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Abstract

Let L, T, S, and R be closed densely defined linear operators from a Hilbert space X into
X where L can be factored as L = TS + R. The equation Lu = f is equivalent to the
linear system Tv + Ru= f and Su = v. If Lu = f is a two-point boundary value problem,
numerical solution of the split system admits cruder approximations than the unsplit
equations. This paper develops the theory of such splittings together with the theory of the
Methods of Least Squares and of Collocation for the split system. Error estimates in both
L2 and L00 norms are obtained for both methods.

1. Introduction

Let A" be a Hilbert space with inner product ( , ) and norm || ||, and let L, T, S,
and R be closed densely defined linear operators from X into X. Let Sd{A\ 8t(A),
and # ( 4 ) denote the domain, range, and null space, respectively, of an operator
A. Assume L has the operator splitting or factorization

L = TS + R (1.1)
where 2)(L) = {w e ^ ( 5 ) : Su e 2>{T)} and 0(S) c 3i(R). For a given / e X
we want to consider least squares and collocation methods for approximating
solutions to the equation

Lu=f, (1.2)
which take advantage of the splitting (1.1) by allowing one to work in the
subspaces 3>(S) and 2)(T) rather than in subspaces of 2>{V). Our primary goal in
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168 John Locker and P. M. Prenter [2]

this paper will be the theory and applicability of such least squares and colloca-
tion splitting schemes to higher order linear two-point boundary value problems
in the Hilbert space X = L2[a, b].

The starting point of our splitting method is to replace equation (1.2) by the
equivalent system of equations

To + Ru=f, (1.3)

Su = v. (1.4)

For simplicity we assume that L is 1-1 onto Xand that S is 1-1. Clearly u e 2>{L')
solves (1.2) iff the pair (v, u) e 2>{T) X @(S) solves (1.3) and (1.4).

There is a considerable literature on numerical procedures for systems of
two-point boundary value problems with [1, 4, 5, 6,11, 14, 21] treating collocation
for systems. Moreover, splitting procedures are used in a number of codes
including the Keller box scheme [14] and the de Boor-Weiss code [6] for systems
of two-point boundary value problems. The procedures of this paper are consider-
ably more flexible than other extant procedures and allow a great deal of latitude
in selection of approximating subspaces. Moreover, the theory and methodology
carry over to partial differential equations (PDE) in such a way as to offer highly
efficient alternatives to extant methods for important higher order PDE such as
the biharmonic equation (see [3, 7, 8, 9, 10, 24] for examples of schemes requiring
alternating iterations of the split operator). These generalizations will appear in
forthcoming research of the second author for which this paper lays a mathemati-
cal foundation.

2. The method of splitting least squares

The simplest vantage from which to devise a split least squares procedure for
solving (1.2) via the linked system (1.3) and (1.4) is to introduce the product space
Y = X X X and define the linear operator K from ^ ( T ) X ^ ( S ) = ^" into Y by

Kz = (Ru+ Tv,Su- v), z = (v,u)<=&. (2.1)

Let Y carry the natural product, inner product and norm structure

for all zl = (uj, ux) and z2 = (v2, u2) in Y.
For the given / e X set

Then

\Kz - y\2 = \\Ru +Tv- ff + \\Su - vf, (2.2)

https://doi.org/10.1017/S0334270000004859 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004859


[ 31 Splitting least squares 169

where (2.2) defines the functional

J(z) = \\Ru +Tv- ff + \\Su - vf = \Kz - y\2 (2.3)
on 9C. It is clear that the minimum value of / is 0 and the minimum is achieved at
(u, u) e 3Cwhere u is the unique solution to Lu = /with Su = v.

THEOREM 2.1. K is 1-1.

PROOF. If K(v, u) = 0, then Ru + Tv = 0 and Su = v. It follows that u e
3>(TS) = 3)(V) with Lw = (TS + R)u = 0. Since L is 1-1, u = 0 and <; = 5M = 0.
Q.E.D.

The method of Splitting Least Squares (SLS) applied to the equation Lu = f
comprises choosing finite dimensional subspaces Sfu c 3>{S) and^, c !3(T) and
finding z = (C, u) e y = yvx 5?u solving the minimization problem

7(z) = min7(w),

or equivalently,

1̂ 2 — ^| = min \Kw — y\, y = ( / ,0) . (2.4)

Existence and uniqueness of z are guaranteed by the finite-dimensionality of S?
and by K being 1-1.

Clearly z solves (2.4) iff

(Kz-y,K£) = 0 f o r a l l | = ( < > , ^ ) e ^ . (2.5)

It follows that z = (D, it) satisfies the Unked pair of equations

(Ru + Tv - f, T4>) = (Su - v, <t>) for all <J> G Sf0,forall<J>G^,,

{Su- v,S4>) = (f-Ru- Tv, Rt) forall^G^ ( '

For

Sro= span{</>!, «2,. . . , * « } ,

let
N A/

jj
k-l j~\

Equation (2.6) yields the SLS algorithm

E *,& + E bikuk = {f, T*,), l<i*M, (2.7)
y=i * - i

M N

E c y « y + E 4 * « * = ( / , R+i), ^^i<N, (2 .8)
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170 John Locker and P. M. Prenter [4 ]

where

ai y= (7*,, r*,

Choosing {ty: 1 <y < M] and {ipk: 1 sg k < N) Unearly independent subsets of
3)(T) and Si{S), respectively, leads to a uniquely solvable linked system of
M + N equations in M + N unknowns.

In applications to two-point boundary value problems, we work in X = L2[a, b]
with the usual L2 inner product and norm

(u,v) = f uv, \\u\\= / ( « , u) .
Ja

The subspaces Sfu and Sfu can be chosen in a variety of ways. For purposes of
concise error estimation and sparcity of the matrices associated with the SLS
computations, we shall choose £?v and yu to be spaces of Hermite splines.
Specifically, let A: a = sQ < s1 < • • • < sN = b be a partition of [a, b\. Let

Sp(m, A, k) = {u e Ck[a, b]: u e Pm[I,], 1 < i < N)

denote the space of polynomial splines of smoothness class k which reduce to
polynomials of degree m on each subinterval /, = [s,_x, s,] of the partition A. Let
h = max{5, — Sj_x: 1 < i < iV} and h_= min{^, — s^^. 1 < / < iV} denote the
maximum and minimum mesh grading of A. We assume that A = A(iV) is
selected from a family Jt of uniformly graded meshes, i.e., A e.J( implies there
exists a constant a independent of A such that h/h_^ a. The partition A gives
rise to two families of functions on which error estimates are available for
Sp(m, A, A:). In particular, we introduce the Sobolev space

e C"~l[a, b]: u(n~l) is absolutely continuous on [a, b]

with the Sobolev norm

the space

H£k[a,b]

with the norm
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and the space

Cf'k[a,b)= { u e t f " [ a , b } : u & C"

with the norm

|||U||U = max ||uW

where || ^ is the Lx[a, b] norm. Let H£[a, b] = Hgk[a, b] and Q*[a, b] =
C£k[a, b).

For each u e C ^ a , fe] it is well known that there exists a unique u e

Sp(2« — 1, A, n — 1) satisfying

5 O ) ( - O = « o ) ( j , ) fo r0 < / < i V a n d 0 < y < n - 1.

The function u is the piecewise Hermite interpolate of degree 2/i — 1 to u, or more

briefly, the interpolate to u from Sp(2« — 1, A, n — 1). The following theorems

are proved in a variety of places (see [16]).

THEOREM 2.2. Ifu e Hgk[a, b] where 0 < Ac < «,

||uO) - MO)|| < y\\u(-n+k)\\h"+k~J forO^j^n + k (2.9)

| | « O ) - «0)||=o < Y| |w( n + A r ) | | / i ' I + ' r~ i"1 / 2 forO*j<n + k - l . (2.10)

T H E O R E M 2.3. Ifu e Q"'*[a, fc] w/iere 0 < k < n, //ien

| |«o) - MO)||CO < y\\u(n+V\\aah
n+k-i for0^j^n + k.

3. Mathematical preliminaries

Analysis of convergence of SLS and split collocation approximates to the split
system of differential equations (1.3) and (1.4) is considerably simplified if one
has in hand the Green's matrix associated with the split system. In this section we
work in an arbitrary Hilbert space X and prove that the embedding operator K is
onto Y = X X X whenever L, T, and 5 are Fredholm operators. This information
is specialized in Section 4 to the case of differential operators in L2[a, b] to show
K has a bounded inverse and to obtain the Green's matrix for (1.3) and (1.4)
together with the regularity and boundedness properties of the components of this
matrix.

A linear operator Q from X into X is said to be a Fredholm operator if Q is a
closed densely defined linear operator with closed range for which dim N(Q) < 00
and dim N(Q*) < 00 where Q* is the Hilbert space adjoint of Q. Assume L, T,
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172 John Locker and P. M. Prenter [6]

and S axe all Fredholm operators. Then TS is also a Fredholm operator in X with

Let 5 f = S~XPS where Ps is the orthogonal projection of X onto ^ (S ) . Note
that SfSu = u for all u e ^ (S ) since 5 is 1-1. Let

r=T+RSf (3.1)

wither) = 3HT).

LEMMA 3.1. @(S) n W(T) = {0}.

PROOF. Suppose <> e ^ ( S ) n N(T) . Then </> = 5« for some M e ^ ( 5 ) and
T̂ > = 0. Hence,

0 = 7<j>

= rSu
= (T+ RS*)Su

= TSu + Ru
= Lu.

Since L is 1-1, M = 0 and <}> = 0. Q.E.D.
A linear operator M i n i with .©(71) c S>{M) c Z is said to be T-compact if

Af \3>(T) is compact from ^ ( T ) under the T-graph norm into X It is well known
that if M is T-compact with 3){T) c 3>(M), then r + Af is a Fredholm operator
in X Henceforth, we assume

RS^ is ^-compact, and RS* is continuous on X. (3 2)

LEMMA 3.2. IfRS* is T-compact, then r is a Fredholm operator in X.

PROOF. See Schechter [23, page 168].

LEMMA 3.3. K has closed range in X X X.

PROOF. Let (v,, «,), / = 1,2,..., be a sequence in 2)(T) X ^ ( 5 ) with

K(v,, «,) = (*/. i),) -»(*,!?).

Then

/?«, + r«, = {,-»€, (3.3)

5«, - v, = rj, -> T,. (3.4)

Applying jRS1" to (3.4), we obtain
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[71 Splitting least squares 173

Subtracting this from (3.3) we get

(T + RS^)vi = TO, = €, - RS\ -» {

Setting

we arrive at the upper triangular system

Su, - v, = TJ, -> i), (3.5)

TO, = )//,.-»!//. (3.6)

For i = l ,2 , . . . let

v, = w, + z,

where w, e ^ ( T ) n A^(T)-1- and z, e iV(r). From (3.6)
TVU, = TVIV, = w,- = TVI ~* T ^ = w, (3.7)

where T1^ is the Moore-Penrose generalized inverse of T. Thus, w and w, e ^ ( T ) n
7V(T)X . Noting that w = -i-ty = T ^ - r+ZiS^, we have

S«, - z, = Su, - ( o , - w,) = TJ, + w, -» TJ + w (3.8)

with SM, e ^ ( 5 ) and z,. e JV(T) for / = 1,2,
But dim A^(T) < oo since T is a Fredholm operator. It follows from Lemma 3.1

that ^ ( S ) + N(T) is closed in X and that &(S) © N(T) is a topological direct
sum. Thus, the associated projection operators from^(S) ® N(r) onto^(S) and
A^(T) are continuous, and from (3.8) we obtain

Su, -» Su for some w e 9{S)

and

z,;-> z S iV(r).

But (3.7) gave »v, -> w with w, and w in ^ ( T ) nJV(T)1. Thus,
U, = Wj + Z, -* W + Z = V

where v e ^ ( T ) = 2)(T\ Summarizing, we have t>, -» v, TD, = ^, -» \f>, and Su, -
Vj -> Su — v = TJ. Since T is closed, v G ^ ( T ) and TO = »/<. Thus,

Su - o = »J (3.9)

and

TO = ( r + / ? S t ) u = ^ = | - / ? S t T j . (3.10)

Applying itSt to (3.9) gives

Ru - RS^v = flSV

Rewriting (3.10) as

Ru + Tv + RS*v - Ru = £ -
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and adding these two equations yields
Ru + Tv = | . (3.11)

Equations (3.9) and (3.11) yield
() () Q.E.D.

LEMMA 3.4. K is a closed linear operator in X X X.

PROOF. Let («,., «,), / = 1,2,..., be a sequence in 3>(K) = £d(T) X 3>(S) with
(u(, «,) -» (u, «) and K(vt, «,) = (£,, TJ,) -» (£, -q). Following the proof of Lemma
3.3, there is u0 e @(S) and v0 e 3){T) with

^(fo> "o) = (*«o + Tvo> S"o ~ vo) = (^ ~n),
and i;,. -» u0 and Sut -* Su0. Thus, v = u0

 G ^ ( ^ ) , « e ^(-S1) with Sw = Su0, and
u = «0 since S is 1-1. Therefore, (v, u) = (v0, u0) e &(K) and /sT(u, «) = (£, ?/).

THEOREM 3.5. ^(/ST) = A' x X

PROOF. We have shown that AT is a closed densely defined linear operator in
X X X having closed range. Thus, to establish the theorem it suffices to show that
N(K*) = {0}. Take any (JC, y) e N(K*). Then

0 = (K(v, u), (x, y)) = ((Ru + Tv, Su - v), (x, y))

= (Ru,x)+(Tv,x)+(Su,y)-(u,y) (3.12)
for all u G 3>(S) and all v e 2)(T). Setting u = 0 in this expression, we get

for all v G S>(T). Hence x e 9{T*) with T*x = y. Similarly, setting v = 0 in
(3.12), we have

(Ru,x) +(Su,T*x) = 0
for all u G 2>(S). Thus, for any u e ^ ( L ) = 3){TS) c ^ ( S ) we have

(Lu, x) = (TSM + i?«,x) = (Su,T*x)+(Ru, x) = 0.
Since ^ ( L ) = X, we conclude that x = 0 and _y = r*;c = 0. It follows that
N(K*)= {0} and®(K) = XXX. Q.E.D.

4. Differential operators and the Green's matrix

We now specialize the methods of the previous sections to differential opera-
tors. Specifically, let L, T, and S denote linear differential operators in L2[a, b] of
orders m + n, m, and n, respectively, with m < n. Let R denote a differential
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operator in L2[a, b] of order/; < n with 2>{S) Q @(R). Clearly these differential
operators are all Fredholm operators in L2[a, b\. Assume L is 1-1 with !%(L) =
L2[a, b], and assume

L = TS + R
where S is 1-1. It follows that 3>{L) = 2>(JS\ RS^ is T-compact, r = T+ RS* is
Fredholm, and RS* is continuous on L2[a, b\. Thus, the theory of Section 3
obtains, and the linear operator

K: 3>{T) X 9{S) c L2[a, b] X L2[a, b] -» L2[a, b] X L2[a, b]
given by

K(v, u) = (Ru + Tv, Su - u)
is closed, densely defined, 1-1, and onto L2[a, b] X L2[a, b].

For the Sobolev space H"[a, b] we have the norm
[ n 11/2

M - - LII"O)II
.7 = 0 J

introduced in Section 2, as well as the equivalent norm

INI«-i-.6] = "LII«O)IU+II«(1I)I|.
7-0

Let Y = L2[a, b] X L2[a, b] carry the natural product L2 structure introduced in
Section 2, and let 2>(K) = 3)(T) X 2>{S) carry the product Sobolev topology
induced by the norm

\\\(v,u)\\\ = \ \ v \ \ m + \ \ u \ \ n .

Then 2{K) is a Banach space under the product Sobolev topology, K is
continuous from 3){K) under the product Sobolev topology into Y under the
product L2 topology, and K~l is continuous from Y under the product L2

topology into 3>{K) under the product Sobolev topology. Thus,

and

For each s e [a, b], each k = 0 ,1 , . . . ,m - 1, and eachy = 0 ,1 , . . . ,n - 1 we
define linear functional

^"ks: Y -* R, \"JS: Y -* R,

through the equations
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where

P1(u,u) = v a n \P2(u,u) = u

are the usual coordinate projectors. It follows that if 3>{T) and 2{S) carry their
Hm and H" Sobolev topologies, respectively, then \"ks and X"JS are both continuous
linear functionals on Y with its product L2 topology. As such K-'ks and A^ have
representors or generalized Green''s functions

^*, ~ W,,9k?)eX* x a n d %u
t = (9j?,9j?)eXX.X (4.1)

satisfying

fory e rand K'ly = (v, u) e 2(K) = 9{T) x 9{S).
Choose

&?, ( * £ , « £ ) ( ) and
such that

"•Sjs ^js \ **-8js ^ J 6js ' °Sjs Sjs ) • j

Thus,

KSks + iSks ~ ^ks> I
Co"2 — avX = C0v2 I^Sks Sks ^ks ' /

and

»p«2 + fa"1 = <8ul \
Kgjs + Igj. Vjs . 1
o u2 «1 ^ « 2 j V • I

Take z = (v, u) e Sl{K), so u e ^(T) and w e ^(5), and set/ = Kz e y, so
z = (D, W) = A""1 .̂ From (4.2) and (4.3) we have

+ Tgtl
s, Ru + Tv)

and

u^(s) =(Kg»s,Kz)

= («§;/ + Tg£, Ru + 7b) + (Sg«s
2 - gfs, Su-v), (4.5)

valid for all z = (v, u) in^(K) = 9{T) X
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Let Gs(t) = G(s, t) be the Green's function associated with L, and let

GJS(t) = -^G(s,t). (4-6)

Take any u e 2){L) = 3>{TS) c ^ (S) , and let i; = S u e 2i(T). From (4.5) we
obtain

gj1/ + 7gj*, Lu) = (GJt, Lu). (4.7)

Since ̂ ( L ) = X, we must have

i?g;2 + Tg* = G,,. (4.8)

Setting u = 0 in (4.7) we see that for each v e 3){T)

0 = {Rg»? + Tg£, Tv) +(5g;2 - g,-\ -«) .

Hence, /Igj1/ + Tg^1 e ^(T*) with

T*{Rg»s
2 + Tg$) = Sg;s

2 - g^1. (4.9)

Combining (4.8) and (4.9), we have GJS e ^ ( r*) with

The error analysis of subsequent sections requires sufficient regularity of &£ to
invoke the error estimates of Section 2. Analysis of the smoothness of @"s starts
with that of GJs. In particular, it is well known that for each j e [a, b] and for
each 0^j^m + n — 1

GJS e Hm+"->-1[a, b] n C°°[a, j ] n C°°[s, ft]. (4.11)

If we compare (4.4) to (4.8) and (4.10), then we see that

I 9" = GJS e Hm+"-^[a, b] n C" [ f l , J ] n C - b , 6 ] , 1

\ gry;
2 = T*G, , e / / " ^ - ^ a , fc] n c°°[a, 5] n c°°[5, b].j

Next, we apply our earlier methods to (4.8) and (4.10). In particular, apply
to (4.10) to obtain

Rg]} - RSty} = RS*T*GJS,

and subtract this result from (4.8) to yield

( r + RS*)g£ = 7gft = Gjs - RS*T*GJs.

Clearly

Gjs - RS*T*GJS e Hn~>-X\a, b] n C°°[fl, 5] n C°°[5, 6].

We know that gfs e ^ (T ) c 7/m[a, fc] c Hx[fl, ft], so î S+g;,1 e Hx[a, b] and

g* f=Hl[a,b],
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which yields g£ G Hm+1[a, b]. Similarly, gfs e Hm+1[a, b] gives gj} G H2[a, b],
so RS*g£ G i/2[a, 6] and

Tg£ = GJS - RS*T*GJS - RSty} e i / 2 [a , A],

which yields g"j G Hm+2[a, b\ Continuing this bootstrap argument, we conclude
that

gui s »«+—y-i[B> &j n c « i a , j ] n c~[*, ftj. (4.13)

Also, from (4.10), (4.12), and (4.13) we get

gui e H2»-j-i[at b] n c « j f l > , ] n c=c[5) A]_ (4 14)

Summarizing these results, we obtain

THEOREM 4.1. For alls G [a, ft] andj = 0,1, . . . ,n - 1:

g^1
 G Hm+"-J-1[a, b] n C°°[a, s] n C°°[J , ft]

These regularity results are critical to the analysis of convergence of SLS and
Splitting Collocation procedures. Moreover, this same error analysis requires
uniform boundedness of the derivatives (g"})(p) and (g,"2)(/l) for s e [a, ft] and
for p = 0,1,2, To establish such uniform bounds, note that (4.12) implies

\Sjs > Sjs

Hence, from the definition of \u
Os we obtain

8${t) = \u
Ol{GJS, T*Gjs) = K-\GJS, T*GJS)\t

= {(GQt,T*G0,),(GJS,T*GJs)).

In particular,

8js2(t) = (Go,. Gj,) +(T*GOn T*GJS) (4.15)

for all t e [a, b].
Using (4.15) together with bounds on the derivatives of Gjs(t) and T*GJS(t), we

find that

sup |(^J,"
2)(/>)|oo = % < °o (4-!6)

for p = 0,1,2, Also, from (4.10) we have

» (4-17)
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for all / e [a, b], and upon combining (4.16) and (4.17) we obtain

= yP<

for p = 0,1,2, Thus, we have

T H E O R E M 4.2. Forj = 0 , 1 , . . . , « - 1 and for p = 0 , 1 , 2 , . . . :

= Y,<oo

and

where yp and yp are constants.

179

(4-18)

5. Error analysis for splitting least squares

Equations (4.1) and (4.2) yield the Green's matrix associated with the embed-
ding operator K. In particular, if K(v, u) = (£, TJ), then

Tu + Ru = | ,
-V + Sll = T),

and

,yO) Kf
The operators A"f, K"k

2, Kf, Kf2 are integral operators with kernels &£\s, T),
S?^2(5, T), ^,U 1(S . T)» and @ju2(s, r), respectively, where a «s s, r < 6. For exam-
ple,

Alternately,

[»<«(*), «<»(.)] = [<%, A-z), (9F;, J&)] (5.1)
forz = (v, u) e ^(AT).

Let z = (0, M) be the SLS approximate to z = (u, M) from yuXS?u where z
solves Az = (/,0). For 0 <y < n - 1 and 0 < k < w - 1 equation (4.2) yields

«W(j) - «(y)(5) = <^,", ATz - Kz) (5.2)

and

«<*>(j) - v(k\s) = <Sf ,̂ Az - Kz), (5.3)
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where u is the solution to the unsplit operator equation Lu = / and v = Su. We
want to estimate (5.2) in both the Lx[a, b] and L2[a, b] norms. By (4.3)
9« = Kg"JS, so

«<'>(*) - «<»(*) = (Kg»s, Kz - Kz).

Moreover, by (2.5)
/ VJ, tr-r — v?\ — c\
\ " T > - - - •"•«•/ "

for all \p G ^ X Sfu, and hence,

«^>(*) - uM(s) = {Kg»s - Kg;s, Kz - Kz) (5.4)

where gfs e ^ ^ x y , , satisfies

\Kg»s-Kg;s\=mm\Kg»s-K4,\.

From the Schwarz inequality applied to (5.4), we have

|«<»(*) - u^(s)\ < |Ag;, - Ag«| • \Kz - Kz\, (5.5)

with (5.5) valid for all s <= [a, b] andy = 0 , 1 , . . . , « - 1.
Now let^, = Sp(2w - 1, A, m - 1) O ̂ ( 7 ) and let

^ u = Sp(2n - 1, A, n - 1) n ^ ( 5 ) .

Letting z = (u, M) be the Hermite interpolate to z = (i>, M) from^, X yu, we have

I-Kz - A2| < |ATz - Kz\

= {\\T(v -o) + R(u - u)f + \\S(u - 5) +(5 - , ) | | 2 } 1 / 2

*0{\\u-u\\H + \\D-U\\m} (5.6)

where/8 = {(||r|| + P | | ) 2 + (1 + \\S\\)2}^2.
Now assume/ e H£k[a, b] where 0 < A: < w. The theory of ordinary differen-

tial operators implies

u e i/A
m+nA:[«, *] (5-7)

and

yG//A
m*[a,Z>]. (5.8)

Throughout the sequel let y denote a generic constant independent of u, v, and h.
The error estimates of Theorem 2.2 imply

||UO) _ jjO)|| ^ Y | | u (» + » + «)||A« + » + a-y

for 0 < 7 < m + /i + o where a = min{ A:, n — m }. In particular,

II" - «||» < Y||«("I+'1 + <'>||/im+o (5.9)
with

a = min{A:, n — m). (510)
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Similarly, Theorem 2.2 implies

\\VU) - gO>|| ^ yWo^ + ̂ m + r-j (5 U )

for 0 < j; < m + T where T = min{m, k) = k, and hence,

Ik " v\U < y\\v<m+kW- (5-12)
Combining (5.6), (5.9), and (5.12), we have

LEMMA 5.1. / / / e Hg-k[a, b], then

where /xu < ymax{h"A, B), A = \\u(">+"+'^l^"-"'})\\} p = m + min{A:, n - m)

-k,andB = ||u(m+n+*)||.

We next estimate \Kgfs - Kgfs\ where gfs e Sf0 X Sfu. Due to the regularity and
uniform boundedness properties of g"s given in Theorems 4.1 and 4.2, it turns out
that these estimates are order of best approximation when s e A . In particular,
for s G A Theorem 4.1 gives

g"l^Htk[a,b] (5.13)

and

gp e J/A"-'[a, ft] (5.14)

for each j = 0 , 1 , . . . , « - 1 and for all A: and / = 0 ,1 ,2 , . . . . Let f;, = ( | £ , f ; 2 )
be the Hermite interpolate to g"s f r o m ^ X <$"„. We know that

|Ag;f - KgJs\ < |Ag;, - Kgjil • (5-15)

Letting k = m and / = « with i e A , Theorem 2.2 combined with (5.13) and
(5.14) yields

and

for 7 = 0 , 1 , . . . , / ! - 1, for p = 0 , 1 , . . . , 2 m , and for ̂  = 0 , 1 , . . . , 2 n . Invoking

Theorem 4.2, we have

and

Ik? - *"/L < y • y2nhn (5.17)
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for j; = 0, l,...,n - 1. Combining (5.15), (5.16), and (5.17) we have (recall
m < n)

L E M M A 5 .2 . For each s e A andj = 0 , 1 , . . . ,n - 1,

Combining Lemmas 5.1 and 5.2 and (5.5), we have

T H E O R E M 5.3. (Superconvergence at spline knots). If u = L'lf e H™+"-k[a, b]

with 0 < k < m, then for each st e A, / = 0 , 1 , . . . ,N, and each j = 0 , 1 , . . . , « — 1

Combining Theorems 5.3, 2.2, and 2.3 with Markov's inequality (see [25, 15,
16]) yields the following global error estimates for SLS.

THEOREM 5.4. Ifu = L~lfe H?+nk[a, b] with 0 < k < m, then

forj = 0,1,. . . ,w + k.Ifu = L-lf& C^ + n-k[a,b]with0 < k < m, then

forj = 0,1, ...,m + k.

\\uU) - u

6. Splitting collocation

We now consider the approximate solution of Lu = f via collocation schemes
applied to the split equations (1.3) and (1.4). To simplify the analysis of this
section, we assume the coefficients of L are in C°°[a, b], although much weaker
conditions will also suffice. To describe the method, we start with the partition A:
a = t0 < tl < • • • < tN = b of [a, b], where /, = .s, in our previous notation. On
each subinterval /, = [t,_x, tt] of A, let

be the Gauss points of /, and let { wt
k, wk

2,..., wk
k } be the weights associated with

k th order Gaussian quadrature on /,. Then

' q(t)dt- L^
',-1 y = l
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whenever q is a polynomial of degree 2 k — 1. Well-known bounds on the error in
such Gaussian quadrature are given by

(6.1)

,_1; r,]

' , - 1

where h = max{(,- t,^: i = 1,2,..., N } , D2k = d2k/dt2k, and q e i
for each/ = 1,2,...,JV.

To solve Lu = / by splitting collocation, we seek (o, u) e ^ x •$"„ solving the
linked collocation system

= /('"). (6-2)

!) = 0, (6.3)

where 1 < / «% vV, 1 <y < m, and 1 < / < n. In order that (6.2) and (6.3) be well
defined, we assume that/ e Q ^ a , b] for some integer /: > 0.

We shall prove that the linked system (6.2)-(6.3) is uniquely solvable by
showing that splitting collocation is equivalent to splitting discrete least squares.
To this end we introduce the pseudo-inner product and norm on Q00[a, b] X

O.Or _ J.1 = £ - 0

(z, Z) , = (v, V)m + (u, U)n, |zU = {{z, z). ,

where z = (v, u) and Z = (F, t/), and where ( , ) m , \ \m, ( , >„, and | |n are the
pseudo-inner products and norms

«, V e CA°-0[a, 6], and

N m

i - 1 7 = 1

N n

L r^ n ( n

L^ tj \ ij

i - 1 7 - 1

u, U e Q00[a, 6]. The method of discrete splitting least squares seeks
= ^solving

\Kz - j , | . = min \Kw - y\. (6.4)

where y = (/, 0).

THEOREM 6.1. If m = n or p < n, then equation (6.4) is uniquely solvable for all h
sufficiently small.
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PROOF. Existence of z solving (6.4) is guaranteed by simple finite-dimensional
arguments. To show uniqueness, it suffices to prove \Kz\+ = 0 implies z = (0,0).
Letting z = (v, u) <E S?u X Sfu, we have

| \Kz\2 - \Kz\l\ = | \\Tv + Ruf - \Tv + Ru\l + \\v - Suf -\v - Su\l\. (6.5)

The right-hand side of (6.5) is the sum of the terms

||7T>||2-|7D|2W> (6.6)

| | / ? M | | 2 - | / ? M | L (6.7)

2(Tv,Ru)-2(T0,Ru)m, (6.8)

and

\\Su-v\\2-\Su-v\l. (6.9)

The most difficult term to estimate is (6.7). With this in mind we analyze this
case in some detail and leave the other terms to the reader. Let y, yx,... be
generic constants independent of u, v, and h. Applying the error estimate (6.1) to
(6.7), we find

N

j ' 1 \Dlm[Ru]2\dt

2m
1 E , )\\a\\

Noting that Dkii = 0 for all k > 2n and invoking Schmidt's inequality [2, 15,16],
for m = n we obtain

\\\Ruf -^u

YsPIII
For m < n and p < n we must carefully estimate the quantities

/!21|«||0,2m+,,-/||&||0,/, + /

by considering the cases: (i) 2m + p - / «s n with/? + / < n, (u) 2m + p — I < n
with p + I > n, (iii) 2m + p - I > n with /> + / < « , and (iv) 2m + p — I > n
with p + / > n. We carry out case (ii), omitting the other cases which are similar.
Assume 2m + / > - / < n with/? + I > n. Clearly
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If n < p + I < In - 1, then

ll"l|o,p+/ = ||w||«.p+/-n <

while if 2/i - 1 < p + /, then

II&I|O., + / = | | f i | k - l < Y^-C-V

Thus,

185

ll"ll
or

yh\\\z\\\2 (6.11)

for 0 < / < 2m. Similar arguments establish (6.11) in the remaining cases.
Combining (6.10) with (6.11) gives

\\\Ru\\2-\Ru\

The same argument yields

< yh\\\z\\\2.

\\\Tv\\2-\Tv\2
m\^yh\\\z\\\2,

\(Tb,M)-(Tb,Rii)m\zyh\\\z\\\,

\\\Su- v\\2 -\Sii - 0|2| <

Combining (6.12)-(6.15) with (6.5), we see that

But (6.16) implies

<yh\\\z\\\2.

VoPlf

where y0 = 1/||A"1!!2. It follows that if \Kz\* = 0, then

for h sufficiently small. Thus, z = (0,0). Q. E. D.

COROLLARY 6.2. Form = norp < n and for all z G ^ x S?u,

\Kz\i > (y0 - yh)\\\z\\\2.

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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PROOF. This inequality was established in the proof of Theorem 6.1. Q.E.D.

To connect discrete splitting least squares to splitting collocation, note that if
z = ( v, u) G ^"solves (6.2) and (6.3), then

0 = | « 2 - y\* = n™ I*" - y\* = 1*2 - y\-

In particular, given the existence of z, for all h sufficiently small z = z and is
unique. Moreover, whenever the homogeneous collocation equations {i.e. / = 0 in
(6.2)) are uniquely solvable, the nonhomogeneous linked collocation equations are
uniquely solvable and the linked collocation matrix is nonsingular. Thus, we have
proved

THEOREM 6.3. For m = n or p < n the linked collocation equations (6.2) and (6.3)
are uniquely solvable for all h sufficiently small. Moreover, in this context the
splitting linked collocation and splitting discrete least squares approximates to
Lu = fare identical.

Just as in split least squares, the split collocation error u(j) - u^ experiences
superconvergence at spline knodal points. In proving these results we will use

LEMMA 6.4. Let u = £ " J / G C"+n-m+"[a, b], let z = (v, it) be the unique split
collocation approximate to z = (v, u) with v = Su, and let z = (v,u) be the
Hermite interpolate to z = (v, u). Then

\\\2-z\\\<yh"\\\u\\\oam + 2n,

where y is a constant independent of u, v, and h.

PROOF. Corollary 6.2 and (6.2)-(6.3) give

p - z||| < y,\Kz - KzU = Yxltfz - KzU. (6.17)

For the right-hand term we have

\Kz - Kz\i =\Tv - Tv + Ru- Ru\2
m +\v - D + Su - Su\l

n m

= E Z ^ 2

1 - 1 , = 1

1-1 y=i

||7V; - relU +\\Ru - Ru\U]\b - a)

[\\v - v\\^ +\\Su ~ SuUYib - a),
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where the quadrature weights sum to the interval length. Since u e
C™+"-m+"[a, b], the above inequality coupled with Theorem 2.3 yields

\Kz - Kz\* < y2/im|||M|||o,2m+2n. (6.18)

The result follows from (6.17) and (6.18). Q. E. D.

THEOREM 6.5. (Superconvergence at spline knots). Let u = L"1/ e CA
m + "'2"[a, b]

with m = n or p < n. Then for each s e i andj = 0 , 1 , . . .,n — 1:

fv/i2m|||u|||o,m + 3« form = n,m = n - \ ,
\uo)(s) - U O ) ( J ) | < < orm+p^n,

U/imin{2m'm+"-p}|||«|||o,m+3n form+p>n.

PROOF. For s e i andy = 0,1 n - l w e note that

(Kg»s,Kz-Kz).=0

by (6.2) and (6.3). Hence,

«<'>(*) - u^(s) = (Kg;s, Kz - Kz) = £,(,), (6.19)

where

£,(*) = E.jis) + E2J(s)

is the quadrature error. Specifically,

E^is) = (Tg% + Rg£, Tv-Tv + Ru- Ru)

- (Tg£ + Rg£, Tv- Tu + Ru- Ru)m (6.20)

and

E2j(s) = (gf, - Sg;s
2, v-v + Su-Su)

- (g,"1 - SgJs
2, u-v + Sii- Su)n. (6.21)

We must bound E^^s) and E2j(s) for j e A . Invoking Theorems 4.1 and 4.2
together with (6.1), we have

2m , .

\Eij{s)\ < Yi*2m E / / l ^ ' ^ - 7D + ̂ « - ^« )k '
/=0 V ' /•'a

< Yl ' ' 2 '"!!!^ - ro||0,2m + | |«« - /J6||0J«} (6.22)

< y3/l2m{||u - fi||o.3m +| |« - il\\o,2m+p}.

Similarly,

M * ) | < Y«A2"{lk - 0\\o,2n +\\u - u\\o,3n). (6.23)
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We first bound the terms \\v — 0||o k where k = 3m or k = 2n. Take any integer
k > 2m — 1. Let v e Sfu be the Hermite interpolate to v. Observing that Su = v
and invoking Schmidt's inequality (see [15,16]) together with Lemma 6.4, we have

h - 0||o,/t ^ ||i> - y||o,* + \\o - 0\\o,k

«£ Ysll^llo,* +\\U - v\\0,2m-l

For k = 3m and k = 2n it follows that

||« - £||o,3m < y9lll«ll|o,2m + 2n, (6.24)

while

\\v - v\\0,2n < Yiolll«ll|o,«+3». (6.25)

Combining (6.22), (6.23), (6.24), and (6.25), we have

K , ( * ) | < /'2m[Y1illl«lllo,2m+2n + Y3||tt - U\\o,2m+P] (6.26)

and

\E2J(s)[< /i2n[Y12lll«|||o.m + 3n + Y4||« - u\\o,3nj. (6.27)

Tight bounds on the terms \\u — ii\\Otk for k = 2m + p or k = 3« are more
difficult to obtain, and the estimates of this theorem divide into three cases: (i)
m = n or m = n — 1, (ii) m + p < n, and (iii) m + p > n. The special case when
3i(S) = L2[a, b] is covered in the next theorem. Before going into the cases, note
that if u e S?u is the Hermite interpolate to u, then invoking Schmidt's inequality
and Lemma 6.4, we have

||" - "||o,3/i < ||« - "||o,3n + ||" - «||o,3n

< Yl3lll"ll|0,3« + ||" - «||o,2n-l

< Y13lll"l||o,3n + yuh
l-n\\u - u\\n (6.28)

Thus,

h2n\\u - w||0,3n < Yi5^'"+"+1|ll«lllo,m+3n, (6.29)

and combining (6.27) with (6.29), we have proved

|*M*)|«YAm+"INI|o.«+3«. (6-30)
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To estimate the term \ElJ(s)\, we must bound the term hlm\\u — u\\0,2m+p-
Starting with the case m = noTm = n — 1 and invoking (6.28), we have

\\U - U\\o,2m+p < | |« - M||o,3n < Yl5^m~" + 1|ll"ll|o,m + 3n

for h < 1. Thus,

h2m\\u - u\\o,2m+P < 7/i2m|||M|||o,m + 3n , m = rtorm = « - l . (6.31)

Next , observe that

\\u - u||o,2m+/> < \\u — M||o,2m+/> + ||« — w||o,2m+/>

< Yl6lll"ll|0.2«+/' + II" - «||o,2m+p. (6.32)

Invoking Schmidt 's inequality, we have

||u — M||o,2m+p = ||W — it\\o,n + m+(m+p-n)

< Y17/l"
m||u — u\\o,n+en+p-n). (6.33)

If m +/> — « < 0, then from Lemma 6.4

||« - u\\o,n+(m+p-n) < ||« — «||n < |||z - z||| (6.34)

Combining (6.32), (6.33), and (6.34), we have

h2m\\u - u\\o,2m+p < Y^2m|||«ll|o,2m + 2n for w + p < «. (6.35)
On the other hand, if m + p > n, then

fl""\\u - u\\o,n+Cn+p-n) < y19h"~P~2m\\ti ~ tl\\n

< yl9h
n-P-2m\\\z - z\\\ (6.36)

< Y2o^""/'""1|ll«ll|o,2m + 2n.

Combining (6.32), (6.33), and (6.35), we find that

h2m\\u - «||o,2m+, < yAiniI1{2"-"l+"-'}|||«|||o^«+2B (6.37)
for m + p > n. Equations (6.26), (6.31), (6.35), and (6.37) yield

(Y^2m|||"ll|o,m + 3« for m = n, m = n - 1,

or m + / > < « , (6.38)
y/,mm{2».™ + B - , } | | | M | | | o _ m + 3|f f o f m + p > n

Inequalities (6.30), (6.38), and equation (6.19) prove the theorem. Q. E. D.
In the event S is invertible, we obtain another condition under which supercon-

vergence is order h2m. Specifically, we have

THEOREM 6.6. Let u = L" x /e Qm+n>2"[a, b] with m = n or p < n. Assume

= L2[a, b], so that S is invertible. Then for each j e i andj = 0 , 1 , . . . , / ? - 1 :

\u^(s) - u^(s)\^ yh2m\\\u\\\o,m+3n.
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PROOF. S i n c e ^ ( S ) = L2[a, b], 0 e 9t(S). Let Sw = v, so that

Sw = v and Su = v.

Since v e CA
WI*[a, b] for all A: > 0, it follows that

while

u e Q " + " 2 " [ a , 6]

by assumption. Moreover, for/ = 1,2,... ,̂ V and7 = 1,2,...,«

Thus, u G ̂  is the collocation approximate to w. From Lemma 5.2 of [15] for
k ^ 1m + n, we have

Y2 Wlo,*

Y3p|||o.*-»

< T3 [ilk ~ O|||o,2m-1 + | |

< V3ll|f - e|||o,2m-l + Y4lll«ll|o>2m + n. (6.39)

From inequality (6.25) of Theorem 6.5 we have

| |k-e | | |o ,2n<Y5 |N| |o ,m +3n . (6.40)

Combining this with (6.39) yields

||H> - &||o,* < r6|||«|||o,m + 3n (6-41)

f o r all k ^ 2m + n.
F r o m e q u a t i o n s (6 .19) , (6.26), a n d (6 .27) of T h e o r e m 6.5 , a n d for e a c h s e A

a n d y = 0 , 1 , . . . , « — 1, w e have

|«<»(,) - «<»(,)| < 1^(^)1 + \E2j(s)\, (6.42)

where

| ^ i y ( * ) | < A2m[Y7lll«lllo,2m+2n + YgHa - &||o>2m+n] (6.43)
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and

\Eij{s)\< /'2"[Y9lll»lllo,m+3n + Y1OII" - filloj-]. (6-44)

From (6.41) with k > 2m + n

||w - w||o,* < ||" - H|o,* + llw ~ " Ik *

< II" - VV-Jlo.A: + Y 6 | H | | o , m + 3 n

= \\S-l(v-v)\\0,k + y6\\\u\\\0,m+3n

< V?lk - <>\Wk-n + Y6|||M|||o,m + 3n. (6.45)

Combining (6.45) with (6.40) for k = 2m + n or k = 3/i, we have

||" - M||0,2m+« < Y8|||M|||o,m+3n (6.46)

and

||" - "||o,3« *S Y9|||«|||o.«+3». (6-47)

Equations (6.42), (6.43), (6.44), (6.46), and (6.47) imply

\u(i\s) - u ( » (* ) | < Y/i21l|w|||o,m + 3«. Q.E.D.

Coupling Theorems 6.5 and 6.6 with standard approximation theory yields

THEOREM 6.7. Let w = L'1/ e Q"+"'2"[a, b] with m = n or p < n. If m = n,
m = n — 1, m + p < n, or S is invertible, then for each j = 0 , 1 , . . . ,min{« —
1,2m}:

| | « w - f i w ) IU<YA 2 -^ | | | i i | | | o . M + 3 B . (6.48)

If m + p > n with m # n, m =t n — 1, and 9i(S) =£ L2[a, b], then for each j =
0 , 1 , . . .,min{n — 1,2m, m + n — p):

||u<'> - fi^lU < Y/>min{2m'm+"-/>)~1l"lllo,m + 3,,. (6.49)

REMARK. The case m # n, m ¥= n - 1, and ^ ( S ) ¥= L2[a, b] with m + p > n is
awkward. We are unable to establish the optimality of (6.49) and its superconver-
gence analogue. One suspects superconvergence at the rate h2m and (6.48) should
obtain in all cases. The Moore-Penrose generalized inverse of S in Theorem 6.6 is
a logical tool for trying to prove this. The mathematics of such an argument is
quite intricate and we did not attempt it.
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