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NOTE ON A SUBALGEBRA OF C(Z) 
BY 

L. D. NEL AND D. RIORDAN 

C(X) (resp. C*(X)) will denote as usual the ring of all (resp. all bounded) con
tinuous functions into the real line R. Define C*(X) to consist of a l l / e C(X) whose 
image M(f) in the residue class ring C(X)jM is real for every maximal ideal M in 
C(X). Then C* shares with C* the property of being an intrinsically determined 
subalgebra of C. The compactification corresponding to C* (as uniformity deter
mining subalgebra of C*) is thus also an intrinsically determined one. We show 
that this compactification is well known and "natural" in the cases of several 
elementary spaces X. Some topological characterizations of C*(X) are first ob
tained. For notation and background information we refer to [1]. All spaces are 
assumed completely regular. 

The straightforward proof of the following proposition is omitted. 

PROPOSITION 1. For a function fe C(X) the following are equivalent. 
( l ) / e C # ( I ) . 
(2) Every z-ultrafilter on X has a member on which fis constant. 
(3) For every z-ultrafilter %onX the family /*2t of all closed sets in R whose pre-

images under f belong to 51, is again a z-ultrafilter. 
It is not difficult to verify that C*(Z) is a subalgebra of C*(X) which is also a 

sublattice. It need not be uniformly closed but is closed in the m-topology. We now 
proceed to obtain another characterization of C#(X) which is useful in special 
cases. 

LEMMA. Let D~{dn:nG N} be a C-embedded copy of N in X. There exists a 
neighbourhood Wn of dnfor each n such that for every zero-set Zn <=• Wn and for 
every M <= N,\JmeMZm is a zero-set. (Hence in a Gb-space every C-embedded copy 
of N is a zero-set). 

Proof. There exists ueC(X) such that u(dn)=n. Put Wn={x:\u(x)—n\<%} 
and let Zn be any zero-set contained in Wn. Put Yn~{x:\u(x)—«|>f}. Note 
that Zn is disjoint from Yn and Wm <= Yn for all n e N and m^n. 

We can choose a nonnegative hn e C(X) which has the value 0 precisely on Zn 

and the value 1 precisely on Yn. Since each point x has a neighbourhood (e.g. 
{j:|w(y)~w(x)|<l}) on which all but finitely many hn have the same value, it 
follows that the function infmeikr hm belongs to C(X) and we have Z(infmeM hm) = 
UmeM^m as required. 

PROPOSITION 2. fe C*(Z) if and only if fis bounded andf[D] is closed for every 
C-embedded copy of N. 
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Proof. Suppose D is a C-embedded copy of N such that clf[D]—f[D] contains 
a point r. Choose yne D(ne N) such that \imnf(yn) = r and put Vn= 
{x:\f(x)—f(yn)\<lln}. Choose Wn to be a nbhd of yn as described in the above 
lemma. Then Zn—Vn c\ Wn is a zero-set «6M of j n such that Am=\Jn>mZn is a 
zero-set for each m. The family {Am:m e N} has the finite intersection property, so 
there exists a z-ultrafilter Z[M] to which each Am belongs. For any e > 0 we can 
take m so large that 0<\f(x)-r\<\f(x)-f(ym)\ + \f(ym)-r\<e holds for all 
xeAm. It follows that M(f-r)=M(f)-M(r) is infinitely small [1, Ch. 5] so 
M(f) cannot be real. 

To prove the converse, t a k e / e C*(X) and suppose that Mp(f) fails to be real 
for some maximal ideal Mp corresponding top e fSX. Since Mp is hyper-real, there 
exists g G C(X) with \Mp(g)\ infinitely large. At the same time \Mp(f)—fp(p)\ is 
infinitely small but positive. Hence for each ne N there is a neighbourhood Un 

oî p such that 

0<\f(x)-f%p)\<-<n<\g(x)\ 
n 

for all x G Un n Z. It follows that there exists a sequence (#n) in Z such that 
g(xn) is strictly increasing to co,f(xn)->ffi(p) while/(xn)7^/^(p) for all n. We con
clude that D={xn:n e N} is a C-embedded copy of JV [1, 1.20] and tha t / [D] is 
not closed. This completes the proof. 

We now turn to some special cases. The C-embedded copies of N in any space X 
are formed by sequences (xn) satisfying the condition h(xn)->co for some h e C(X). 
This condition reduces in the case X=R to the requirement that (xn) tends to ± oo ; 
in R2 it is equivalent to saying that the distance from xn to 0 tends to oo ; in Q it 
becomes (xn) tends to ±oo or to an irrational limit; in N it is automatically 
satisfied. Using Proposition 2 we conclude easily that C*(JR) consists of a l l / which 
have a constant value on {x:x<a} and on {x:x>b} for some a, b e R. It is not 
difficult to verify that the compactification determined by C^(R) is the extended 
real line. C^(R2) consists of al l /which are constant on the complement of some 
compact set; the one point compactification is determined in this case. Both C*(g) 
and C^(N) consist of functions which attain only finitely many values. Any two 
disjoint closed sets in Q (resp. N) have disjoint open-closed neighbourhoods and 
so they can be separated by a function in C*. The corresponding compactification 
can be verified to be /?g (resp. jSiV). 

We note in conclusion that the compactification [0, 1] of the space of rational 
numbers in this interval appears to be a difficult one to describe intrinsically. 

REFERENCE 

1. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, N.Y., 1960. 

CARLETON UNIVERSITY, 
OTTAWA, ONTARIO 

https://doi.org/10.4153/CMB-1972-108-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-108-4

