complicated
and there is little reason to expect that it should be affected by bandwidth in the same way
as the temporal growth rate in a homogeneous plasma, which has been calculated here.

Having explored how bandwidth affects the maximum value the growth rate attains,
one now turns to how it modifies the spectrum of excited plasma waves. First in the
monochromatic case, plasma waves are driven at wavenumbers near the intersection of
the circles defined by the frequency-matching condition, and the hyperbolas defined by
K2
⊥ = K‖(K‖ − k0) at which the monochromatic growth rate γ0K maximises. This is shown

in the left-hand panel in figure 2. In the middle and right-hand panels the growth rate
γK is presented, for a Lorentzian power spectrum of varying bandwidths. One sees that
increasing the laser bandwidth significantly broadens the range of unstable wavenumbers
excited by the TPD instability. In the right-hand panel virtually the entire TPD hyperbolas
are observed since the ultra-large laser bandwidth allows all relevant wavenumbers to
satisfy the frequency-matching conditions. What is most interesting is that even for
relatively modest amounts of bandwidth such as 20 THz (middle panel) the broadening
of the spectrum is substantial. Such effects may change the nature of the instability. For
example, in an inhomogeneous plasma, at lower densities the TPD modes are fairly high
in K as illustrated by the left-hand panel in figure 2, and tend to be convective. Absolute
modes occur near |K | → 0, which would typically be excited only in regions very close
to the quarter critical density (Yan, Maximov & Ren 2010). One sees that laser bandwidth
favours the absolute instability at lower densities too.

The analytical results presented so far have relied upon the assumption that the
bandwidth is large compared with the growth rate �ω � γ0, which was used in the
evaluation of the integral I in (3.9). To explore the growth rates of the instability in the
intermediate regime �ω ∼ γ0, the integral is evaluated numerically for finite γ . Figure 3
shows the growth rate calculated along the lower branch of the TPD hyperbolas as a
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FIGURE 3. Numerically evaluated growth rates γ in the intermediate-bandwidth regime
calculated along the lower branch of the TPD hyperbolas defined by K2

⊥ = K‖(K‖ − k0). The
inset shows the middle panel of figure 2 along with the aforementioned hyperbola as represented
by the red dashed line. The plasma conditions and laser parameters are the same as those
described in figure 2. The growth rate is normalised to the monochromatic one γ0, and the

horizontal axis represents the magnitude of the wavenumber K =
√

K2
‖ + K2

⊥. The circles
represent the estimate of the maximum growth rate as given by (3.14).

function of the magnitude of the wavenumber K. One sees that even at the fairly low
bandwidth of 5 THz (�ω/γ0 = 2.8) and at intensity IL = 1015 W cm−2, the growth rate
is half its monochromatic value. It is also approximately a third for �ω/2π = 10THz
(corresponding to the intrinsic bandwidth of an argon fluoride laser). As shown below,
laser wavelength does not affect the peak values of the growth rate and therefore the
results just quoted are unchanged by it. Decreasing the wavelength though does reduce
the broadening effect in the plasma wave spectrum shown in figure 2.

In addition, it is possible to calculate the peak of the growth rates analytically in this
regime. This is done by ignoring the thermal correction in the dispersion functions and
assuming the wavenumber K is along the TPD hyperbola, leading to an expression for the
maximum growth rate of the form

γmax = γ 2
0

ˆ
2ωpe G(ωk‖)

(ωk‖ − 2ωpe − iγmax)(ωk‖ − iγmax)
dωk‖ . (3.13)

For a Lorentzian spectrum centred at ω0 = 2ωpe the integral can be evaluated exactly,
leading to

γmax = 1
4(

√
16γ 2

0 +�ω2 −�ω). (3.14)

This reproduces the two relevant limits: for �ω→ 0, γmax → γ0; and for �ω→
∞, γmax → γL = 2γ 2

0 /�ω. Since γ0 does not depend on laser wavelength, then γmax does
not either. The circles in figure 3 represent γmax as given by the result above, showing
excellent agreement with the numerically calculated growth rate.
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(a) (b)

FIGURE 4. (a) A power spectrum G(ω) consisting of N = 7 well-separated spectral lines,
centred around ω0 and spread over a bandwidth of �ω. Their thickness is finite for the purposes
of visualisation. (b) The normalised correlation function |Γ (τ)|2 as a function of the time
separation τ of a set of N delta-shaped spectral lines spread over a bandwidth �ω.

3.3. Well-separated discrete spectral lines
Another implication concerns the extent to which a power spectrum consisting of N
well-separated sharp spectral lines spread over a bandwidth �ω, such as that shown
in figure 4(a), approximates the instability reduction properties of a continuous power
spectrum (Bodner 2023). For sufficiently low number of spectral lines, such that only
a single line is contained within the instability resonance, �ω/(N − 1) > γ0, following
the generalised dispersion relation presented here, the instability growth rate will be
γ = γ0/

√
N. From the aforementioned inequality, this reduction will be somewhat lower

than the expected πγ 2
0 /�ω in the continuous case, but still significant. For example for

N = 10, the reduction is similar to that of 10 THz continuous bandwidth (see figure 3). At
first glance this reduction cannot be explained by the coherence properties of the power
spectrum, since formally if each line is delta-shaped, the coherence time is infinite.

To investigate this, one follows Goodman (2015). Consider a power spectrum containing
N discrete delta-shaped spectral lines, uniformly spread over a bandwidth of �ω, and
centred around ω0 (figure 4a):

G(ω) = 1
N

N−1∑
j=0

δ

(
ω − ω0 − �ω2 +

�ω

N − 1
j
)
. (3.15)

This is the power spectrum of the complex analytic signal Y(t) where the actual signal
is y(t) = ReY(t). By the Wiener–Khinchin theorem, the correlation function C(τ ) =
Y∗(t)Y(t + τ) is given by the (inverse) Fourier transform of G(ω):

C(τ ) = 1
2π

ˆ
G(ω) e−iωt dt. (3.16)

Defining the normalised correlation function Γ (τ) = C(τ )/C(0), the coherence time for
a random process is given by

τc =
ˆ ∞
−∞
|Γ (τ)|2 dτ. (3.17)
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It can be shown that the correlation function for the discrete power spectrum G(ω) is

|Γ (τ)|2 = 1
N2

csc2

(
�ωτ

2(N − 1)

)
sin2

(
N�ωτ

2(N − 1)

)
. (3.18)

Formally, the integral of this will always diverge for any finite N. In the limit of N →∞
one recovers the normalised correlation function for a continuous top hat spectrum which
has a finite coherence time:

|ΓTH(τ )|2 = sinc2(�ωτ/2). (3.19)

Figure 4(b) shows what |Γ (τ)|2 looks like for different numbers of spectral lines. One sees
that for small τ the correlation functions closely resemble the sinc profile expected in the
continuous case. In contrast, the discrete case exhibits correlations for larger τ , and the
time scale over which these correlations occur increases with the number of spectral lines
N. The kth peak occurs at time delay Tk = 2(N − 1)πk/�ω. If T1, the time at which the
first peak occurs, is much larger than the typical time scale of interest (such as γ −1

0 ) then
the coherence properties of the continuous spectrum are well approximated by the discrete
one. Using T1 � γ −1

0 translates to a condition on the number of spectral lines:

N � 1
2π

�ω

γ0
. (3.20)

For a laser intensity of 1015 W cm−2 at a wavelength of 350nm and bandwidth of�ω/ω0 =
1 %, the right-hand side is �1. This suggests that even a low number of discrete spectral
lines such as N = 10 might be a good approximation to the coherence properties of the
continuous spectrum, as far as their effect on the instability is concerned.

4. Summary

In this paper, a novel statistical theory of the broadband TPD instability has been
presented. It has been used to derive a dispersion relation in uniform plasma that is
valid under laser electromagnetic fields with arbitrary power spectra. To achieve this,
recent developments in inhomogeneous turbulence have been applied in order to derive
the statistical closure required to treat the problem. The new dispersion relation is then
applied to the study of the instability in a few cases of interest. For a single temporally
incoherent laser beam, in the limit of large bandwidth�ω � γ0, the well-known reduction
of the peak of the growth rate by a factor of approximately γ0/�ω is confirmed, but it is
also shown that the exact amount depends on the shape of the power spectrum. Namely,
for a Lorentzian power spectrum the peak growth rate is γL = 2γ 2

0 /�ω, and for a flat
(top-hat) spectrum it is γTH = πγ 2

0 /�ω. This difference is less than what the difference
in the coherence times of the two laser beams would imply. In addition, it has been shown
that the laser bandwidth significantly broadens the range of wavenumbers excited by TPD.
This implies that bandwidth favours the absolute instability in regions further away from
the quarter critical density by allowing the |K | → 0 modes to be excited there too. The
intermediate-bandwidth regime is explored numerically and it is shown that the growth
rate is reduced to half its value for laser intensities of 1015 W cm−2 and relatively modest
bandwidths of 5 THz. A power spectrum consisting of N discrete lines spread over a
bandwidth of �ω is also studied. It is shown that for a low number of spectral lines,
the reduction in the peak growth rate is 1/

√
N, which is somewhat smaller than in the

continuous case but still significant.

https://doi.org/10.1017/S0022377824000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000953


16 R.T. Ruskov and others

There some natural questions which arise as a consequence of this work. Firstly, can
one model transversely incoherent laser fields such as those produced by a random phase
plate (RPP), or a combination of transverse and temporal incoherence such as when a
phase plate is combined with smoothing by spectral dispersion (SSD), as well as in
the induced spatial coherence (ISI) scheme? Formally transverse incoherence can be
straightforwardly incorporated by simply allowing the Wigner function (equivalently, the
laser power spectrum) to have some finite angular spread in wavenumber. But since two
laser fields which can have the same power spectrum can nonetheless still be very different,
care should be taken when applying the generalised dispersion relation. The RPP field is
such that it creates a speckle pattern at the focus which may cause the instability to be
strongly localised within speckles with many times the average intensity (Follett et al.
2022). Such intermittent behaviour may break the Gaussianity assumption made in this
work. Adding temporal incoherence by SSD or by using naturally broad-bandwidth lasers
such as the excimer ones used in the ISI scheme causes the speckle pattern to move which
may help smooth out this behaviour.

Secondly, the presence of a density gradient is primarily responsible for determining
whether the dominant instability at the quarter critical density is the TPD or Raman
scattering, with longer, ignition-relevant scale lengths favouring the Raman instability
(Rosenberg et al. 2018). Therefore extending the present analysis to study the effects of
laser bandwidth on the absolute instability in the presence of a density gradient is an
important problem. The approach of Liu & Rosenbluth (1976) and Simon et al. (1983) for
a plane-wave laser field uses some rather specific mathematical manipulations to calculate
the absolute threshold, for which it is not immediately clear how they might be carried out
within the framework presented in this paper. So this remains an interesting open problem.
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Appendix A. The Weyl symbol calculus

Here a very brief introduction to the Weyl symbol calculus is provided. Although quite
concise, this should give the reader most of the necessary background to understand the
results in this paper. For details and proofs, see McDonald (1988), Tracy et al. (2014) and
Dodin (2022) and references therein.

The symbol calculus is best presented in terms of abstract bra-kets and abstract operators
acting on them. Therefore for any fields which might be of interest – the plasma density
perturbation n, the velocity potential ψ , the quiver velocity vos, etc. – one considers their
abstract bra-ket representations. So for example, the position representation of the density
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perturbation is n(x) = 〈x |n〉; its Fourier transform, i.e. its wavenumber representation, is
◦n(k) = 〈k |n〉.

One starts by defining the Wigner transform W of an abstract operator Â as follows:

A(x,k) .= W [Â] .=
ˆ

ds e−ik·s 〈x+ s/2| Â |x− s/2〉 , (A1)

where A(x,k) is called the Weyl symbol of the operator Â. There is a close connection
between the Wigner transform and correlation functions. The Wigner function of some
field ψ(x) is defined as

Wψψ(x,k) .=
ˆ

ds e−ik·sψ(x+ s/2)ψ†(x− s/2), (A2)

where, from the definition, it is apparent that it can be thought of as the Fourier transform
of the two-point correlation function of ψ (modulo some averaging procedure). The
Wigner function is the symbol of the density operator ρ̂ .= |ψ〉 〈ψ |:

Wψψ(x,k) = W [ρ̂]. (A3)

Analogously, one describes correlations between two different fields ψ and φ by
considering the Wigner transform of |ψ〉 〈φ| :

Wψφ(x,k) = W [|ψ〉 〈φ|] =
ˆ

ds e−ik·sψ(x+ s/2)φ†(x− s/2). (A4)

The Wigner transform possesses some nice properties:

W [1] = 1, W [x̂n
j ] = xn

j , W [k̂n
j ] = kn

j , (A5a–c)

for any integer n, where 1 is the identity operator, x̂ is the abstract position operator with x̂j

being its jth component; analogously for the wavenumber operator k̂, which is the abstract
representation of −i∂x.5 As a consequence, any reasonably behaved function F of those
operators satisfies

W [F(x̂)] = F(x), W [F(k̂)] = F(k). (A6a,b)

This property makes it particularly easy to go from equations in the position representation
as they are most commonly given to their abstract representation which is suitable for
applying the Weyl symbol calculus. In the present work, this step does not even need be
made explicit.

The symbol of a product of operators W [ÂB̂] is related to the individual symbols
W [Â] = A(x,k) and W [B̂] = B(x,k) through the Moyal star product 	 as follows:

W [ÂB̂] = A(x,k) 	 B(x,k), (A7)

where the star product between two symbols is defined as

A(x,k) 	 B(x,k) .= A(x,k) eiP̂/2B(x,k), P̂ = ←
∂x·

→
∂k −

←
∂k·

→
∂x (A8a,b)

with P̂ being the Poisson bracket, and the arrows over the derivatives denoting the
direction in which they act; AP̂B represents the Poisson bracket between A and B. The

5This shows how similarly to Fourier transforms, when taking the Wigner transform of an equation, derivatives can
be simply substituted for ik.
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symbol product and the Wigner transform are related to each other like the convolution
and the Fourier transform.

Frequently one needs to calculate symbol products where one of the symbols is only a
function of space, or only a function of wavenumber. In such cases, the symbol product
simplifies greatly when Fourier transformed. Denoting the Fourier transform of ψ(x) as
◦
ψ(k) .= FK [ψ(x)] = ´

dxψ(x) e−iK ·x, one has

FK [F(k) 	W(x,k)] = F(k− 1
2 K)

◦
W(K ,k),

FK [W(x,k) 	 F(k)] = F(k+ 1
2 K)

◦
W(K ,k),

FK [G(x) 	W(k)] = ◦
G(K)W(k+ 1

2 K),

⎫⎪⎬⎪⎭ (A8)

for some generic functions F,G and W. The proof of the first one is as follows:

FK [F(k) 	W(x,k)] = FK

[
F(k) exp

(
i
←
∂x·

→
∂k − i

←
∂k·

→
∂x

2

)
W(x,k)

]

= F(k)FK

[
exp

(
−1

2
i
←
∂k·

→
∂x

)
W(x,k)

]
= F(k) exp

(
−1

2

←
∂k·K

)
◦

W(K ,k)

= F
(

k− 1
2

K
)

◦
W(K ,k). (A9)

The rest follow analogously.
For some field |ψ〉 governed by a Schrödinger-like equation i∂t |ψ〉 = Ĥ |ψ〉 the density

operator satisfies the von-Neumann equation:

i∂tρ̂ = Ĥρ̂ − ρ̂Ĥ†. (A10)

Taking the Wigner transform of the above gives the so-called Wigner–Moyal equation
which governs the Wigner function of the field:

i∂tWψψ = H 	Wψψ −Wψψ 	 H†, (WME)

with H
.= W [Ĥ] being the symbol of the Hamiltonian operator Ĥ. This is what allows us

to very efficiently go from the equations of motion (EOM) of some field ψ to the equation
governing the correlation function of that field:

EOM of ψ
Weyl symbol calculus−−−−−−−−−−→ EOM of the correlation function of ψ. (A11)

All of the above properties are also satisfied for vector fields Ψ = (ψ1, ψ2, . . .) and
matrices of operators Â as long as the usual matrix multiplication rules are respected. For
example,

(A 	 B)ij =
∑

k

(A)ik 	 (B)kj, (A12)

where A and B are arbitrary matrix symbols. In this work, matrix multiplication rules are
implied between symbols.
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Appendix B. The driving terms

Here a calculation identical to the one in Tsiolis et al. (2020) is reproduced which gives
the form of the TPD driving terms. Consider the following:

vos·∇ψ =
∑

j

i 〈x| k̂j |ψ〉 〈x | vos;j〉

=
∑

j

i 〈x| k̂j |ψ〉 〈vos;j | x〉

= i 〈x| k̂·Ŵψv |x〉 . (B1)

Here Ŵψv
.= |ψ〉 〈vos|. So one sees that the expression vos·∇ψ can be thought of as the

matrix elements of the operator ik̂·Ŵψv. For a general operator Â, it can be shown that
these matrix elements can be related to the Weyl symbol A(x,k) of the operator as follows
(Dodin 2022):

〈x| Â |x〉 = 1
(2π)3

ˆ
dk A(x,k). (B2)

Hence using the Moyal star product, one writes

vos·∇ψ = i

ˆ
dk
(2π)3

k� 	W�ψv, (B3)

since
W [k̂·Ŵψv] = k� 	W�ψv. (B4)

Note that the transpose is needed in order for the dot product to be taken into account in
the symbol product since k is a column vector and Wψv is a row vector.

Appendix C. Proof of the relationship between Bvv
.= W(φ+χ)(φ−χ) and Wvv =

W(φ+χ)(φ+χ)

The solution of the Klein–Gordon equation for the vector potential in a uniform plasma
is of the form

A(t, x) =
ˆ

dk
(2π)3

◦
A(k) e−iωkt+ik·x, (C1)

with ωk =
√
ω2

pe + k2c2 being the photon frequency. To calculate Bvv one needs ∂tvos

which is given by

∂tvos =
ˆ

dk
(2π)3

(−iωk)
◦
vos(k) e−iωkt+ik·x. (C2)

Let
◦

V denote the Fourier transform of ∂tvos:
◦

V (k) .= Fk[∂tvos] = −iωk
◦
vos(k). (C3)

It is straightforward to show that the Wigner function can be expressed in terms of the
Fourier transforms of the fields as follows:

Wψφ(x,k) =
ˆ

dk′ eik′·x ◦
ψ(k+ k′/2)

◦
φ

†
(k− k′/2). (C4)
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Therefore,

Bvv = iω−1
pe

ˆ
dk′ eik′·x ◦vos(k+ k′/2)

◦
V

†
(k− k′/2)

= ω−1
pe

ˆ
dk′ eik′·xωk−k′/2

◦
vos(k+ k′/2) ◦v†

os(k− k′/2). (C5)

The equivalent expression for Wvv is

Wvv =
ˆ

dk′ eik′·x ◦
vos(k+ k′/2) ◦v†

os(k− k′/2). (C6)

For spatially homogeneous fields, upon statistical averaging these wavenumber correlators
will turn out to be deltas. To see that consider

a(x+ s/2)a†(x− s/2) =
ˆ

dk1dk2
◦a(k2)

◦a†
(k1) eik1·(x−s/2) e−ik2·(x+s/2)

=
ˆ

dk1dk2
◦a(k2)

◦a†
(k1) ei(k1−k2)·x e−i(k1+k2)·s/2

=
ˆ

dk̄dk′ ◦a(k̄− k′/2) ◦a†
(k̄+ k′/2) eik′·x e−ik̄·s. (C7)

For this to be independent of x one needs

◦a(k̄− k′/2) ◦a†
(k̄+ k′/2) ∝ δ(k′). (C8)

Hence after statistical averaging and integrating out the delta, one gets the required
relationship:

B̄vv(k) = ω−1
pe ωkW̄vv(k). (C9)
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