
J. Austral. Math. Soc. Ser. B 40(1999), 513-524

SECOND-ORDER TIME DISCRETIZATION WITH
FINITE-ELEMENT METHOD FOR PARTIAL

INTEGRO-DIFFERENTIAL EQUATIONS WITH A WEAKLY
SINGULAR KERNEL

CHANG HO KIM1 and U JIN CHOI2

(Received 8 July 1996; revised 23 June 1997)

Abstract

We propose the second-order time discretization scheme with the finite-element approxima-
tion for the partial integro-differential equations with a weakly singular kernel. The space
discretization is based on the finite element method and the time discretization is based on
the Crank-Nicolson scheme with a graded mesh. We show the stability of the scheme and
obtain the second-order convergence result for the fully discretized scheme.

1. Introduction

We consider the time discretization method for the following partial integro-differential
equation with a weakly singular kernel:

= f K(t-
Jo

u,-s/u{i)-\ Kit -s)@u(s)ds+f(x,t), xeQ, for t > 0,
Jo

M = 0 , on 3£2, t > 0, (1.1)

u(x, 0) = uo(x), in £2,

where s/ is a linear positive self-adjoint elliptic operator, 3) is a general partial
differential operator of second order with smooth and time-independent coefficients
and K is a weakly singular kernel satisfying

I if1'(01 < Q r ' - " with 0 < a < 1, for t > 0, i = 0, 1.
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514 Chang Ho Kim and U Jin Choi [2]

Furthermore, throughout this paper, £2 is a sufficiently smooth domain in W, d > 1
and we assume that / is sufficiently smooth. Problems of this nature arise in several
areas, such as the theory of linear viscoelasticity and heat conduction in material with
memory; see, for example, [8].

The numerical method considered in this paper is obtained by discretizing in space
by the finite-element method, followed by a finite difference and quadrature scheme
for the time discretization. For the numerical solutions we assume that we are given
a family {Sh} of finite-dimensional subspaces of //0' = //o

l(f2) such that

inf{| |u-xll+/*Hi>-;dl.}<C/t2 | |v| |2 , Vv€H2nH>, (1.2)
xeSh

where || • || is the norm in L2 - L2(S2) and || • ||, is that in Hs = HS(Q).
Asa starting point for the discretization of (1.1), we define the semi-discrete solution

of (1.1) as the function uh : (0, T] -*• Sh such that

H,X)= f
Jo

(«/•.(. X) + A(uh, x) = / K(* - s)B(uh(s), x)ds + (f (?), x), ^X e Sh, t > 0,
Jo

«*(0) = ui», (1.3)

where (•, •) is the inner product in L2, A(-, •) and B(-, •) are the bilinear forms on HQ
associated with the differential operators s/ and 08 and where uOh is an appropriate
approximation in Sh of initial data in (1.1). In [2], we can find that for each T > 0,
the error estimate of (1.3) is

- u { t ) \ \ < C T h 2 \ \ \ u 0 \ \ 2 + j \ \ u , \ \ d s \ f o r t < T .

The time-discretization of (1.1) is very interesting because of the nature of "memory
effect". The time discretization methods are derived essentially by replacing the
derivatives in (1.3) by a difference quotient and using a quadrature rule for the integral
terms. The difficulties involved in such time discretization are that all the values of
u(t) have to be retained, causing great demands for data storage. To overcome this
difficulty, higher-order quadrature formulae or quadrature based on the use of sparser
sets of time levels were proposed in literature such as [6, 7] and [9] for partial integro-
differential equations with smooth kernels. In the case of weakly singular kernels, the
regularity of the solution with respect to time is limited, which makes higher-order
quadrature formulae useless, as well as quadratures based on the use of a sparser set
of time levels. In fact, for sufficiently smooth data u0 and / , there exists a unique
solution of (1.1) satisfying the following regularities (see [2]):

u € C([0, T]; H2 n //J), u, € C([0, 7"]; L2) n L,(0, T; H2 n //0'),

H, (€L,(0 , r ;L2) .
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Formally the solution of (1.1) satisfies

«„ = s/u, + K(t)BSu{0) + K(t- s)8utds+f,r
or

l«;/l 5 CKt~a\3Su(0)\ + more regular terms with respect to /.

In advance, we assume that the solution of (1.1) satisfies

II"mil < Rat'" and ||w,,||2 < Rat~
a for some /?„ > 0. (1.4)

Furthermore, it is an easy consequence of (1.4) that

II"nil < C/" '"" for some C > 0. (1.5)

In this paper, we consider the graded mesh for the discretization of (1.3) (see also

[1] and [3]). Given M e N, let n M := {/„ tM\, (0 = /„ < / , < • • • < tM = T),
denote a partition of the interval (0, T\. With a given partition n M of [0, T] we
associate the quantities

k := max A,,,

where kn := tn — tn_t (n = 1 , . . . , M). If the mesh points | / n ) ^ 0 are given by

M

then F1M is called a graded mesh; in the present context, the so-called grading exponent
r € OS will always satisfy r > 1. Let U" 6 5/, be the approximation of the exact
solution of (1.3) at time /„. The time discretization considered here is based on the
backward-difference quotient d,Ua = (Un - U"~])/kn. The integral term then has
to be evaluated by numerical quadrature from the values of the UJs, but since the
integrand is singular, we use product integration. We approximate <p in ./„(</>) =
fa K(tn — s)<f>(s)ds by piecewise functions

se(tj,tJ+l], \<j<n-2, (1.7)
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where we denote that f,_i/2 :— (tj + f,_i)/2, <pj-i/1 := ( ^ + 4>>~X)I2 and Jty_1/2 :=
(kj + kj-i)/2. Thus we write the quadrature for Jn{<j>) as

;=o

for n>2

and

where

= [' K(tl-s)ds<p°,
Jo

K(tn-s)ds if j.<n-2,

-5 ) -^— — ds if j=n.— l,

— s) —— ds if j — n .
kn-i/2

Our fully discretized scheme based on the Crank-Nicolson scheme is now defined
by

(3,IT, X) + A(U"-l/2, X) = q"-l/2WU, X)) + (fn~l/2, x), n>2,

(d,U\ X) + A(U\X) = q\B(U, X)) + (f\ X), 0-8)

where

qn-l/2(B(U, X)) = j {q"iB{U, x)) + gn~l(B(U, x))} •

The purpose of this paper is to show stability and to obtain error estimates for the
scheme (1.8).

2. Stability and convergence

We show stability and obtain the error estimates for the fully discretized scheme
(1.8). The following three lemmas from Kim and Choi [5] are required for our analysis.

LEMMA 1. If the grading exponent r > 1, then we have the following estimates.
There is a positive constant C dependent on T and r such that
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LEMMA 2. For each e > 0, there is a constant C( such that

n /-I n n-1 I

1=1 j=0 1=1 1=0 7=0

Also we need the following discrete version of the Gronwall lemma.

LEMMA 3. Let [wn] be a sequence of nonnegative real numbers satisfying

n-\

7=0

where fin > 0. Then there is a positive constant C such that

n-\

; = o

We recall that the bilinear form A (•, •) is coercive and bounded if there are positive
constants c0 and C\ satisfying

C O I | K | | ? < A ( K , « ) < C , | | « | | ? VueH2nH*. (2.1)

The following theorem is our conditional stability result for the fully discretized
scheme (1.8).

THEOREM 1. Suppose that k := max kn is so small that
<M

:= f
J0

n<M

\K(s)\ds<-^- for all n>2.

Then scheme (1.8) is stable, that is, there is a positive constant CT '•— C(T, r,y) such
that

f ° r » > i -
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PROOF. Letting U" = Un~l/2 for n > 2, U° = U° and f/1 = U\ (i) of Lemma 1
implies that

\q
l(B(U,<t>))\<Ck{-»\\U°\\}\\<l>\\u (2.2)

+ X\\B\\\\Un\\M\U, n>2.

Taking </> = U" for n > 1 in (1.8), we have

(2.3)

< ckn || fr ||, ] [ > - j r a*; ; r ii ^ ii, + K 11/ ""1/2 IIII ir II for « > 2.
[j=o J

Summing (2.3) from n = I to N and applying Lemma 2 with a suitable e, we obtain

n=l

It follows from Lemma 3 that

N f

| |/"-'/2|| max || f̂ ||.
n=l I n=2 J "-

Hence we have

|| I/"|| < max || [/"|| < Cr ( || ty°H +*, | | / ' | | + Y, ^ll/""'/2|l ) for 1 < Â  < M.

Next we derive the error estimate for the fully discretized scheme (1.8). For
the analysis, we introduce the "discrete Ritz-Volterra projection" Vh defined for an
appropriately smooth function u by

A«Vhu-u)(tn),X)=qn(B(Vhu-u,x)), V* e Sh for n > 0. (2.4)

We have the following two lemmas which state the error estimate for the discrete
Ritz-Volterra projection (2.4).
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LEMMA 4. Assume that k := max kn is so small that

A . : = / \K(s)\ds < —— for all n>2

and that u(t) € H2 D //„' a/id «(/) e C2(fi). 7/ien we have for Vh that

PROOF. Let p = Vhu — u and let Rh be the Ritz projection defined by

A(Rhu-u,X) = 0, VX € 5*.

It is a well-known estimate for Rh that

\\(Rhu - «)(r)|| + h\\(Rhu - ii)(r)||, < C/i2||«(0ll2-

Letting 0" = Vhu" — Rhu" under the definition of Vh, we have that with c0 > 0,

col |012 < A(9", 9") = A(p", 6") = qn(B(p, 9"))

;=0

or

(Co - A.||fl||)||p"||, < C\\Rhu" - un\\t + CT [
\j=o

Thus Lemma 3 implies that

/ ? ^ - ^ | | , < CrAsup||u'"||2.

In order to obtain the L2-estimate for p", we use a duality argument defined by

For each such <f>, we let * be the solution of

= <d in Q, * = 0 on
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Then, for x € 5A, we have from (2.2) that

(pn, <f>) = A(p", * ) = A(p\ * - X) + A(P", X)

= A(p", * - X) + q"(B(p, x—

, | |* -x| | , + Csup ||pi,

n-\

Take x = ^ A * and note that c o | |^" ' || < 1 is an easy consequence of (2.1) and thus
1 - A.||^**|| > \. Then we obtain that

n-\

\\pn\\ < Cftsup 11̂ 11, + CTT(n-jyakj-+
a
l\\p

J \\.

Thus Lemma 3 implies ||p"|| < Chs\ipj<n \\pJ \\u which completes the proof.

LEMMA 5. Under the assumptions of Lemma 4, we have for p = V/,w — u,

; = 1

PROOF. For the sake of convenience, we denote 8" = knd,p", 8° = p°, conj =
rnj ~ Tn_i,-_,, Wn = ^ n

= , \a>nj\ for n > 2, and Wx = Wo = 0. Then we obtain
directly from (2.4) that for all x ^ Sh,

n-l

q"(B(8, X)) + J2 OnjBipJ-1'2, X)

, X) + connB(p"-3'2, X) (2.5)

7=0

Taking 6" = 3,( Vhu" - Rhu"), we have with c0 > 0,

7 ; ; T
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Hence we get
n - l

II*" 111 < CTY^(n - y r ' t e l i a ' l l i + Cmax \\pi\UWn + CkJd,(Rhu
n - u")||,.

U

It follows from Lemma 3 that
/„ - . \

in — i}~akl~aW -\- W I(" J ) *,-+i " i T- " n I

+ CTh J2(n -rt-kft f||n,(*)||2rf5. (2.6)
j=0 J

We can easily verify that for fy > 0,

n=l y'=0 y=0 n=; + l y=0

Summing (2.6) from n = I to N and applying the inequality (2.7) and (ii) of Lemma
1, we have

With the same argument of Lemma 4, we can write with x =

a,/on, * ) = knA(d,p", * - x) + *

J/P", * - X) + knd,q"(B(p, X ~

>=0

where

Gn := CAkll^H. +
\

+ C r (/i max Up7' ||, + max Up71| ) Wn.

Thus we have

n - l

+ Ch2 sup ||i/1|2 Wn + Cr Tin - j
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Applying Lemma 4 again, summing from n = itoN and using the inequality (2.7)
and Lemma 1, we obtain that

N N

II d,pn || < Ch > kn || d,p" ||, + max |
n=l j=l

|M
0||2 + J"\\u,(s)hdsY

which completes the proof.

We also need the following error estimate for our quadrature scheme (1.7).

LEMMA 6. Suppose that f e C2(0, T], f € C[0, T] and \f"(t)\ < Cra. If a
grading exponent r > 2/(2 — a), f/ten f/iere w a constant CT depending on f and T
such that

K«k-s)f(s)ds -q"(f))
/

<CT(f)k2.

PROOF. Refer to Kim and Choi [5].

Finally, we obtain the second-order convergence result for the fully discretized
scheme (1.8).

THEOREM 2. Let u and {U"} be the solution of (I.I) and (1.8) respectively. We
assume thatfor sufficiently smooth data u0 and / , u satisfies u e C([0, T]; H2r\HQ)(~)
C3((0, r];L2(£2)), u, e L,(0, T;H2nH^)andutl e L,(0, T; H2)D Cl((0, T];//2).
Furthermore, we assume that \\u,,\\2 < Rot~a for some Ro > 0. If a grading exponent
r is greater than IIQ. — a), then there exists a constant CT independent ofh and k
such that

IIW- IT || < CT (u) (h2 + k2).

PROOF. Let u = Vhu for all tk > 0 and e" - U" - Vhu" + Vhu
n - u" = 6" + pn.

Comparing (1.8) with the variational form of (1.1) and introducing (2.4) we have the
following identity for n > 2:

(d,0",4>) + A{6 ' ,<p) = q ' {B(9, <p)) + I" + I!{, (2.8)

where we denote /" and 72 as follows:

/," = {un~112, <f>) ~ (d, Vhu
n, <j>) = (M"~1 / 2 - d,u", 0 ) - (d,pn, <t>),

q = q"~l/2(B(u, (/>)) - ^(Jn(B(u, </.)) + Jn.
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With the same argument as that used in Theorem 1 and taking </> = 6" in (2.8), we
have

1
x(li0"ir-

n - l

< CJfcn^(n-y)~oJt/+i||0^||i||0n||i + C£n|/1
n + 72

n|. (2.9)

Summing (2.9) from n = 1 to N and applying Lemma 2, we immediately obtain

°\\2< \\9°\\2 + Cj^(N - nrak]r+1 £*,+1||0>||2 + C ^ ^ d / f l + |7-1).
n=\ y=0 n=\

We now turn to the estimates for I\ and 72. Since u e C2((0, t\]; L2), the Taylor
formula with the integral form of the remainder implies that

*,!(«;-ay,fl^i^jfcjiifl'ii f'\\utl\\ds<c(u)k2-a\\9i\\. (2.ii)
Jo

If u € C3((0, 7]; L2), then still by the Taylor formula, we get

< Cr(M)ytn
3/-'-° for n > 2. (2.12)

We can easily verify that

Denoting r = 2 + p / ( 2 — a ) for some p > 0, we immediately have from (2.11)-
(2.13)

f / f l < max ||^ || Cr(«) [jk2 + P V; 1 ( ^ ) " ' + ) +TknfdlP
n\\ .

Also the estimate for 72" is directly obtained by Lemma 6:

n=\ ~

Thus, from Lemma 3 and Lemma 5, we obtain

||0"| | < max ||0"|| < C / z 2 ( | | « o l l 2 + F \\u,hds\ + CT(u)k2.
»±N [ Jo \

Since the estimate for | |p" || is given in Lemma 5, we complete the proof of the theorem.
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